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a b s t r a c t

The usage of structured population models can make substantial contributions to public health,
particularly for infections where clinical outcomes vary over age. There are three theoretical challenges
in implementing such analyses: (i) developing an appropriate framework that models both demographic
and epidemiological transitions; (ii) parameterizing the framework, where parameters may be based
on data ranging from the biological course of infection, basic patterns of human demography, specific
characteristics of population growth, and details of vaccination regimes implemented; (iii) evaluating
public health strategies in the face of changing human demography. We illustrate the general approach
by developing amodel of rubella in Costa Rica. The demographic profile of this infection is a crucial aspect
of its public health impact, andwe use a transient perturbation analysis to explore the impact of changing
human demography on immunization strategies implemented.

© 2011 Elsevier Inc. All rights reserved.
1. Introduction

Structured population models have particular relevance in hu-
man epidemiology because both contact patterns and severity
of disease are strongly age-dependent. Theoretically, there are
three linked challenges to making age-structured models rele-
vant to the epidemiological setting. First, the model framework
must reflect both demographic and epidemiological transitions
(Anderson and May, 1991; Klepac and Caswell, 2010; Schenzle,
1984), which requires taking into account the different time-scales
of epidemiological rates and human demography. Second, the
model must be parameterized from diverse public health data that
are usually crude with respect to age structure (since cases are of-
ten binned into broad age classes), age-specific mixing, and sparse
with respect to time (since data are often aggregated at intervals
greater than the natural time-scale of infection). Third, parameter-
ized models must be able to evaluate various public health strate-
gies in the face of current and projected changes in demography.
We illustrate these three linked challenges by developing a struc-
tured model for rubella in Costa Rica—an infection for which dis-
ease severity is particularly age-dependent.
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Rubella is a directly transmitted and strongly immunizing in-
fection that generally causes a mild childhood disease. However,
infection during the first trimester of pregnancy may cause fetal
death or congenital rubella syndrome (CRS). The latter entails a
range of impairments, including deafness, cataracts and blindness,
and congenital heart disease. Since routine vaccination generally
decreases the force of infection (FOI, the rate at which suscepti-
ble individuals become infected), it will increase the average age
of infection unless coverage is high enough to achieve elimina-
tion. Mass vaccination may therefore potentially have the nega-
tive side effect of increasing CRS incidence (Anderson and May,
1983, 1985, 1991; Edmunds et al., 2000b; Vynnycky et al., 2003).
Dynamically speaking, mass vaccination is analogous to reducing
the birth rate, if vaccine-induced immunity conveys life-long pro-
tection (Earn et al., 2000). Consequently, a secular reduction in
fertility rates is another factor that will increase the mean age of
infection. In the simplest analysis, an unstructured susceptible–
infected–recovered (SIR) model indicates that rubella immuniza-
tion activities must attain sufficiently low equilibrium incidence
to offset the increase in the average age of infection in the birth
rate context of interest (Fig. 1). Perturbations due to changes in hu-
man demography or vaccination coverage mean that reality will
rarely reflect the simple case. Understanding age-structured dy-
namics combining both changing demography and epidemiology
in this context is thus the key, and for this, developing structured
models is essential (Tuljapurkar and John, 1991).
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Fig. 1. In a classic SIR framework (here, dS/dt = µ(1 − v) − βSI − µS and
dI/dt = βSI − gI − µI , where µ is the birth and death rate (total population
size as taken as N = 1), v is the vaccination coverage of the birth cohort, and
g is the generation time of the infection) the equilibrium proportion of infected
individuals I∗ (y axis, left) is defined by I∗ = µ[(1− v)R0 − 1]/β and thus declines
with increasing vaccination coverage of the birth cohort (x axis). The average age
of infection A increases (y axis, right), approximately following R0 = G/A where G
is the inverse of the birth rate. Different lines reflect 20, 30 or 40 births per 1000
(solid, dashed and dotted lines, respectively); other parameters are g is 18 days−1 ,
and β = R0/(g + µ) with R0 = 5.

