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SUMMARY

The factors underlying the temporal dynamics of rubella outside of Europe and North America

are not well known. Here we used 20 years of incidence reports from Mexico to identify variation

in seasonal forcing and magnitude of transmission across the country and to explore

determinants of inter-annual variability in epidemic magnitude in rubella. We found considerable

regional variation in both magnitude of transmission and amplitude of seasonal variation in

transmission. Several lines of evidence pointed to stochastic dynamics as an important driver of

multi-annual cycles. Since average age of infection increased with the relative importance of

stochastic dynamics, this conclusion has implications for the burden of congenital rubella

syndrome. We discuss factors underlying regional variation, and implications of the importance

of stochasticity for vaccination implementation.
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INTRODUCTION

Rubella is primarily a mild childhood disease, but

acquiring the infection during the first 16 weeks of

pregnancy is associated with the risk of fetal death or

birth of a child with congenital rubella syndrome

(CRS). CRS is a condition associated with a range

of problems, from hearing impairment to brain dam-

age. Estimates of the burden of CRS are high in

many developing countries [1] and may frequently go

unreported [2]. Since vaccination drives up the

average age of infection, increasing the proportion

of women of child-bearing age at risk [3–7], many

countries in the developing world are not vaccinating

against rubella [8], particularly given recent work in-

dicating how partial vaccination of populations can

increase the population-wide risk of CRS by allowing

build-up of susceptible individuals in older age groups

[9]. Multi-annual outbreak cycles are another factor

that may allow such build-up because the deepened

post-epidemic troughs may lead to local extinction

and periods of lowered force of infection [10, 11].

Across much of the developing world, recent efforts

to reduce the burden of measles mortality [12] via

measles vaccination campaigns has lead to an increase

in national vaccination coverage capacity and second-

dose availability. In this context, it is of interest to

revisit the risks associated with introduction of the
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rubella vaccine [13]. A major challenge to quantifying

the potential CRS burden is that details of the drivers

of rubella dynamics remain unclear. Where rubella

dynamics have been described, multi-annual cycles of

varying periodicity are generally observed [14] and

competing explanatory mechanisms have been put

forward (summarized in Table 1). Depending on the

particular mechanism underlying multi-annual cycles,

vaccination might either increase or decrease the

period between major epidemics by shifting dynamics

between multi-annual and annual regimens. Identi-

fying both whether rubella dynamics are multi-annual,

and if so, the mechanism underlying such multi-

annual epidemics is thereforeofprogrammatic interest.

The mechanisms hypothesized hang on the treatment

of seasonal patterns of transmission (Table 1), cur-

rently generally assumed to reflect term-time forcing,

i.e. increases in transmission associated with aggre-

gation of children in schools, and decreases during

vacations [15]. However, whether this assumption is

valid is unclear, since estimation of seasonal variation

of transmission from time-series has been rare, and

estimates from countries outside Europe and North

America are non-existent. There is also as yet very

little information on the critical community size (CCS)

of rubella, i.e. the population size required for the

infection to persist locally without stochastic extinc-

tion [16].

The ideal dataset to tackle these questions would be

spatio-temporal time-series of incidence for rubella,

coupled with information on the age structure of

incidence. Data on rubella are relatively rare com-

pared to those on measles because it is a milder dis-

ease which is somewhat harder to diagnose. The

notification record from Mexico coordinated by the

Dirección General de Epidemiologı́a of the Mexican

Ministry of Health (described in [17]) provides an

excellent opportunity to explore rubella dynamics.

Rubella has been a reportable disease in Mexico since

1985 and vaccination against rubella with the MMR

vaccine was implemented in 1998 as part of a broader

Pan-American Health Organisation (PAHO) effort,

which successfully reduced incidence to very low

levels [18].

Here we use district-level monthly data from

Mexico from 1985 to 2007 and yearly data on age

structure to explore the critical dynamical questions.

We first estimate some basic parameters of the epi-

demiology of rubella in Mexico to compare with re-

sults from other countries [1] and explore regional

patterns of extinction (‘ fade-out ’) to establish whether

stochastic dynamics are likely to be important. We

then use spectral analysis to explore the magnitude of

multi-annuality in the dynamics, and explore whether

this can be attributed to transient dynamics [19].We fit

a time-series Susceptible–Infected–Recovered (TSIR)

model to estimate seasonal swings in transmission

[20]. With this, we finally explore the determinants of

patterns of seasonality, and whether these vary by

district size or socioeconomic characteristics. We dis-

cuss the implications of our results for identifying

populations most at risk for CRS and for the im-

plementation of vaccination campaigns.

METHODS

The data

Rubella incidence reports were obtained from ref. [21].

