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Rubella is generally a mild childhood disease, but infection during early pregnancy may cause
spontaneous abortion or congenital rubella syndrome (CRS), which may entail a variety of
birth defects. Consequently, understanding the age-structured dynamics of this infection
has considerable public health value. Vaccination short of the threshold for local elimination
of transmission will increase the average age of infection. Accordingly, the classic concern for
this infection is the potential for vaccination to increase incidence in individuals of childbear-
ing age. A neglected aspect of rubella dynamics is how age incidence patterns may be
moulded by the spatial dynamics inherent to epidemic metapopulations. Here, we use a
uniquely detailed dataset from Peru to explore the implications of this for the burden of
CRS. Our results show that the risk of CRS may be particularly severe in small remote
regions, a prediction at odds with expectations in the endemic situation, and with impli-
cations for the outcome of vaccination. This outcome results directly from the
metapopulation context: specifically, extinction–re-colonization dynamics are crucial because
they allow for significant leakage of susceptible individuals into the older age classes during
inter-epidemic periods with the potential to increase CRS risk by as much as fivefold.

Keywords: rubella; epidemiology; metapopulation; congenital rubella syndrome
1. INTRODUCTION

Rubella is primarily a relatively mild childhood disease
(average age of infection approx. 7–12; [1]). However,
when the disease is acquired during the first 16 weeks
of pregnancy, the infection has severe consequences
including foetal death or children born with congenital
rubella syndrome (CRS), a condition associated
with debilitating complications including hearing
impairment, blindness and brain damage [2–4].

For strongly immunizing childhood infections, the
average age of infection is expected to be relatively
high if transmission is low, or where vaccination has
been implemented. Generally, a higher average age of
infection may be associated with an increased incidence
in woman of childbearing age. How the magnitude of
transmission and the degree of vaccination coverage
orrespondence (cmetcalf@princeton.edu).
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affect the burden of CRS has been the focus of a
range of modelling studies [5–9]. Recently, however, a
new concern has been raised. The average age of infec-
tion may also be increased by dynamics characterized
by episodic outbreaks in epidemic metapopulations
[10]. This will also increase the number of cases in the
risk group of women of childbearing age.

There is reason to anticipate episodic outbreaks
for rubella: estimates of R0 for rubella are generally
low—particularly relative to other childhood infections
such as measles and pertussiss—typically between 3
and 8 [1,11,12], so that transient dynamics alone may
lead to variable outbreak size across years [13]. The
low R0 of this infection also enhances the probability
that local chains of transmission will be broken because
low R0 increases the critical community size (CCS),
i.e. the population size above which rubella does
not suffer stochastic extinction during recurrent post-
epidemic troughs (e.g. [14–16]). The CCS for rubella
This journal is q 2010 The Royal Society
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has been estimated to be around 1 million in Peru
[12] and Mexico [17]. This is a lot higher than the
CCS of 300–550 k for a higher R0 infection such as
measles [18].

In a spatial context, stochastic extinction and re-
colonization dynamics resulting from a high CCS can
potentially be a very important influence on age inci-
dence curves, since such episodic dynamics may allow
leakage of susceptible individuals into older age classes
[10]. Consequently, characteristics of the metapopula-
tion may shape where the burden of CRS is focused,
and how this burden may change following routine vac-
cination. Here, we explore this question using a uniquely
detailed dataset from Peru. We investigate the metapo-
pulation effect by comparing expectations of the burden
of CRS in the endemic situation with the empirical
pattern observed across 175 provinces of Peru. In
order to do this we first estimate the relative age-specific
force of infection (FOI) across Peru, and infer from
this the expected burden of CRS within the endemic
Peruvian context. Second, we compare this with the
indirectly observed burden as inferred from the pro-
portion of rubella cases occurring in individuals aged
more than 15 in each of the 175 provinces. Finally, com-
bining rubella incidence and demographic data, we
reconstruct the susceptible profiles for rubella and esti-
mate seasonal variation in transmission rates and the
degree of spatial isolation of each province. We find
that the metapopulation effect results in an approxi-
mately fivefold increase in the burden of CRS in the
isolated provinces.
2. MATERIAL AND METHODS