From the point of view of public health, the dynamics
of rubella in Costa Rica following vaccination are particularly
interesting. Theoretical concerns about increases in the CRS
incidence following introduction of rubella vaccination (Knox,
1980) appear to have been to some degree born out in the
country (Morice et al., 2009). Vaccination was introduced at first
at low coverage levels, and following years of low incidence, large
outbreaks in older individuals occurred in 1987 and 1999. This
was matched by an increase of susceptibility in older age groups
(Jimenez et al., 2007) as well as an increase in CRS incidence.
However, interpreting the impact of vaccination on CRS incidence
in Costa Rica is complicated by the dramatic concurrent declines in
the population birth rate.

Globally, introduction of the rubella vaccine is increasingly be-
ing considered, particularly given large-scale efforts currently un-
derway towards measles eradication (World Health Organization,
2011). Understanding the contexts that might lead to problems by
better understanding what occurred in Costa Rica is of consider-
able applied as well as theoretical interest. We use a structured
modeling approach and sensitivity analysis to explore the determi-
nants of the observed patterns, and to detail the impact of vaccina-
tion coverage under changing human demography. Below, we first
introduce the model framework. We then describe data sources
available, and approaches that can be used to parameterize the
model, and finally use a perturbation analysis to explore how out-
comes are altered given the changing humandemographic context.
We conclude by discussing the impact of changing human demog-
raphy on the impact of rubella immunization strategies.

2. Model framework

We use a discrete-time model that incorporates both epidemic
and demographic transitions (Klepac and Caswell, 2010; Klepac
et al., 2009) by structuring the population into age classes, and epi-
demiological classes (‘maternally immune’ M , ‘susceptible’ S, ‘in-
fected’ I , ‘recovered’ R, and ‘vaccinated’ V , taken to indicate the
successfully vaccinated, and only applied to susceptible individu-
als). We can frame the joint processes of aging and infection as a
matrix of demographic and epidemiological transitions. We struc-
ture the population into age strata (1, 2, . . . , z, where z is the total
number of age strata, here taken as z = 37 with yearly age strata
from age 1 to age 34, and decadal age strata thereafter up to age
64), and epidemiological classes (M , S, I , R, andV ). Initially ignoring
demographic transitions (survival and aging), within each age class
a transitions between epidemiological categories occur according
to:

Aa,t =


1 − da 0 0 0 0
da 1 − ϕa(n(t))(1 − va) 0 0 0
0 ϕa(n(t))(1 − va) 0 0 0
0 0 1 1 0
0 va 0 0 1

 . (1)

The five rows and columns represent theM , S, I ,R, andV categories,
respectively, and the matrix captures transitions between them.
The time-step is taken as the serial interval of rubella (the latent
plus infection period of the infection). Discrete time approaches
that use the generation time of the infection as a time-step go
back to Bailey’s chain-binomial model (Bailey, 1957), and have
received general support from analysis of a range of immunizing
childhood infections with generation times similar to that of
rubella (Bjørnstad et al., 2002;Metcalf et al., 2009). In the transition
matrix da is the probability of losing maternal immunity, ϕa is
the probability of becoming infected, and va is the probability of
being vaccinated. The infection probability ϕ (also called the force
of infection, FOI) is a function of n(t), a vector describing the
population at time t

n(t) = (M1,t , S1,t , I1,t , R1,t , V1,t ,M2,t , . . . , Vz,t)
T (2)

according to

ϕa(n(t)) = 1 − exp

−


j

βa,j,t I
γ

j,t/


n(t)