Monthly reported cases between 1985 and 2007 were

available for each of the 32 states of Mexico (Fig. 1),

at the spatial scale of districts. For 1990–2007,

district-level yearly incidence is available in age groups

of 5–10 years (e.g. 1–4, 5–14, 15–24, etc.). The MMR

Table 1. Different mechanisms proposed to explain multi-annual cycles in childhood infections

Driver Dynamic characteristics Predictions Ref.

School term-time
forcing of

transmission

Single basin of attraction, corresponding
to cycles with the observed period. For

rubella, different starting conditions lead
to annual or 5-year cycles

Deterministic seasonally forced dynamics should
correspond to the observed multi-annual cycles

[33]

Seasonal forcing

interacting with
transient
dynamics

Where two spectral peaks are observed,

perturbation analysis shows that the
resonant peak is determined by seasonality
and is generally annual, the non-resonant
peak can be predicted from transient

dynamics of the system

Asymptotically, seasonally forced dynamics

should be annual (irrespective of birth rate).
The relative magnitude of resonant and
non-resonant peaks should relate to the degree
of demographic stochasticity, for which

population size is a proxy

[19]
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vaccine was introduced in 1998 and resulted in rela-

tively high coverage [18]. Birth numbers and popu-

lation size for each district in each month were

obtained from ref. [22] ; as were socioeconomic indi-

cators of each of the districts.

Average age of infection and R0 from the

age-structured data

Assuming negligible mortality in the disease-relevant

age groups and a constant force of infection, the mean

age of infection A is defined by A=bxs(x)dx, where x
is age and s(x) is the proportion susceptible at age x.

From this, using 1x[the cumulative proportion of

case numbers over age] as a proxy for the proportion

susceptible in each discrete age group, we calculated

A for each district, and explored spatial patterns of

average age of infection. This estimate of the average

age of infection can also be used to obtain a crude

estimate of the basic reproduction number, R0, for

every district. In a growing population, A is related to

R0 by R0yG/A where G is the inverse of the per capita

birth rate [23], here set to the inverse of the mean birth

rate of each district. The value of R0 estimated in this

way may be biased by a range of factors, particularly

differences in the force of infection over age [24].

Nevertheless, the relative magnitude of R0 across dis-

tricts should remain comparable, as long as district-

specific differences in the force of infection over age

are not too great. To verify this, we fitted a logistic

regression to the cumulative proportion of cases over

age across the entire dataset, with age fitted as a con-

tinuous covariate and district fitted as a factor.

Significant variability attributable to district in the

profile of infection over age would imply that trans-

mission varies over age such that the average age is a

poor indicator of the relative magnitude of R0.

Critical community size

Since population size is a key determinant of stoch-

astic extinction for strongly immunizing infections,
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Fig. 1. Time-series of rubella from four districts in Mexico, representing a range of population size (see Table 2) ; the year at

the start of vaccination is shown by a red vertical line.
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population size is strongly negatively related with the

number of fade-outs (or proportion of zeros) in the

time-series of incidence [16, 20]. The point where this

curve intercepts with zero provides an indication

of the CCS, or population size below which the in-

fection is subject to stochastic fade-outs. Since under-

reporting could lead to apparent fade-outs where

there are none [16], we define fade-outs as corre-

sponding to a full month with zero reported cases.

Since case reporting is at the district level, rather than

the city level, and since cities are more likely to be the

epidemiologically relevant unit, this estimate is likely

to be an upper bound on the CCS.

Spectral analysis

To test whether predicted relationships between

population size and periodic features of the time-

series were upheld (Table 1) we calculated period-

ograms of the rubella time-series for each district

using modified Daniell smoothers of width 2 [25]. We

located the main peaks in spectral density and ident-

ified the multi-annual peak with a period closest to an

integer multiple of a year as ‘resonant’ [19]. For six

time-series, only a single peak could be identified. For

the remaining 26 districts, we tested for correlations

between population size and the ratio between the

Table 2. Average age at infection, median transmission rate estimated from the TSIR analyses, b, and the

corresponding estimated reporting rate, pobs, and heterogeneity parameter, a (see text) ; with R0 estimated from

the age data for each district, and the district’s rank by population size (the range of population sizes are shown

in Fig. 4)

Average age,
A (pre-1999) b a pobs R0

Population
size rank

Aguascalientes 3.68 2.95 0.95 0.077 9.36 5
Baja California 6.28 6.39 0.97 0.05266 6.18 14
Baja California Sur 5.03 3.51 0.99 0.1821 7.33 1