2.1. Data

The data from the Peruvian Health Ministry’s Depart-
ment of Epidemiology consist of weekly time series of
reported rubella incidence from 1997 to 2009, stratified
by province (figure 1) and by age (figure 2a). Case
reporting in Peru followed the standard WHO guide-
lines [12] during this period. The dataset reports on a
total of 24 116 cases. The country-wide average age of
infection was 8 years, and, within any single week, the
case numbers ranged from 0 to 772 reported cases
(figure 1). Country-wide outbreaks, further, follow a
predominantly annual pattern [12]. At a finer scale,
however, rubella incidence is variable in space and
time, reflecting heterogeneities inherent in the under-
lying epidemic metapopulation. The provinces vary in
density from 12 people per km2 in the forested west
regions of the country, to more than 172 people per
km2 in the coastal region. The incidence reports were
available for 175 of the provinces, ranging in population
size from 7000 to more 6 million. Population size and
birth rates were obtained from the database of the
National Institute of Statistics and Informatics of
Peru [19]. Routine vaccination and vaccination of indi-
viduals aged 15–19 was initiated in 2003–2005, but
coverage during this period was low and estimated to
be less than 4 per cent [12]. Enhanced routine vacci-
nation of children was implemented in 2007; the
coverage since ranges between 75 and 100 per cent.
J. R. Soc. Interface (2011)
2.2. Age-specific force of infection

Estimating the predicted burden of CRS in Peru-like
settings in an endemic situation requires an estimate
of the age-specific FOI, or the age-specific rate at
which susceptible individuals become infected. We esti-
mate the relative age-specific FOI, w(a), using the
catalytic framework [20]. The probability, P(a), of
infection by age a is

PðaÞ ¼ 1� exp �
ða

t¼0
wðtÞ

� �
: ð2:1Þ

The probability of infection during childbearing age
(between around age 15 and 45) is

exp �
ð15

0
wðtÞ

� �
1� exp �

ð45

15
wðtÞ

� �� �
: ð2:2Þ

Because only a subset of cases are reported, the fraction
of any local population that is never infected is not
known; P(a) for individuals of very great ages will be
less than 1 by an unknown fraction. This uncertainty
prevents estimation of the absolute magnitude of
the FOI. However, the relative age-specific FOI can
be estimated by using the cumulative number of
reported cases as the denominator [10]. We estimate
the relative age-specific FOI using a cubic smoothing
spline with 5 d.f. We fit the spline by maximizing a
binomial likelihood using a quasi-Newton algorithm to
find maximum-likelihood coefficients for each of the
five basis functions of a cubic spline with 5 d.f. We
invert the numerically evaluated Hessian to obtain a
variance–covariance matrix for the spline coefficients.
Re-sampling from this matrix allows us to erect error
bounds on the age-specific FOI curve.
2.3. Fitting the time-series susceptible–
infected–recovered model

If reporting rates are stable through time, and all indivi-
duals eventually succumb to infection, the numbers of
susceptible individuals at time t, St, in any given location
will track births and infecteds, It. Note that in this section
on local dynamics we suppress the site-specific subscript
for ease of notation. The pattern of susceptible individ-
uals through time can then be reconstructed [21,22] by
applying the balance equation

Stþ1 ¼ St þ Bt �
I ðrÞt

r
; ð2:3Þ

where Bt is the number of births (and may be dis-
counted by vaccination where necessary), r is the
reporting rate and I ðrÞt is the reported number of
infected cases. Ignoring observational uncertainty,
It ¼ I ðrÞt =r, where It is the actual number of infected
individuals at t. Rearranging equation (2.3) provides
the relationship from which the reporting rate and the
dynamics of the susceptible population can be inferred
through susceptible reconstruction,

St ¼ �SNt þ D0 þ
Xt�1

k¼0

Bk �
Xt�1

k¼0

I ðrÞk

r
: ð2:4Þ
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Figure 1. Rubella incidence in Peru. (a) Raw time series for seven geographical units corresponding to 175 provinces across 13
years, showing the Costa central (black line), Costa norte (red line), Costa sur (green line), Selva (blue line), Sierra central (tur-
quoise line), Sierra norte (purple line) and Sierra sur (grey line); (b) log-transformed time series þ1 for the same geographical
units; (c) map of Peru showing locations of each of the geographical units, with colours corresponding to colours used in the
time series; arrow indicates North.

age at infection (years)

nu
m

be
r 

re
po

rt
ed

0 10 20 30 40

0

1000

3000

5000

(a)

0 10 20 30 40

0.00

0.10

0.20

age (years)

ag
e-

sp
ec

if
ic

 f
or

ce
 o

f 
in

fe
ct

io
n,

 
(a

)

(b)

Figure 2. (a) Distribution of incidence over age taken from the entire country and (b) relative age-specific force of infection (FOI)
over age, fitted with a smoothing spline with 5 d.f. Transmission is highest in school-age children, peaking around age 13.
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In equation (2.4), �S represents the average propor-
tion of individuals that are susceptible, Nt represents
the population size and D0 is the unknown deviation
around the average at the time of the first observation
in the time series. To estimate r and reconstruct a full
time series of susceptible ‘deviations’, Dt, that details
how the numbers of susceptible individuals vary
around the average number of susceptible individuals,
we write

Xt�1

k¼0

Bk ¼ Dt � D0 þ
1
r

Xt�1

k¼0

I ðrÞk ; ð2:5Þ

where Dt ¼ St � �SNt . From this, Dt can be estimated as
the residuals from the possibly locally varying
regression of the cumulative number of births on the
cumulative number of cases, and r can be estimated
as the inverse slope of this regression [21–23]. Note
that the average number of susceptible individuals
cannot be directly estimated, as it is confounded with
the intercept of this regression equation.