 (3)

where z is the total number of age classes, βa,j,t is the rate of
transmission between individuals in age classes a and j at time t ,
referred to as theWho-Acquires-Infection-From-WhomorWAIFW
matrix, and γ captures heterogeneities in mixing not directly
modeled (Bjørnstad et al., 2002; Finkenstadt and Grenfell, 2000)
and the effects of discretization of the underlying continuous time
process (Glass et al., 2003). Here we fix γ at 0.97 (except when
calibrating R0; see below), reflecting values obtained formeasles in
England and Wales (Bjørnstad et al., 2002). Discrete-time models
that do not incorporate this exponent (i.e., γ = 1) result in
dynamics that are unrealistically unstable and prone to frequent
extinction. Total population size appears as a denominator of
number of infected individuals in Eq. (3) since previous experience
with rubella indicates that transmission appears to scale in a
frequency dependent manner (Metcalf et al., 2011b) as expected
when social clique size is relatively independent of population size
(Ferrari et al., 2011).

Seasonality in transmission often plays an important role
in the dynamics of childhood infections (Ferrari et al., 2008;
Schenzle, 1984), and is generally observed for rubella (Metcalf
et al., 2011a,b). In the absence of detailed data, we chose to model
seasonal fluctuations as a trigonometric function (e.g.,Schenzle
(1984)), i.e., transmission to individuals in age strata a, from
individuals in age strata j at time t are defined by βa,j,t = βγ ,a,j(1+

β2 cos(2π t))where βγ ,a,j is mean transmission from individuals in
age strata j to age strata a, and β2 is a parameter controlling the
magnitude of seasonal fluctuations.
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We construct the full transition matrix A(n(t)) to project
the entire population forwards via aging, mortality and infection
dynamics according to:

A(n(t)) =



s1(1 − u1)A1 0 0 · · · 0
s1u1A1 s2(1 − u2)A2 0 · · · 0

0 s2u2A2 s3(1 − u3)A3 · · · 0
0 0 s3u3A3 · · · 0
· · · · · · · · · · · · 0
0 0 0 · · · .szAz

 (4)

where sa is the probability that an individual in age class a survives
to the next time step, ua is the rate of aging out of age class a,
and A1, A2, etc., are defined in Eq. (1), time-subscript dropped
for convenience. The dynamics of the population as a whole can
be projected forward according to the density dependent matrix
model:

n(t + 1) = A(n(t))n(t) + Bt (5)

where B(t) is a vector representing the number of births at time t

Bt = (Bt , 0, 0, . . . , 0)T . (6)

Initial conditions were taken as values corresponding to the quasi-
stationary distribution of the stochastic model for each set of
parameters (obtained by iteration).

Ourmatrixmodel structure (Eq. (4)) implicitly assumes that de-
mographic transitions relating to survival precede epidemiological
transitions. The impact that this will have on dynamics is likely to
be minimal since survival is very high across the chosen serial in-
terval. The separation of births from the overall demographic and
epidemiological transitions (Eq. (5)) also assumes that epidemiol-
ogy precedes this aspect of demography. Given the gradual nature
of the change in birth rates modeled (Fig. 2) this will have some
effect on initial conditions, but will be minimal subsequently.

With this framework, we can calculate the basic reproduc-
tive ratio, R0 (the number of cases that would result from the
introduction of a single infected individual into a completely
susceptible population), as the dominant eigenvalue of the next
generation matrix taken at the disease free equilibrium (Allen
and van den Driessche, 2008; Diekmann et al., 1990; Klepac and
Caswell, 2010). In this case, R0 is undefined for γ < 1 so for its
evaluation we set γ = 1. This is necessary because we need an
approximate next-generation value for R0 to calibrate our trans-
mission matrix (see below). We use γ = 0.97 for all dynamic sim-
ulations (for reasons discussed above).