Campeche 7.56 2.83 0.98 0.0594 4.63 4
Coahuila 4.96 6.46 0.96 0.0273 7.98 17
Colima 8.02 3.34 0.97 0.0382 4.85 3
Chiapas 7.54 4.09 0.98 0.0031 3.41 22

Chihuahua 5.14 6.88 0.96 0.0188 7.34 20
Distrito Federal 4.55 7.98 0.98 0.0247 9.04 31
Durango 3.83 5.22 0.98 0.0124 7.77 13

Guanajuato 3.91 7.82 0.96 0.0136 8.44 27
Guerrero 7.66 4.17 0.99 0.0087 3.36 23
Hidalgo 4.51 5.28 0.96 0.0104 6.67 16

Jalisco 5.23 4.87 0.97 0.0135 7.29 29
Mexico 4.26 6.48 0.96 0.0200 9.55 32
Michoacan 5.22 6.69 0.96 0.0040 5.63 26

Morelos 5.48 4.11 0.99 0.0205 7.43 9
Nayarit 5.93 6.34 0.95 0.0111 5.78 7
Nuevo Leon 5.17 3.92 0.99 0.0523 7.95 25
Oaxaca 6.84 3.67 0.98 0.0117 4.37 24

Puebla 5.78 9.65 0.95 0.0067 5.22 28
Queretaro 4.40 5.33 0.97 0.0293 7.08 8
Quintana Roo 9.30 2.53 0.97 0.0771 3.76 2

San Luis Potosi 5.34 6.7 0.96 0.0112 6.35 18
Sinaloa 6.41 5.25 0.96 0.0155 5.32 21
Sonora 4.52 10.37 0.97 0.0210 8.38 15

Tabasco 8.54 5.68 0.98 0.0061 3.47 11
Tamaulipas 9.25 4.50 0.98 0.0497 4.23 19
Tlaxcala 4.97 8.36 0.96 0.0169 6.58 6

Veracruz 10.18 3.83 0.98 0.0137 3.26 30
Yucatan 8.32 4.21 0.98 0.0394 4.58 12
Zacatecas 3.68 8.59 0.96 0.0141 9.49 10
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resonant and the second largest peak (‘non-resonant

peak’) [19]. If stochastically excited transients are a

driver of multi-annuality this ratio should decrease

with populations size (Table 1).

The TSIR model

Seasonal transmission rates can be estimated using

TSIR methods [20] in a Bayesian state-space frame-

work [26]. The generation time (serial interval) of

rubella (approximately the latent plus infectious period)

isy18 days [14], so we assumed that the time-scale of

the epidemic process was approximately 2 weeks, re-

sulting in two unobserved epidemic time-steps for

each observed monthly report (repeating the analysis

taking a monthly time-step does not alter the major

conclusions). Denoting Ym as the number of cases

reported in month m, and Im the unobserved total

number of cases, the observation process is defined by

Ymybinomial(Im, pobs ), where pobs is the reporting

rate. The unobserved epidemic follows the TSIR

process model where the number of infected indi-

viduals at time t+1, It+1 depends stochastically on It,

and the number of susceptible individuals St, with

expectation lt+1=bmStIt
a/Nt, where bm is the trans-

mission rate in every month and the exponent a,

usually a little less than 1, captures heterogeneities in

mixing not directlymodelled by the seasonality [20, 27]

and the effects of discretization of the underlying con-

tinuous time process [28]. Note that inasmuch as the

time-step used represents the true average time from

infection to recovery, bm estimated in this way corre-

sponds to the seasonally varying basic reproductive

number R0 (since it indicates the number of new in-

fections caused by a single infected individual in a

wholly susceptible population), and thus the median

value of bm can be compared to estimates of R0 ob-

tained using age-based calculations. We model It+1 as

a negative binomial random variable with expectation

lt and clumping parameter It [20]. Susceptible indi-

viduals are depleted by infections and replenished by

births, Bt, and are modelled with the renewal equation

St+1=St +BtxIt+1. Since vaccine coverage levels are

thought to be around 80%, and vaccinated indivi-

duals avoid susceptibility, births are discounted by 0.8

following the start of vaccination (i.e. post-vaccination,

St+1=St+0.2BtxIt+1). We assumed that infection

predominantly occurs early in life, so that depletion of

susceptible individuals by mortality can be neglected.

We used a Bayesian state-space model to obtain

parameter estimates. Flat priors were set on the

number of susceptible individuals at every time-step,

with the upper and lower limits set to constrain the

time-series to reflect a 20% range around the known

proportion of susceptible individuals in 1990 [29].

