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Estimating the force-of-infection 

Here, observed age-specific prevalence data (n = 214 rabbits) was collected from nasal 

swabs using the data set resulting from “Sampling strategy one: force-of-infection” (see 

Materials and Methods for details). This data represents interval-censored infection-time 

data, such that each individual is either infected (Y=1) or not (Y=0) within a set interval of 

time. For a non-immunizing persistent infection such as B. bronchiseptica, (see key 

assumptions of force-of-infection (FOI) models in the Statistical Analysis, M&M) the 

age-specific prevalence of, P(a), can be estimated via the catalytic model:  
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where λ(a)  is what mathematical epidemiologists call the age-dependent FOI and what 

statisticians would call the age-dependent hazard (Hens, Aerts et al. ; Muench 1959). 

Assuming that the infection hazard is invariant with respect to age is often unrealistic (see 

Statistical Analysis, M&M). To incorporate age-dependency we use the piece-wise 

constant parametric model where, for pre-determined intervals, a constant FOI is 

assumed. Interval choice is based on some prior knowledge of age-classes of mixing 

cohorts in the population. When the FOI is assumed to be piece-wise constant across k 

age classes and each segment has a starting age la and duration dk, the integrand in 

equation (S1) for an individual whose age lies within the k’th age class will be:  
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We estimate the age-class-specific hazards by maximum likelihood. Algorithmically, we 

can note that the Bernoulli distribution (Equation 3 in main text) is identical to a binomial 

distribution with a sample size of 1. The function dbinom() in R evaluates the binomial 

(S1) 
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likelihood. We will need to do numerical minimization of the negative log-likelihood for 

our analysis. To do this we first write a general function that takes candidate values for 

the piecewise-constant FOI as an input (par), the dataset to be analyzed (data) and the 

lower cut-off for each age-class (cate), which provides the value of the negative log-

likelihood as output. The function code is: 

 

loglikpc=function(par,data, cate){ 

    dur=c(diff(cate), 0) 

    ll=0 

    for(a in 1:length(data$age)){ 

     dummy1=data$age[a]>cate 

     dummy2 = data$age[a]>cate & !c(data$age[a]>cate[-1], FALSE) 

     dummy1=c(data$age[a]>cate, FALSE)[-1] 

     inte=sum(dur*exp(par)*dummy1)+ 

     exp(par[dummy2])*(data$age[a]-cate[dummy2]) 

     p=1-exp(-inte) 

    ll=ll+dbinom(data$sick[a],1,p,log=T) 

     } 

 return(-ll) 

 } 

 

The inner working of this function is as follows: line 1 calculates the duration of each age 

class (dur); line 2 sets the initial log-likelihood to zero; lines 3 – 9 is a loop that for each 

individual in the data-set, calculates the integrand corresponding to equation S2 (inte), 

evaluates the prediction from the catalytic model (p) and finally adds the log-likelihood 

for each individual; finally, line 11 outputs the negative log-likelihood. Note, that to 

ensure that the FOI values are positive we actually estimate the log-values. 

 

The data-set needs to be formatted so that each individual is a unique line, the column 

labeled ‘age’ gives the age of the individual, the column labeled ‘sick’ has a 0 (zero) for 
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healthy individuals and 1 (one) for infected individuals. In the example below the dataset 

is named dat. 

 

With this setup, we can now estimate λ(a) by minimizing the negative log-likelihood 

using the quasi-Newton ‘BFGS’ method (for Broyden, 1969; Fletcher, 1970; Goldfarb, 

1970 and Shanno, 1970) - generally regarded as the best performing method - as 

implemented in the optim()-function of R. 

 

First we define the vector giving the cut-off ages. We call this vector x: 

 

x=c(0, 1, 4) 

 

Then we provide some (arbitrary) initial values for the log-transformed age-specific FOI 

values. We call this vector para: 

 

para=log(c(0.1, 0.1, 0.1)) 

 

Finally, we call the numerical optimizer in R and save the output as est: 

 

est = optim(par=log(para),fn=loglikpc,cate=x, method="BFGS",   data=dat, 

control=list(trace=2, maxit=1000)) 

 

The maximum likelihood estimates for the log FOI is given in est$par. 
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Statistical uncertainty∗∗∗∗ 

Because of strong multi-colinearity among the aλ -estimates, we use partial profile 

likelihoods to erect confidence intervals  (Diggle 2006). That is, we profile the likelihood 

for each segment separately, maximizing the likelihood with respect to the other 

segments. This step is computationally expensive and a bit technical. 

 

We first modify our likelihood function to flag the segment to be profiled (which) and 

what value to consider for that segment (wval). The modified function is: 

 

loglikpc2=function(par,data, cate=x, which, wval){ 

dur=c(diff(cate), 0) 

ll=0 

for(a in 1:length(data$age)){ 

 dummy1=data$age[a]>cate 

  dummy2 = data$age[a]>cate & !c(data$age[a]>cate[-1], FALSE) 

  dummy1=c(data$age[a]>cate, FALSE)[-1] 

  par[which]=wval 

inte=sum(dur*exp(par)*dummy1)+exp(par[dummy2])*(data$age[a]-

cate[dummy2]) 

  p=1-exp(-inte) 

 ll=ll+dbinom(data$sick[a],1,p,log=T) 

  } 

return(-ll) 

} 

Again we define the vector giving the cut-off ages.  

x=c(0, 1, 4) 

 

Then provide some (arbitrary) initial values for the log-transformed age-specific FOI 

values: 

para=log(c(0.1, 0.1, 0.1)) 
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Next we set up a grid (in this case a sequence of length 31) of candidate values (on a log-

scale) to consider (wval): 