We can extend the model to be stochastic and to include an
immigration rate according to,

n(t + 1) = S[A(n(t)),n(t)] + Bt + Mt (7)

where in the stochastic setting, S[A(n(t)),n(t)] is a vector
resulting from the sum of stochastic draws from multinomial
distributions defined according to each column of thematrixA and
the number of individuals in each category,n(t);Bt is a vectorwith
zeros corresponding to all but the first class (cf Eq. (6)), which in
the stochastic setting is taken as a draw from a Poisson distribution
around the time-varying mean birth rate, and Mt is a vector with
zeros corresponding to all but the infected classes, and a draw
from a random Poisson distribution with mean ι for each of the
infected classes (that is, we make the simplifying assumption that
the immigration rate is the same for all age classes). Large values
of ι correspond to high mobility and low coverage of adjacent
locations; small values of ι correspond to lowmobility and effective
vaccination in adjacent locations.
3. Parameterizing the model

Informing structured population models can be more straight-
forward than informing un-structured models, because it is of-
ten easier to match data inputs (e.g., age specific vaccination and
death rates) to appropriate parameters in the model than in cases
where population structure is oversimplified or ignored. Here,
birth rates and population size of Costa Rica changed substan-
tially over the period considered (1972–2000, Fig. 2a). We incor-
porate this directly into the model. Survival over age was less vari-
able (Fig. 2b) and also directly incorporated into the model using
the average rate over the time-course considered (Fig. 2b), again
scaled to the serial interval of rubella. The rubella vaccine was in-
troduced in Costa Rica in 1972 and the measles–rubella vaccine
(MR) was introduced into the childhood vaccination program in
1975 (Morice et al., 2003). Coverage increased gradually at a na-
tional scale (Fig. 2c).We include this in themodel by allowing tem-
poral variation in the vaccination rate of one year olds.

Magnitude and patterns of transmission over age may be
informed by an array of data (Anderson and May, 1991). Sero-
profiles (i.e. the age incidence of antibodies to rubella, indicating
exposure to the infection, here available for rather broad age
classes) taken before the start of vaccination (Villarejos et al., 1971)
suggest that the pre-vaccination average age of infection, A, was
rather high (Fig. 3a), and shows slight regional differences. With
life-expectancy of around L = 66 in Costa Rica in 1969, using the
relationship R0 ∼ 1+L/A (Anderson andMay, 1991), this suggests
a rather low R0 (between 3 and 5), comparable with R0 estimates
of between 2 and 8 reported for rubella Europe (Edmunds et al.,
2000a,b). To estimate the force of infection over age, we used
the ‘catalytic’ model (Griffiths, 1974), so called because of it
structural similarity to equations commonly used for the study of
chemical reactions (Grenfell and Anderson, 1985). For this model,
the cumulative probability P(a), of infection by age a is given by

P(a) = 1 − exp

−

 a

0
ϕ(a)da


(8)

whereϕ(a) is the age-specific force of infection.We fit a piece-wise
constant force of infection model to the data, with four age classes
(0–3, 4–14, 15–39, 40–66); note that these are the age classes
available in the data, and finer resolution is not available (each of
these bins is captured in the finer 37 stage structure used in our
dynamic model). The pattern over age indicates that infection is
predominantly occurring in children of school age (Fig. 2b).

The most direct source of information on human age-patterns
of contact is provided by the observational diary studies in Europe
(Mossong et al., 2008). A strongly diagonal structure (indicative of
considerablemixingwithin an age class) combinedwith ‘whiskers’
of contact between individuals in their early twenties and children
(Fig. 3c) characterize these matrices (Mossong et al., 2008; Rohani
et al., 2010). To explore whether this is an appropriate structure
for the contact matrix in Costa Rica, we used the Europe-wide
model (Mossong et al., 2008). We then calculated the expected
age-specific force of infection by considering this contact matrix
in combination with the age-specific prevalence (Fig. 3d), and
compared this with the empirical pattern revealed by the catalytic
analysis (Fig. 3b). The overall similarity of the two (Fig. 3b vs 3d)
suggests that the model of contacts obtained from Europe is an
adequate first cut in the absence of Costa Rican contact data. We
finally generated aWAIFWmatrix (i.e., obtained values forβ1,a,j for
all age classes) by scaling the contact matrix so that the resultant
R0 matched empirical estimates from the seroprevalence data.
In preliminary analyses we also used the approach of Farrington
and Whitaker (2005) to estimate the WAIFW matrix. However,
since this method is quite complicated and all epidemiological
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Fig. 2. Demographic, vaccination and infection characteristics of Costa Rica over the time-span considered including (a) birth rate (from http://data.worldbank.org);
(b) mortality over age in 1990 and 2000 from http://apps.who.int/ghodata/?vid=720 ; (c) variation in coverage via infant vaccination through time; (d) rubella incidence
over age across Costa Rica on a log scale (legend) in years following the introduction of vaccination. Black squares indicate the fraction of each cohort covered by routine
infant vaccination (reflecting Fig. 1b). Older age outbreaks start at the upper limit of this line.
conclusions derived were similar to those using contact data, we
have not included this analysis in this paper.

