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Seasonal variation in infection transmission is a key determinant of epidemic dynamics of acute infec-

tions. For measles, the best-understood strongly immunizing directly transmitted childhood infection,

the perception is that term-time forcing is the main driver of seasonality in developed countries. The

degree to which this holds true across other acute immunizing childhood infections is not clear. Here,

we identify seasonal transmission patterns using a unique long-term dataset with weekly incidence of

six infections including measles. Data on age–incidence allow us to quantify the mean age of infection.

Results indicate correspondence between dips in transmission and school holidays for some infections,

but there are puzzling discrepancies, despite close correspondence between average age of infection

and age of schooling. Theoretical predictions of the relationship between amplitude of seasonality and

basic reproductive rate of infections that should result from term-time forcing are also not upheld. We

conclude that where yearly trajectories of susceptible numbers are perturbed, e.g. via waning of immunity,

seasonality is unlikely to be entirely driven by term-time forcing. For the three bacterial infections, per-

tussis, scarlet fever and diphtheria, there is additionally a strong increase in transmission during the late

summer before the end of school vacations.
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1. INTRODUCTION
Many infectious diseases show seasonal patterns of inci-

dence (Altizer et al. 2006; Grassly & Fraser 2006).

Mechanisms underlying seasonality are perhaps best

understood for vector or aquatically transmitted infec-

tions (Altizer et al. 2006). For directly transmitted

respiratory infections, the cause of seasonality may be

either environmental or social. Environmental forcing

may operate through enhanced persistence or dispersal

of infectious particles by certain conditions of tempera-

ture or humidity (Lowen et al. 2007), or environmental

conditions may affect the condition of the host in ways

that favour the pathogen (Adams & Hewison 2007).

Social forcing operates via enhanced transmission

through aggregation of individuals at certain times of

year (Schenzle 1984; Fine & Clarkson 1986; Bjørnstad

et al. 2002; Ferrari et al. 2008). Identifying the drivers

of seasonal variation in disease transmission rates is

important, since seasonal variation is a strong force in

shaping disease dynamics (Earn et al. 2000). For strongly
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immunizing childhood infections in developed countries,

a large body of work on measles has pointed to the effects

of aggregation of school children on disease transmission

rates as a key driver of seasonality and dynamics (London &

Yorke 1973; Schenzle 1984; Bjørnstad et al. 2002).

Recently, Keeling & Rohani (2008) showed that since

strongly immunizing diseases lead to a specific age profile

of cases, if seasonality is predominantly due to term-time

forcing, the expected magnitude of seasonality of an infec-

tion and resulting dynamics and periodicity can be

predicted from the proportion of cases expected to occur

during schooling age. However, the empirical importance

of term-time forcing for directly transmitted childhood

infections other than measles has not been fully quantified.

Here we explore these issues by comparing across multiple

childhood infections in a longterm dataset from a single

population from the city of Copenhagen, spanning from 30

to 60 years starting at the turn of the twentieth century.

This unique dataset is of particular value for exploring the

importance of term-time forcing, as vaccination was initiated

only more recently, and all time series are therefore pre-

vaccination. Furthermore, the age distribution of infectious

individuals is available at an annual scale allowing us to

estimate the average age at infection for each disease, and

the proportion of infected individuals who are school aged.

This gives us a more direct opportunity to understand the

importance of term-time forcing in generating the observed
This journal is q 2009 The Royal Society
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Figure 1. Detail of numbers of cases reported between 1907 (1911 for varicella) and 1930; reports are weekly for all infections
except mumps, where reports are monthly. See electronic supplementary material for full time series. (a) Measles; (b) pertussis;
(c) mumps; (d) diphtheria; (e) varicella; ( f ) scarlet fever.
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seasonality as quantified using a time-series susceptible–

infected–recovered (TSIR) model.

The dataset includes notification time series for three

viral diseases, measles, mumps, and varicella (chicken

pox), and three bacterial diseases, pertussis, diphtheria

and scarlet fever, the latter two caused by infection with

group A Streptococcus bacteria. All six infections are trans-

mitted through direct contact or large droplet spread, and

the incidence of infection is highest in young children.