 

wval=seq(-15, 0, by=.5), 

 

and a empty vector to store the partial profile negative log likelihood values (this example 

profiles segment 1 so the segment is named ll1): 

 

ll1=rep(NA, 31) 

 

Then we call the numerical optimizer in R repeatedly (31 times in this example) and save 

partial profile likelihood values in ll1: 

 

for(i in 1:31){ 

tmp=optim(par=log(para),fn=loglikpc2,cate=x, method="BFGS",  

hessian=TRUE, data=dat,control=list(maxit=1000), which=1, wval=wval[i]) 

ll1[i]=tmp$value 

} 

 

Finally, we use a smoothing spline to interpolate the partial likelihood profile: 

tmp2=smooth.spline(wval,ll1) 

new=seq(-15,0, by=.001) 

interp= predict(tmp2, new)$y 

 

and then use the fact that the profile likelihood is χ2
-distributed to erect 95% confidence 

intervals: 

 

mle1=new[which.min(interp)] 

tmp3=(predict(tmp2, new)$y-min(predict(tmp2, new)$y))-qchisq(0.95,1) 

range(new[tmp3<0]) 

The final range() call provides the 95% confidence interval. 
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Generalized linear models (GLMs)  

To test for evidence of significant sibling-to-sibling transmission we used binomial 

regression with a complementary log-log link. We use the complementary log-log link, 

here, because the resultant parameter estimates then has a hazard (i.e. FOI) interpretation, 

as opposed to the ‘odds’ interpretation that would result from the commonly used logistic 

(‘logit’) link . This was done using the data set resulting from “Sampling strategy two: 

sibling-to-sibling transmission” (see Sampling Strategies in M&M for details). This data 

set (n = 160 kits total) comprised of a column entitled: ‘disease_conversion’, which 

represents the binary variable that denotes whether or not a co-housed susceptible sibling 

was infected at the end of the experiment; ‘co-housed status’, which informed on 

infection status of co-housed siblings on initiation of experiment; ‘facility’, to control for 

possible differences between the two breeding houses and ‘family’, to control for 

possible cohort effects. After importing the data into R (Crawley 2007), the GLM was 

run as follows: 

glm(disease_conversion ~ cohoused_status + facility, family = binomial(link = 

"cloglog"))  

 

Generalized linear mixed models (GLMMs) 

Next, to investigate if (a) offspring of infected mothers have an increased instantaneous 

risk of becoming infected and (b) if offspring of the same litter tended to have the same 

infection fate because of within-litter transmission, we used random effect (“generalized 

linear mixed model (GLMM)”) binomial regression, with litter as a random variable 

using the data set resulting from “Sampling strategy three: maternal transmission” (see 

Materials and Methods, ‘Sampling Strategies’ section for details). This data set (with 86 

does and 408 kits) has a column entitled ‘disease_conversion’ representing the binary 

variable that flags whether or not any given susceptible offspring was infected at the end 

of the experiment, ‘mother_infected’ representing the binary variable that flags whether 

or not the mother was infected before kit birth. Breeding facility and litter size were also 

included as covariates to control for any possible effect of breeding house or litter size, 

respectively. The algorithm we used for fitting this model was Penalized quasi-likelihood 
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(PQL) as implemented in the glmmPQL-function of MASS R-package. First, we attach 

the necessary package into R: 

 

 require(MASS)  

 

We then fit the model. Again we use the complementary log-log link, here, because the 

resultant parameter estimates retains a hazard (i.e. FOI) interpretation, 

 

 fit2 = glmmPQL(disease_conversion ˜ mother_infected + litter_size + facility, 

         random = ˜1 | Litter, family = binomial(link = "cloglog"))  

 

The litter random effect is specified by the random = ˜1 | Litter argument. See (Bolker, 

Brooks et al. 2009) for a general introduction to GLMM’s for biologists. Finally we can 

formally test for significantly enhanced FOI of offspring of infected mothers by 

investigating the estimated litter-level random effect: 

 

> x=random.effects(fit2)[,1][mother_infected ==0] 

> y=random.effects(fit2)[,1][ mother_infected ==1] 

 

> t.test(x,y)  

 



Long et al 2010 – Age-structured Bordetella transmission – R Code 8 

References 

Bolker, B. M., M. E. Brooks, et al. (2009). "Generalized Linear Mixed Models: a 

Practical Guide for Ecology and Evolution." Trends Ecol Evol 24(3): 127-135. 

Broyden, C.G., 1969. “A new double-rank minimization algorithm”, Notices of the 

American Mathematical Society, 16:670. 

Crawley, M. J. (2007). The R Book: West Sussex, UK: John Wiley & Sons Ltd. 

Diggle, P. J. (2006). "Spatio-temporal point processes, partial likelihood, foot and mouth 

disease." Stat Methods Med Res 15(4): 325-36. 

Fletcher, R., 1970. “A new approach to variable metric methods”, Computer Journal, 

13:317-322. 

Goldfarb, D., 1970. “A family of variable metric methods derived by variational 

means”, Mathematics of Computation, 24:23-26. 

Hens, N., M. Aerts, et al. "Seventy-five years of estimating the force of infection from 

current status data." Epidemiol Infect 138(6): 802-12. 

Muench, H. (1959). "Catalytic Models in Epidemiology." Harvard University Press. 

Shanno, D.F., 1970. “Conditioning of quasi-Newton methods for function 

minimization”, Mathematics of Computation, 24:145-160. 

 

 

 

 