In the absence of data at a finer than annual time scale during
the pre-vaccination era, it is impossible to estimate the exact
magnitude of seasonality in transmission. However, given no
substantial evidence for large variation in transmission for other
countries in the region (Metcalf et al., 2011a,b), and evidence for
transmission predominantly in school children (Fig. 3b), we set
β2 = 0.2. This value is sufficiently high to generate an annual peak
in transmission observed throughout the range for rubella, but not
of a degree that will result in highly nonlinear dynamics (Ferrari
et al., 2008). In the absence of data, we assumed that seasonal
variation in transmission affected all ages in the same way.

As well as allowing a straightforward way of incorporating
epidemiological and demographic rates (i.e., births, vaccination,
transmission, see above), structured models produce a diversity
of outputs that can be compared to data. For instance, sero-
surveys providing cumulative incidence by age, incidence data
from surveillance systems, and rates of severe outcomes (e.g., CRS,
death) can all be compared with model outputs and used in fitting
procedures. Data from Costa Rica indicates that large, irregular
outbreaks occurred prior to eradication, with the age structure
shifting upwards (Jimenez et al., 2007; Morice et al., 2003) as
predicted by epidemic theory (Anderson and May, 1991; Knox,
1980). Changes in the age-profile in serology are reviewed in
Morice et al. (2005), and overall indicate an increase in the age
of infection, and proportion of women of child-bearing age at
risk, also seen in the incidence reports (Fig. 2d). The signature
of this has been documented in the burden of CRS (Morice
et al., 2009). The pattern closely matches the cohorts unprotected
by vaccination through time (Fig. 2d), and thus suggests that
susceptibility is predominantly driven by vaccination rather than
natural circulation over this period.

To develop an understanding of the dynamics linked to the
age structure of susceptibility, we simulated stochastic dynamics
for 20 years prior to 1973 to arrive at the pre-vaccination quasi-
stationary distribution of the stochastic model, and then initiated
vaccination following coverage levels defined in the data, assuming
on average 1 infected immigrant a year across all age classes.
Under reported levels of vaccination coverage, and in the absence
of heterogeneity in coverage, although the age profile of incidence
is well reflected (particularly its increase), total incidence is under-
predicted, as rubella rapidly goes extinct. Cases that do occur are
entirely due to introductions that fail to spread. Classical theory
(Anderson and May, 1991) shows that circulation will cease in a
homogeneous population with coverage of more than 80% for an
immunizing infectionwith an R0 between 3 and 5 (the critical level
of coverage required to attain herd immunity is, at its upper limit,
1−1/5 = 0.8). Heterogeneity in vaccination coverage indicated by
coverage surveys in Costa Rica during this time period (Calvo et al.,
2004) may have resulted in pockets of susceptible individuals,
permitting the 1990’s outbreaks to occur.