However, there is considerable variation in a number of

life-history features across this guild of infections, includ-

ing the generation time (serial interval) of the infection

(approximately the latent plus infectious period; see

Kenah et al. (2008) for more exact relations), which is

around 10–14 days for measles (Bjørnstad et al. 2002;

Grenfell et al. 2002), 16–26 days for mumps, 18–23

days for varicella, approximately 27 days for pertussis,

10–14 days for scarlet fever and around 26 days for

diphtheria (Anderson & May 1991). There is also vari-

ation in transmission rates: measles and whooping

cough are very highly transmissible and prevalent in

young children; mumps, scarlet fever and diphtheria are

less so and tend to be seen in children and teenagers

(Anderson & May 1991). The degree of immunity con-

ferred by the infection also varies—measles is strongly

immunizing, but diphtheria (Galazka 2000) and pertussis

(Rohani et al. 1999) show waning of immunity. A final

life-history difference is that pertussis, diphtheria (Frost

et al. 1936) and scarlet fever (Pichichero & Casey 2003;

Feeney et al. 2005) are all known to feature asymptomatic

individuals. Beyond direct life-history differences, all six

infections may exhibit variable dynamics in space and

time. For example, the combination of a short generation
Proc. R. Soc. B (2009)
time, high transmission rate and strong immunization

usually binds measles dynamics strongly to annual or bien-

nial attractors (Earn et al. 2000). By contrast, the longer

generation time of pertussis and important stochastic tran-

sients lead to longer period multi-annual cycles (Rohani

et al. 1999). Generally 3–4 year cycles are observed

(Broutin et al. 2005). The dynamics of the remaining

infections are less well characterized in the literature.

We observe more or less irregular annual outbreaks in the his-

toric Copenhagen data for these other infections (figures S2

and S3, electronic supplementary material).

In this paper, we take a comparative approach to under-

standing seasonal patterns of transmission and look for

evidence of deviation from term-time forcing among

these childhood infections. We apply a TSIR model

(Bjørnstad et al. 2002) to estimate month-specific trans-

mission rates, and we apply logistic regressions of

cumulative age incidence curves to estimate mean age of

infection and proportion of cases in school-age individuals.

We then compare predictions of rankings of the relative

magnitude of seasonality based on a model of term-time

forcing with the observed patterns. Below we introduce

the data, then outline the TSIR model and the approach

used to estimate mean age of infection. Our results

show intriguing deviations of seasonal transmission from

term-time forcing, particularly for the bacterial infections.
2. MATERIAL AND METHODS
(a) Data

We have two sources of data. First, we have counts of the num-

bers of reported infected individuals at a weekly scale for

varying ranges of years for the different infections (figure 1



0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e 

pr
op

or
tio

n

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e 

pr
op

or
tio

n

0 5 10 15 20 25 30

0 5 10 15 20 25 30 0 5 10 15 20 25 30

0 10 20 30 40

0

0.05

0.10

0.15

age (years)

pr
ob

ab
ili

ty

0 5 10 15 20 25 30
age (years)

cu
m

ul
at

iv
e 

pr
op

or
tio

n

(a) (b)

(c) (d)

(e) ( f )

Figure 2. The cumulative proportion of reported cases at each age obtained by summing the data over age and dividing by the
total sum to obtain proportions for (a) measles; (b) pertussis; (c) mumps; (d) diphtheria; ( f ) scarlet fever. Different points for
the same age correspond to different years. Fitted logistic regressions are shown as a dashed line. No data are available for var-
icella. (e) Inferred probability density functions for different infections (black line, diphtheria; brown line, scarlet fever; green

line, measles; blue line, mumps; pink line, pertussis). The grey area indicates ages between 7 and 15 years and approximately
encapsulate the years of schooling. The area under each curve found between these lines is provided in table 1.
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and figures S2 and S3 in the electronic supplementary

material) from a system of weekly reporting of cases of epi-

demic infections by primary-care physicians in Copenhagen

in place since 1900 (Stadslægen 1900–1970; see electronic

supplementary material for further details). Second, we have

the age category of the reported infected individuals at a

yearly scale, in age ranges of less than 1, 1–5, 6–15, 16–65

and greater than 65 (figure 2), obtained from Anonymous

(1900–1969) taken for years between 1907 and 1931. See

Andreasen et al. (2008) and the electronic supplementary

material for more details on data compilation.