From this foundation, seasonal transmission rates
can be estimated using time-series susceptible–
infected–recovered (TSIR) methods [21,23]. The
generation time (serial interval) of rubella (appro-
ximately the latent plus infectious period) is
approximately 18 days [1,3], so we assumed that the
time scale of the epidemic process was approximately
two weeks, and aggregated the data accordingly. The
number of infected individuals at time t, Itþ1, depends
stochastically on It and the number of susceptible indi-
viduals St with expectation lt ¼ bs St It

a, where bs is the
transmission rate in every biweek in any particular
location and the exponent a, usually a little less than
1, captures heterogeneities in mixing not directly mod-
elled by the seasonality [21,23] and the effects of
discretization of the underlying continuous time process
[24]. Then, taking logs on both side of this relationship,
we can write

logðE½ðItþ1Þ�Þ ¼ logðbsÞ þ a logðItÞ
þ logðDt þ �SN Þ: ð2:6Þ

Given estimates of It and Dt, regression techniques can
be used to estimate bs and a and marginal profile like-
lihoods can be used to estimate �S [22,23]. The
transmission rate estimated in this way may reflect a
broad range of processes that occur consistently over
the course of a year. For childhood infections, low trans-
mission usually mirrors periods of school vacation,
indicating that the parameter captures mixing among
school children [25]; for other infections, climatic vari-
ables such as absolute humidity (e.g. [26]) may be
more important.

2.4. Connectivity

Estimates of under-reporting obtained via susceptible
reconstruction and birth rates in every location provide
the means to estimate the profile of susceptibility in
each province, as described above. With this and
biweekly transmission rates, a coupling parameter can
be estimated for each province [27]. During fadeouts,
in location j, the probability that no epidemic results
J. R. Soc. Interface (2011)
following a spatial contact is 1/(1 þ bs St,j), and, con-
versely, a new epidemic is sparked according to

hðt; jÞ ¼ bsSt;jð1� expð�cjxt;jytÞÞ
1=ð1þ bsSt;jÞ

;

where cj is a parameter that describes the coupling of
community j to the regional metapopulation; xt,j is
the local proportion of susceptibility (St,j/N,j,) and yt
is the probability that a non-local individual is infec-
tious (

P
k=j Ik;t=Nk;t). Methods from survival analysis

can be used to estimate cj for every location [27].
Transmission in childhood infections in industrial-

ized countries usually scales in a frequency-dependent
fashion [28], since classroom size is typically relatively
constant [23]. Therefore, it is convenient to consider
the alternative parameterization of the TSIR where
lt ¼ b0 St It

a/N where b0 ¼ b0N. If transmission of
rubella in Peru scales in a frequency-dependent fashion,
the estimated magnitude of bs from the TSIR relation-
ship defined and fitted as described above (lt ¼ bs St It

a)
should scale inversely with population size. A linear
regression relating the log median value of bs estimated
for each of the seven regions (for which time series are
shown in figure 1) with the log population size of that
region has a slope very close to 21, in accordance
with frequency-dependent scaling [23]. The relationship
is not significant (y ¼ 6.55–0.97x, p . 0.5, d.f. ¼ 5,
r2 ¼ 0.25), but only seven regions were available.
Since standard errors on regional estimates were con-
siderable owing to low local incidence, we used the
Peru-wide estimate of seasonality in transmission, and
adjusted the median value for each location by the
ratio between the local population size and the size of
the entire population of Peru.
3. RESULTS

3.1. Local dynamics

Only 0.3 per cent of observations occurred in ages
greater than 45. Since the catalytic model is quite sen-
sitive to rare cases in high age-classes, we discarded
them, leaving 24 048 observations (figure 2a). The esti-
mated pattern of relative FOI over age peaks in school
children (around age 13), suggesting transmission pre-
dominantly in school children (figure 2b). The FOI
then falls off relatively steeply. From this pattern over
age, we can estimate the expected proportion of rubella
cases in individuals aged greater than 15 as 0.04 in
the endemic situation. Uncertainty bounds from re-
sampling the variance–covariance matrix indicate a
plausible range from 0.03 to 0.08. If we use the whole
dataset (including age classes greater than 45) the pre-
dicted proportion increases to 0.07–0.08, depending on
the number of degrees of freedom used for the spline.
This estimate is, however, quite sensitive to the fact
that the FOI is poorly estimated at high age-classes, a
problem in all cross-sectional studies of age-specific
FOI [29]. The same overall patterns are obtained if
data are restricted to the period before the 2007–2009
vaccination campaign.