The potential for heterogeneity in coverage led us to explore
the effects of lower effective coverage. To capture this, we fitted a
saturating curve of the form y = ax/(b + x) to coverage through
time and identified values of the parameters a and b corresponding
to the lowest sum of squares separating log observed and log
simulated age incidence over 10 simulations (Fig. 4). In these
simulations, we assumed a reporting rate of 0.02 in 1973 that
increases to near perfect reporting in 2008 to be consistent
with the fact that surveillance for measles and rubella was
targeted for improvement over this period with the introduction

http://data.worldbank.org
http://apps.who.int/ghodata/?vid%3D720
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Fig. 3. (a) Seroprofiles (points) of rubella pre-vaccination in 1969 (Villarejos et al., 1971), fitted with a logistic regression (lines) for rural communities, urban communities,
and the entire country; the corresponding average age of infection (defined as−β0/βs where β0 is the intercept of the fitted logistic regression; βs the slope) ranges between
17 and 21; (b) corresponding age-specific FOI fitted with a catalytic model; (c) log pattern of observed contacts across age (Mossong et al., 2008); (d) profile of the expected
FOI over age obtained by combining the age structure of the Costa Rican population between 1980 and 1985 with the age structure of infected individuals and the contact
matrix shown in (c).
Fig. 4. Fitted curve (blue line, y = x/(5.53 + x)) to reported vaccination coverage levels (black points) and curve reflecting the closest match between 15 simulated age-
incidence profiles and the observed age incidence (red line belowpoints, y = 0.89x/(12+x)); the log sumof squares surface is shown on the right; parameters corresponding
to the observed (square) and predicted (circle) shown. We assume that reporting rates increase gradually from 0.02 in 1980, reaching close to perfect reporting in 2008.
of standardized protocols, training of health personnel and use of
quality surveillance indicators to evaluate surveillance. With this
inferred vaccination profile, observed changes in the age profile
are well reflected, as are overall changes in incidence (Fig. 5).
Altering the exact timing and magnitude of changes in reporting
slightly alters the best fitting vaccination profile, but the various
combinations of reporting and vaccination coverage all permit the
intermittent large outbreaks late in the time-series, indicating that
the model can capture the broad qualitative patterns observed
both with respect to age-incidence and temporal dynamics.

4. Perturbation analysis

To explore how the demographic context changes the impact
of vaccination on rubella, we can use a deterministic perturbation
analysis to estimate the transient sensitivity of total numbers
of cases, and numbers of CRS cases to a change in vaccination
coverage (Caswell, 2007). To establish this, we write

dn(t + 1)
dθ T

=


A[θ,n(t)] + (nT (t) ⊗ Is) ×

∂vecA[θ,n(t)]
∂nT (t)


×

dn(t)
dθ T

+ (nT (t) ⊗ Is)
∂vecA[θ,n(t)]

∂θ T
(9)

where θ refers to the parameter of interest, here vaccination
coverage attained at age 1; A and n are as defined in Eqs. (2) and
(4); Is is an identity matrix of dimension s corresponding to the
dimensions of A (i.e., s = 5z), and the vec operator transforms
matrices into vectors with the columns stacked (Caswell, 2007;
Henderson and Searle, 1979). To solve Eq. (9), we first define ai,j to
include all appropriate transition components except vaccination
for each cell of the matrix. The derivative of the transition matrix
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Fig. 5. The range of 50 stochastic simulations for R0 = 4, assuming on average one
infected immigrant a year and vaccination coverage levels adjusted as described
above (dark gray polygon) or following the observed (light gray polygons) with the
observed (black lines) average age of infection (left) and number of cases observed
(right). Simulated case numbers are re-scaled for comparison with the observed
(right) by calculating a reporting rate so that the average number of cases simulated
in 1980 reflects the observed number of cases, corresponding to pobs = 0.02;
we assume that this increases exponentially, reaching close to perfect reporting
in 2008.

relative to coverage ∂A[θ,n(t)]/∂θ T is then zero for transitions
that donot include vaccination, ai,j where vaccination occurred and
−ai,j where vaccination did not occur. This yields an s × s matrix
that becomes an s2 × 1 matrix following the vec transform.