(b) The TSIR model

For sufficiently immunizing infections, if reporting rates are

stable through time and all individuals eventually succumb

to infection, numbers of infected individuals track births

(Finkenstadt & Grenfell 2000) according to the difference

equation

Stþ1 ¼ St þ Bt �
I
ðrÞ
t

r
; ð2:1Þ

where the time step is the generation time, St is the number

of susceptible individuals at time t, Bt is the number of births,

It
(r) is the number of infected individuals reported and r

reflects under-reporting. If we ignore observational uncer-

tainty, the actual number of infected individuals at time t,

It, is It ¼ It
(r)/r. Rearranging equation (2.1) results in a

relationship from which the rate of reporting, r, and the pat-

tern of change in the number of susceptible individuals can

be inferred. First, from equation (2.1),

St ¼ �SNt þD0 þ
Xt�1

k¼0

Bk �
Xt�1

k¼0

I
ðrÞ
k

r
; ð2:2Þ
Proc. R. Soc. B (2009)
where S̄ is the average proportion of all individuals Nt that are

susceptible and D0 is the unknown deviation around the aver-

age number of susceptible individuals at the beginning of the

time series. To both estimate r and reconstruct a time series

Dt, which defines how numbers of susceptible individuals

vary around the mean number of susceptible individuals,

St ¼ S̄Nt þ Dt, we write (Bjørnstad et al. 2002; Finkenstadt

et al. 2002)

Xt�1

k¼0

Bk ¼
1

r

� �Xt�1

k¼0

I
ðrÞ
k þDt �D0: ð2:3Þ

From this, Dt can be estimated as the residuals from the

(potentially locally varying) regression of the cumulative

number of births on the cumulative number of cases and r

is the inverse of the slope of this regression (Finkenstadt

et al. 2002). Temporal variation in the reporting rate r

during the time period considered can be modelled by allow-

ing local variation in the regression using a smoothing spline

(Bjørnstad et al. 2002). Independent estimation of S is not

possible, as S̄ and D0 are both subsumed into the intercept

of the regression. For all infections, new births will only

become available for infection after a delay set by the

length of maternal immunity. Accordingly, maternal immu-

nity period was used to offset recorded births relative to

infection dynamics when using equation (2.3) to estimate Dt.

Given r and Dt, estimators for other epidemiological

parameters including the seasonal transmission factor (bs)

can be constructed. The epidemic process is described by

E½Itþ1� ¼
bsI

a
t St

Nt

; ð2:4Þ

where E[ ] represents the expectation for the number of

infected individuals one infection generation time in the
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future, the exponent a, usually a little less than 1, captures

heterogeneities in mixing not directly modelled by the sea-

sonality (Finkenstadt & Grenfell 2000; Bjørnstad et al.

2002) and the effects of discretization of the underlying

continuous time process (Glass et al. 2003). By log-

transforming equation (2.4), and using the relationships

defined above, we obtain

logðE½ðItþ1�Þ ¼ logðbsÞ þ a logðItÞ þ logð�S Nt þDtÞ
� logðNtÞ: ð2:5Þ

Given It, Nt and Dt, we use regression to estimate bs and a

and marginal profile likelihoods to estimate S̄ (Bjørnstad

et al. 2002). In our initial analysis of seasonality, a was con-

strained to a ¼ 1 to facilitate comparison of patterns of

seasonality between the different diseases. For simplicity,

the seasonal transmission rate was estimated as the linear

regression without an intercept of log incidence in

generation t þ 1 on month-specific bs as a factor and log-

incidence, log-susceptibles and minus log population size

as offsets. More exact estimation of equation (2.4) would

use a generalized linear model with Gaussian error and a

log-link but results are robust to error distribution and

link used, so we retained the linear regression. In as far as

the time step used represents the true average time from

infection to recovery, the estimates of bs correspond to

the seasonally varying basic reproductive number R0 (the

expected number of new infections caused by a single

infected individual in an entirely susceptible population)

and b̄ represents the time-averaged R0. Note that the

transmission rate bs estimated in this way is a proxy for

perhaps many complicated mixing patterns (in particular,

heterogeneity across age) (Bjørnstad et al. 2002).

For each infection, data were aggregated into the time

step chosen as reflective of the generation time of the infec-

tion, taken as either two weeks or four weeks based on the

value closest to the reported sum of infectious plus latent

periods (table 1). Altering the generation time used for

different infections did not alter the qualitative conclusions

regarding seasonality (see electronic supplementary

material figures S8 and S9); we also verified that estimation

was not affected by reasonable levels of waning of immunity

using simulated data. Finally, although the main aim is to

analyse seasonal patterns, we also tested the ability of the

TSIR parameters to recapture long-term dynamics of the

different infections (see electronic supplementary

material).