Uninformative priors were set for the bm parameters

(a normal distribution left-truncated at zero with a

mean of 6 and a standard deviation of 10); and flat

priors were set on the a parameter, constraining it to

be between 0.9 and 1. We set an informed prior on

the observation probability pobs, centred at an initial

estimate obtained from susceptible reconstruction

[20, 27] for each district, following a beta distribution

to allow for direct sampling.

We initiated the chain with constant monthly

transmission set to 6, and a=0.95. At each iteration,

we chose at random to update candidates of either one

of the bm parameters or the a parameter, or a subset

of the unobserved process, It, also chosen at random.

If the latter was chosen, we used the renewal equation

to obtain the corresponding numbers of susceptible

individuals through time, and checked that this viol-

ated none of the conditions or priors. If the candidate

proved suitable, we then calculated the acceptance

ratio for the candidate parameters (calculated by the

product of the likelihood of the observation model,

the likelihood of the process model and the prior

density functions of the candidates, divided by the

same three elements as calculated for the current par-

ameter values). We accepted or rejected the candidates

accordingly, and then used a Gibbs step to update

observation probabilities. After a burn-in of 10 000

iterations we ran the chain for 100 000 iterations,

sampling every 100th step to avoid autocorrelation.

RESULTS

Age of infection

The mean age of infection estimated for the pre-

vaccination era (before 1999, see above) ranges

between 3 (Zacatecas) and 11 (Veracruz) years, with

highest average ages of infection concentrated in the

south and coastal areas of the country (Fig. 2) ; age-

based R0 estimates are correspondingly low in these

locations (Table 2). A logistic regression relating the

cumulative proportion of infected individuals over

age showed no significant effect of location (x31
2 =2.92,

P>0.5, Fig. 3), suggesting that the relative magni-

tudes of R0 estimated in this way are comparable

across locations (although episodic dynamics will

provide a further slight bias, see below).
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Average age of infection was not significantly re-

lated to population size (F1,30=0.20, P>0.5), or dis-

tricts’ socioeconomic indicators (F1,30=3.51, P>0.05).

Estimates of average age of infection are consistent

with global patterns of results on seronegativity,

which generally indicate that more than half of the

population has been infected by age 13 years [1] ;

estimates are also in line with the incidence-based

estimate of an average age of infection of approxi-

mately 9 years from Peru [11].

Critical community size

The relationship between proportion of zero inci-

dence and log population size in the pre-vaccination

era is very noisy, and more triangular than linear.

However, the relationship is significantly negative

(F1,30=8.61, P<0.01), and provides an indicator of

the order of magnitude of the CCS as being larger

than a million (Fig. 4). This is comparable to esti-

mates from Peru [30].
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Spectral analysis

Across districts, the mean period of the non-resonant

peak was 3.79 years with a standard deviation of 1.25

years. The resonant peak was 1 year for all districts,

and the magnitude of the non-resonant peak was

greater than the resonant peak in only three districts

(Baja California Sur, Quintana Roo, Tabasco). Two

of these are the smallest populations in the data. The

relationship between population size and the ratio of

the magnitude of the resonant and non-resonant

peaks, denoted k, was significant (Fig. 5), supporting

the role of stochasticity in driving inter-annual varia-

bility (Table 1) via transient dynamics [19]. Log

average age of infection was also significantly and

positively related to the ratio of the magnitude of

the resonant and non-resonant peaks (F1,25=10.41,

P<0.05, r2=0.22, with y=4.74+2.00k), i.e. districts

with more strength in the non-resonant peak had

a higher average age at infection. This suggests

that stochasticity may increase the mean age of in-

fection (and may slightly bias estimates ofR0 obtained

above). Including the mean transmission rate b esti-

mated via the TSIR (see below) did not significantly

improve this regression model (F1,24=0.06, P>0.4).

Seasonality and transmission magnitude

The overall magnitude of seasonal transmission esti-

mated via the TSIRmodel (which can be equated with

R0, see above) concurred with the broad estimate of

R0 obtained via average age of infection (Table 2),

suggesting relatively low transmission in this infection

relative to the most contagious childhood infections

such as whooping cough or measles [14]. Seasonal

variation in transmission rates estimated by the

Bayesian state-space TSIR showed a signal of term-

time forcing, with low transmission in July ; this

pattern did not vary much across socioeconomic

indicators (Fig. 6). The coefficient of variation in

seasonality of transmission ranged from 0.16 (Oaxaca)

to 8.57 (Durango). There were no clear geographical

differences in the pattern of seasonality (not shown)

and no correlation between magnitude of seasonality

and socioeconomic indicators (n=32, r=x0.20,

P>0.1). The coefficient of variation of seasonality

and the average age of infection were significantly

negatively correlated (n=32, r=x0.37, P<0.05),

so that locations with higher amplitude transmission

also had a lower average age of infection.