The vec-transformed derivative of the transitionmatrix relative
to n(t), ∂vecA[θ,n(t)]/∂nT (t) is an s2 × s matrix where every
column reflects the vec transformed derivative of the matrix A
relative to each successive value in the vector n. To estimate
this we require an expression of the derivative of the density
dependent term ϕa(n(t)), to the number of individuals in each of
the population classes. For n ∈ {M, S, R, V } this is

∂ϕa(n(t))
∂n

= −


j

βa,j,t I
γ

j,t

(


n)2
exp

−


j

βa,j,t I
γ

j,t/


n


and for n ∈ {I},

∂ϕa(n(t))
∂ Ii

= (1 − ϕa(n(t)))

βa,i,tαI
γ−1
i,t


n −


j

βa,j,t I
γ

j,t

(


n)2

 .

Since ϕa only appears for transitions out of susceptible stages
(Eq. (1)), these will be the only transitions for which the derivative
∂vecA[θ,n(t)]/∂nT (t) is not zero. For example for susceptible
individuals of age a that are not vaccinated (corresponding to
probability 1 − va), that do survive (corresponding to probability
sa), remain in the same age class (corresponding to probability
1 − ua), and are not infected, relative to the number of maternally
immune, susceptible, recovered or vaccinated individuals of any
age class i (represented by n), the corresponding derivative of
A[θ,n(t)] is

(sa[1 − va][1 − ua]) ×
∂ϕa(n(t))

∂n
. (10)
Relative to the number of infected individuals in age class a, the
derivative is

(sa[1 − va][1 − ua]) ×
∂ϕa(n(t))

∂ Ia
. (11)

For the equivalent susceptible individuals that become infected,
the relationships are the same, but multiplied by −1.

To evaluate ∂vecA[θ,n(t)]/∂nT (t), we first define the deriva-
tive of the matrix A[θ,n(t)] using the above for each value in
the population vector (M1, S1, . . .). For each matrix derivative,
we then take the vec transform. This defines the column in the
∂vecA[θ,n(t)]/∂nT (t)matrix corresponding to the element in the
population vector to which the derivative was calculated. All that
remains is to define the initial state for dn(t)/dθ T , here taken as ze-
ros, since the parameters do not affect the initial population struc-
ture. Sensitivities of numbers of individuals in each age class can
then be estimated using Eq. (9), and numbers of infected individ-
uals can be scaled by fertility in each age class to obtain the sensi-
tivity of CRS burden to changes in vaccination coverage (Caswell,
2007; Klepac and Caswell, 2010). To obtain the cumulative burden
over the years of vaccination (1975–2010), sensitivities or scaled
sensitivities may be directly summed.

Increasing low coverage (Fig. 6, top row) averts more rubella
cases for constant birth rates (Fig. 6a, horizontal line) than if birth
rates are falling as seen in Costa Rica. This occurs because in a
persistently high birth-rate context averting cases in an increased
proportion of new-born individuals prevents transmission tomany
others, because of the functional equivalence between birth rate
and transmission (Earn et al., 2000). For the CRS burden, the
relationship is generally the opposite: increasing the proportion
of the birth cohort vaccinated has a larger effect when birth rates
are declining than if they are not, at least when coverage is low.
This pattern occurs because declining birth rates are themselves
increasing the burden, by increasing the average age of infection,
so the impact of reducing incidence is larger. For sufficiently high
coverage, this pattern is reversed, and the effect reflects that of
numbers of infected individuals, since the reduction in incidence is
large enough to overwhelm the effect of birth rate on the average
age of infection.

5. Discussion

Epidemic dynamics of strongly immunizing childhood infec-
tions have been the focus ofmuch research. Theoretical predictions
of unstructured models and epidemiological surveillance data are
often closely matched (Grenfell et al., 2002; Keeling et al., 2001).
Seasonal variation in transmission generally stands in for differ-
ences in mixing over age in these unstructured models (Bjørnstad
et al., 2002; Earn et al., 2000), for example via low transmission
during times corresponding to school holidays. However, for infec-
tions like rubellawhere the age of infection is a critical aspect of the
burden, extending models to incorporate demographic structure
becomes essential. Additionally, unstructuredmodels must gener-
ally disregard data on age-incidence as a source of information, and
this may considerably weaken inference, especially where data is
only available at a yearly time-scale, preventing direct parameter-
ization of seasonal variation in transmission.