(c) Age at infection

We estimated the mean and variance in the age of infection

through aggregating the age-specific data across years

and fitting a logistic regression to the resulting cumu-

lative proportions y at each age x (figure 2), assuming

y � Binomial(
P

I, c(x)), where c(x) ¼ exp(b0 þ bsx)/(1 þ
exp(b0 þ bsx). This gives a mean age of infection of

2b0/bs and a variance of p2/(3bs
2).

The thus estimated mean age of infection provides a

complementary approach to our TSIR approach to explor-

ing the relative magnitude of R0 across infections. This is

useful because the TSIR-based esimtate can be confounded

with estimates of the proportion of susceptible individuals

(Bjørnstad et al. 2002). Assuming negligible mortality

trajectories in the disease-relevant age classes and a con-

stant force of infection, in a growing population, the

mean age of infection A is related to R0 by R0 ’ m21/A,
Proc. R. Soc. B (2009)
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where m is the per capita birth rate (Anderson & May 1991).

We set m ¼ 0.021, i.e. m21 ¼ 47.6, based on the mean from

historical data on Copenhagen birth rates. This method of

estimation of R0 may be biased by a range of potential com-

plications and in particular, heterogeneity of transmission

across age (Farrington et al. 2001), but will provide some

indication of relative magnitude of R0 across different

infections.
(d) Theoretical predictions of seasonality

If seasonality is driven by term-time forcing, the amplitude of

seasonality is likely to be proportional to the ratio of mixing of

children of the same age within school, relative to random

mixing outside of schools. The basic susceptible–infected–

recovered model predicts that this ratio will depend on R0

and the rate of population turnover m (reflecting birth and

death rates), as these two parameters determine the equili-

brium proportions of susceptible and infected individuals

across age (Anderson & May 1991; Keeling & Rohani

2008). If we assume negligible mortality in the disease-relevant

age classes and negligible change in the age structure of

infected individuals over time, and transmission is hom-

ogenous across age and space, the proportion of susceptible

individuals, X, changes over age according to

dX

da
¼ �XðaÞ

A
; ð2:6Þ

where A is the average age of infection (Anderson & May

1991). Solving this yields X(a) ¼ exp(2m(R0 2 1)a). The
Proc. R. Soc. B (2009)
fraction of infected individuals of age a, Y(a), is then

YðaÞ ¼ mðR0 � 1Þ
g

exp�mðR0�1Þa; ð2:7Þ

assuming dY(a)/da � 0, and with Y(a)¼ 1/g dX/da, where g

is the rate of recovery from infection. Using these results, we

can then estimate the ratio of mixing of children of the same

age within school relative to random mixing (Keeling et al.

2001; Keeling & Rohani 2008), according to

f ¼
ÐAL

AS
XðaÞYðaÞdaÐ

XðaÞda
Ð

YðaÞda

¼ mR0ðexpð�2mR0ASÞ � expð�2mR0ALÞÞ;
ð2:8Þ

where AS is the age of starting school (7 years in Copenhagen;

see electronic supplementary material) and AL is the age of

leaving school (here taken as 15 years; see electronic

supplementary material; using 14 does not change the results)

and the population turnover rate m can be estimated from the

yearly per capita birth rate, which ranges between 0.014 and

0.028 over the time course of the study in Copenhagen. If sea-

sonality is chiefly driven by term-time forcing, the magnitude

of seasonality across infections (as measured by their variance

in bs across the year) should be positively correlated with the f

quantity.
3. RESULTS
(a) Dynamics

Two-yearly plots obtained from the weekly incidence data

for all infections are shown in figure S3 in the electronic
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Figure 4. Relationship between the strength of seasonality, measured as variance of b, and (a) the proportion of cases occurring
in individuals starting school (p6–7), (b) the proportion of cases in school age individuals (p7–15) and (c) a measure of the
expected relative magnitude of seasonality if seasonality is entirely driven by term-time forcing (i.e. if term-time forcing dom-
inates seasonality in transmission, this relationship should be positive). Note that the scale of the y-axis is different in the third