DISCUSSION

Our results point to considerable regional variability

both in patterns of seasonality and average age of

infection of rubella across Mexico, with for example

low average age of infection around Mexico City

(in agreement with a previous serosurvey in this

district [31]), and higher average age of infection in the

southern and coastal regions (Fig. 2). This variation

in the average age of infection could result from either

regional variability in R0, or regional variability in the

importance of episodic dynamics, as Ferrari et al. [10]

have demonstrated that such dynamics can inflate the

upper tail of the age-incidence curve. Various lines of

evidence support the latter explanation (see below).

Our results also indicate some general patterns for the

epidemiology of rubella in Mexico such as a signal of

term-time forcing [15] with lower transmission during

school holidays found across the country (Fig. 6), as

has also been indicated by a recent analysis of rubella

in Peru [11, 30].

Our results provide general support for stoch-

asticity as a driver of rubella dynamics. Our analysis

suggests a CCS for rubella larger than 1000 000,

considerably larger than the estimate for measles in

the UK, estimated to be between 300 000 and 500000

[16]. This figure is likely to be an overestimate since

the geographic unit used is districts rather than cities,

but the large CCS is not unexpected given the com-

paratively weaker transmission rate of rubella relative

to measles, and is consistent with one other estimate
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for rubella in Peru [30]. This suggests that local

extinction is likely to be frequent, inducing more epi-

sodic dynamics and allowing build-up of susceptible

individuals in later age groups [10], implying that con-

nectivity between population centres is a key direction

of research in establishing the burden of CRS [11].
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In contrast to the multi-annual dynamics observed

for rubella in the pre-vaccination era in a range of

developed country contexts [14, 19], dynamics of

rubella in Mexico were predominantly annual (i.e.

in Figure 5, the ratio is very rarely >1, indicating

that the annual resonant peak dominates). This could

reflect the scale of our observation, i.e. district-level

observations could be averaging highly erratic local

dynamics, as in the case of measles in Niger, where

country-level dynamics appear annual, but dynamics

at the local scale are near-chaotic [26]. However,

a discernible non-resonant peak was detectable for all

but six districts, and the relative magnitude of the

district-level non-resonant and resonant peaks was

significantly related to the district average age of

infection. This relationship with average age of infec-

tion is not predicted if local dynamics deviate from

district-level observations, but is expected if local

dynamics within a district are synchronized and epi-

sodic [11].

Since dynamic features do significantly correlate

with the average age of infection (even though the

annual features dominate), the mechanism underlying

episodic dynamics remains a question of considerable

interest in the context of rubella. Our results support a

role for stochasticity [19] ; and in fact the low magni-

tude of the non-resonant peak relative to the resonant

peak would be expected in the context of this mech-

anism given the relatively high population densities

across districts in Mexico. This mechanism is also

supported by results including (i) the relationship

between population size and relative magnitude of

the resonant and non-resonant peaks (Fig. 5) ; and

(ii) estimates of R0 which are sufficiently low (y6)

as to be unlikely to drive complex multi-annual

cycles alone [32], unless birth rates are much higher

than those observed in Mexico. This importance of

stochasticity in determining the dynamics of rubella is

of public health significance because it provides a sec-

ond mechanism by which moderate vaccination cover

can enhance CRS risk; vaccination will break

local chains of transmission and thus increase sto-

chasticity in dynamics, potentially exacerbating the

predicted increase in mean age relative to less stoch-

astic settings [11].

The generality of the importance of stochasticity in

rubella dynamics is an interesting question for future

research. Serology data from Gabon have suggested

R0 values as high as 16 [14], and similar magnitudes

have been reported for Ethiopia and China [9]. Such

robust transmission would considerably reduce the

importance of stochasticity. Distinguishing whether

deterministic high transmission or transient dynamics

and fade-outs are the norm for rubella is important in

considering implementation of vaccination strategies.

For example, in Mexico spatially explicit deter-

ministic models that ignore demographic stochasticity

and local heterogeneities (Fig. 2) will not accurately

represent disease dynamics by failing to capture

frequent local extinctions, or inter-annual variability,

and attempts to model optimal vaccination strategies

may consequently go awry. Overall, the relatively low

estimates of R0 obtained here (Table 2), and a short

generation time indicate that interrupting rubella

transmission may be relatively straightforward, and

this is supported by the success of the Mexican

vaccination campaign (Fig. 1). However, in rubella,

unless vaccination is maintained at high levels, local

extinction may be followed by increases in CRS

incidence resulting from the build-up of susceptible

individuals in older age groups [11].
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