Here, we combine a diverse array of data to parameterize
a model of rubella in Costa Rica (Fig. 7) that incorporates the
age-dependent mechanisms we know to be operating (e.g., age
variation in transmission, etc.). This framework provides insights
into rubella dynamics in Costa Rica, but also points to uncertainties,
such as the likely role of both changes in reporting rates over the
time-scale of interest, and vaccination heterogeneity resulting in
pockets of susceptible individuals (Fig. 4). Although our model has
the potential to capture all the qualitative features of the transients
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Fig. 6. For birth-rate profiles ranging from that reported for Costa Rica (steep decline starting around 1985; solid line) to constant birth through the period (horizontal
dashed line), we estimated the sensitivity of the cumulative number infected to vaccination coverage achieved in infants (y axis) for coverage levels of 0 (black line lowest),
0.1 (red line 2nd lowest), 0.3 (green line middle), 0.4 (blue line 2nd highest) and 0.5 (turquoise line highest); likewise for the sensitivity for the number of CRS cases. For
both, sensitivity is consistently < 0 indicating that an increase in vaccination always reduces cumulative cases and cumulative CRS cases over this time-horizon; however,
greater effect is observed for lower coverage levels, and for the CRS burden, the direction of effects may shift with coverage levels, see text.
Fig. 7. Relationship between data and the age-structured model. Solid lines
ending in arrows indicate either data or elements inferred from data (i.e., R0 , the
appropriate structure of the WAIFW ) that directly enter the model; double-ended
arrows indicate data that is compared with model output for model validation.

affecting incidence and age structure in Costa Rica, the strongest
quantitative fit to the empirical patterns is seen for lower vaccine
coverage than reported. This inferred lower vaccine coverage may
capture the combined effect of changes in reporting and spatial
heterogeneity in susceptibility, as well as potentially compensate
for some aspect of model mis-specification, and thus may not
necessarily be the true mechanism for the late outbreaks.

From a public health perspective, since birth rates and
coverage may vary through time (Fig. 2), and heterogeneity of
transmission across age (Fig. 3) is likely to be the rule, structured
models are essential to assess the transient effects of shifts
in demography and vaccination (Caswell, 2007). A key public
health question that the Costa Rican experience can inform
is whether the gradual introduction of coverage led to more
potential cases of CRS than would have been observed with
no introduction at all (given a specified time interval). Bearing
the caveats outlined above in mind, across an array of values
of R0 (3–12) we find a negative sensitivity of the cumulative
CRS burden on an increase in vaccination coverage (see, e.g.,
Fig. 6), which is retained across a range of birth scenarios. This
indicates that for situations broadly resembling that of Costa
Rica, introducing vaccination even at rather low levels is likely to
largely result in positive outcomes relative to the CRS burden, and
would therefore be recommended (although note that extending
the time-horizon could eventually result in an increase in the
cumulative burden, and additionally, only deterministic rather
than stochastic sensitivities were explored).
A second critical question in the current context of changing
human demography is the degree to which changes in coverage
are affected by changes in the birth rate. The relative magnitude
of the effects of vaccination in a declining birth context vs in a
constant birth contextmay be reversed for rubella incidence vs CRS
incidence. The analysis of rubella in Costa Rica explicitly reveals
the time-scales and magnitude over which such effects play out,
emphasizing the importance of introducing the rubella vaccine
into a declining birth situation, despite the relatively lower impacts
of immunization in this context on overall incidence.

Structured population models and next-generation techniques
have the potential to greatly inform public health questions:
the age-structured approach is essential to prediction of age-
structured outcomes, but also to exploiting the array of data
sources available. The more detailed reflection of underlying
mechanism further simplifies parameterization but also reveals
areas of important remaining uncertainty.
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