figure, since by using b̄ as a measure of R0, we can include varicella in calculations of f. Using R0 based on the average age of
infection (table 1) does not alter the basic patterns.
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supplementary material. The generally biennial nature of

the measles dynamics and more-or-less erratic annual

patterns of the other infections are clear (see also full

time series in figure S1, electronic supplementary

material). All three viral infections show low incidence

during periods of school closure. Their behaviour at the

peak of incidence is somewhat different: measles and var-

icella peak fairly consistently between November and

January (figure S2 in the electronic supplementary

material). The peak of epidemics for mumps tends to

be later and is quite irregular. The bacterial infections

peak in incidence between October and December, and

all three start increasing earlier during the summer than

the viral infections.
(b) The TSIR model

For all infections, the TSIR model provides a good fit to

the short-term behaviour of the data (electronic sup-

plementary material figure S5). In the viral infections,

transmission rates are generally estimated to be low

during July (figure 3a,c,e), although mumps shows a

slight increase in July relative to June. The month of

July corresponds to school summer vacations in Copen-

hagen (see electronic supplementary material).

Transmission increases in August, the month where the

school term starts. The bacterial infections, diphtheria,

scarlet fever and pertussis, exhibit a surprising increase

in transmission rates in July, i.e. much less signature of

the school year (figure 3b,d, f ). These results are not

sensitive to the assumed generation time (figures S8 and

S9 in the electronic supplementary material) or period

of maternal immunity or exact alignment of school

holidays and weeks.

To ensure that the timing of increases and decreases in

the transmission rate observed in, say, measles did not

result from a folding in of major and minor epidemics

(Earn et al. 2000), we also fitted biennial b schedules to

all infections. There was no evidence that the difference

between diphtheria and scarlet fever, on the one hand,

and infections with more biennial-like cycles, on the
Proc. R. Soc. B (2009)
other, was owing to the effects of alternating major and

minor epidemics (not shown).

A range of sensitivity tests (see electronic supplemen-

tary material) support the extension of the TSIR to

infections that differ from measles (via generation time

and the presence of waning of immunity). Although this

was not the main aim of the paper, simulations of the

TSIR also capture long-term dynamics for measles (elec-

tronic supplementary material figure S7), providing

further corroboration of the TSIR model (as also shown

in Grenfell et al. (2002)). These results are promising,

although more work remains for the other infections.
(c) Age patterns of infection

Fitted age–incidence curves are shown in figure 2.

Deduced parameters are given in table 1. The resulting

inferred distributions of the age of infection are shown

in figure 2e. Measles and pertussis have relatively

narrow distributions concentrated at younger ages than

diphtheria, scarlet fever and mumps. Given the breadth

of the age distribution of cases for diphtheria, scarlet

fever and mumps, the proportion of cases of school age

is higher than that for measles and pertussis. However,

the proportion of cases among individuals at ages corre-

sponding to the start of schooling, when individuals are

most likely to be susceptible, is higher in measles and per-

tussis (table 1). The order of R0 across infections inferred

from the age–incidence curves is similar to that obtained

on the basis of the bs estimated from the TSIR model

(pertussis . measles . scarlet fever and diphtheria),

except that based on the TSIR, mumps has a higher

transmission rate b than expected from its average age

at infection (table 1). Age-specific data are not available

for varicella.

Overall, there is no evidence of a relationship between

amplitude of seasonality (as measured by variance in b

through the year) and proportion of cases occurring in

ages at the beginning of schooling (although measles

and pertussis rank highly for both relative to the other

infections; figure 4a). Infections with the lowest pro-

portion of infected individuals of school age actually
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have among the highest amplitudes of seasonality

(figure 4b), and infections with the highest theoretically

expected degree of term-time seasonality (f) have

among the lowest estimated values of magnitude of sea-

sonality (figure 4c). To calculate f, we used m ¼ 0.021,

which is the average yearly per capita birth rate in Copen-

hagen over the period considered. Patterns obtained for

the year with lowest (0.014) or highest (0.028) recorded

yearly per capita birth rate are similar, which is also the

case if R0 estimates obtained from the average age of

infection are used (table 1) rather than b̄.
4. DISCUSSION
Strong seasonality was documented in all six directly

transmitted childhood infections from Copenhagen.

However, theoretical predictions of the magnitude of sea-

sonality if term-time forcing is the dominant seasonal

driver (Keeling & Rohani 2008) were not met

(figure 4c). Although it is possible that the quantity

used (f) is simply a poor measure of term-time forcing,

other evidence also supports the conclusion that seasonal

forcing may be a result of many factors, rather than just

patterns of mixing at schools. In particular, although sea-

sonal transmission rates of the three viral infections

(measles, mumps and varicella) show a clear signal of

school vacations (i.e. low transmission during July, which

corresponds to the summer holidays), for the bacterial

infections, the seasonal transmission pattern deviates con-

siderably from term-time forcing expectations, with an

increase in transmission in July, despite the fact that

schools are closed during this month (figure 3). Overall,

this weakens the prospect of predicting the magnitude of

seasonality and thus periodicity of dynamics in different

settings. It is likely that information on population

mixing beyond R0, or the average age at infection (e.g.

used in Keeling & Rohani (2008)) will be required.

The deviations from the well-defined term-time

forcing seen in pre-vaccination measles in the UK is

puzzling (Bjørnstad et al. 2002). A possible explanation

is that school entry age is slightly higher in Copenhagen

than in pre-vaccination England and Wales. In Copenha-

gen, susceptible depletion during term time might act

more rapidly as a result of higher infection rates among

pre-schoolers, resulting in the low rates of transmission

in June before school closure (all diseases except pertus-

sis; figure 3). This is an intriguing direction for more

detailed age-specific modelling.

Among the viral infections, the term-time forcing pat-

tern in July is weakest for mumps, despite the fact that for

this infection, the proportion of infected individuals of

school age is one of the highest among all six infections

considered (table 1). There are long irregular intervals

between major epidemics in mumps (figure S2 in the

electronic supplementary material), perhaps caused by

an interaction between the longer generation time of

this infection and stochasticity, akin to that previously

described for pertussis dynamics (Rohani et al 2002).

These irregularities may determine the weakness of the

term-time forcing pattern: numbers of susceptible indi-

viduals will fluctuate across years in line with long-term

dynamics, and this may swamp within-year variation.

Although varicella has a similar generation time, it has a

much higher transmission rate (table 1) which may
Proc. R. Soc. B (2009)
more tightly tie it to the annual attractor, leading to a

profile closer to term-time forcing (figure 3).

Among the bacterial infections, pertussis appears to

exhibit the most complex long-term dynamics (figure S3

in the electronic supplementary material) which may be

part of the explanation for the deviation from term-time

forcing. By contrast, diphtheria and scarlet fever have

strongly annual epidemics, so numbers of susceptible indi-

viduals should show similar trajectories within each year,

all other things being equal. Complexities such as waning

of immunity (diphtheria and pertussis), asymptomatic

individuals (diphtheria, scarlet fever, pertussis) and sto-

chastic transients may contribute to irregular fluctuations

in numbers of susceptible individuals through the year,

but they do not shed any light on the apparent increase

in transmission rates during the summer holidays

(figure 3). The increase in transmission in July relative to

June may be a signature of some important environmental

driver in the dynamics of these bacterial respiratory

infections and is an interesting direction for further work.

To conclude, our results indicate that term-time for-

cing is a contributing component of seasonal dynamics

of many childhood infections (figure 3). Transmission is

low during the months of summer vacation for the viral

infections, and also low in November for all infections,

attributable to susceptible exhaustion after the start of

the school year (Bjørnstad et al. 2002). However, even

for infections that are contracted at the age of schooling,

significant deviations from term-time forcing are appar-

ent. The cause of this may be some combination of

(i) susceptible depletion owing to the later age of schooling

in Copenhagen, (ii) long-term fluctuations in epidemic

numbers and (iii) waning immunity and the presence of

asymptomatic individuals. That the signal of term-time

forcing (figure 3) is clearest in measles, and that this is

also found across other populations, may be attributed to

the strongly resonant period of measles dynamics with a

natural decay time of 2 years, which will tightly determine

the number of susceptible individuals in each month of the

year. Infections with more complex dynamics and natural

history features such as waning of immunity are likely to

show less clear term-time forcing, as numbers of suscep-

tible individuals will experience more erratic trajectories

within years, thus potentially revealing the effects of

environmental seasonal drivers. These complexities will

affect our capacity to predict dynamics and particularly

dominant epidemic periods across diseases from limited

information (Keeling & Rohani 2008).
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