Figure 3 shows the proportion of incidence occurring
in individuals older than 15 against population size,

http://rsif.royalsocietypublishing.org/


9 10 11 12 13 14 15

0.0

0.2

0.4

0.6

0.8

1.0

log population size

pr
op

or
tio

n 
ca

se
s 

in
in

di
vi

du
al

s 
>

15

(a) (b) (c)

0.0 0.5 1.0 1.5 2.0

log distance from Lima + 1

0 1 2 3 4 5

log average fadeout length

Figure 3. Observed proportion of cases in individuals aged greater than 15 (indicator of CRS burden) against (a) log population
size (no significant correlation, r ¼ 20.009, d.f. ¼ 114, p . 0.5 for the full dataset; and r ¼ 0.05, d.f. ¼ 111, p . 0.5 for the analy-
sis with the three points where the proportion is equal to 1 are removed); (b) log distance from Lima þ 1 (significant positive
correlation, r ¼ 0.24, d.f. ¼ 114, p , 0.01 for the full dataset; and r ¼ 0.24, d.f. ¼ 111, p , 0.01 for the analysis with the three
points where the proportion is 1 are removed); and (c) log average fadeout length in biweeks (significant positive correlation,
r ¼ 0.55, d.f. ¼ 114, p , 1e-9 for the full dataset; and r ¼ 0.40, d.f. ¼ 111, p , 1e-5 for the analysis with three points removed).
Grey bars indicate the expected proportion of cases occurring in individuals greater than 15 years of age in the endemic situation
based on the estimated relative FOI over age.

month of the year

tr
an

sm
is

si
on

 r
at

e,
 b

 (1
0–5

)

2

3

4

5

Jan March June Aug Oct Dec

(a)

2e + 02 2e + 03 2e + 04 2e + 05

2e + 02

2e + 03

2e + 04

2e + 05

observed incidence per biweek

pr
ed

ic
te

d 
in

ci
de

nc
e 

pe
r 

bi
w

ee
k

(b)

Figure 4. TSIR estimates of seasonal transmission rates showing (a) the pattern of transmission over the season, with standard
errors shown as vertical dashed lines (the dip in transmission in July–August corresponds to the winter school holidays; and low
transmission in December–March corresponds to the summer school vacation); and (b) the relationship between observed and
expected numbers of total infected individuals in each biweek for the fitted model, where the observed is obtained by dividing
through the reported numbers by the reporting rate (r ¼ 0.005). The line indicates where x ¼ y.

Metapopulation burden of rubella C. J. E. Metcalf et al. 373

 on February 14, 2011rsif.royalsocietypublishing.orgDownloaded from 
distance from Lima, and fadeout length (average
number of consecutive zeros in the time series)
(figure 3) and also shows the predicted range in the
endemic setting (0.03–0.08; figure 2). Distance from
Lima and fadeout length were both correlated with
the proportion of cases aged less than 15. The effect
of distance on this proportion was weak in smaller
populations (r ¼ 0.19, d.f. ¼ 76, p , 0.1 for populations
smaller than 700 000 versus r ¼ 0.09, d.f. ¼ 36, p ,

0.01 for populations larger than 700 000); but account-
ing for this did not affect the overall relationships with
population size and fadeout length.

The estimated seasonal pattern of transmission
reflects the timing of school holidays (figure 4a), with
low transmission during the school summer vacations
in Peru (21 December–1 March) and during the
school winter vacations (24 July–3 August). This sea-
sonality compares interestingly with patterns observed
in childhood disease transmission in Europe: in both
Peru and Europe the most pronounced trough in
J. R. Soc. Interface (2011)
transmission occurs during the longest school vacation,
but this occurs in July–August in Europe, versus
December–March in Peru. The TSIR model provides
a good fit to the short-term dynamics of the infection
(figure 4b). For these estimates, we set a ¼ 1, since
fitted estimates of a were less than 0.9 (a ¼ 0.87), a
value that implies a substantial difference in trans-
mission between epidemic troughs and peaks that is
rather hard to interpret [23]. Repeating the analysis
with a ¼ 0.87 does not alter the qualitative conclusions
of the paper; and the pattern of seasonality is identical
for both analyses.
3.2. Spatial dynamics

The estimated value of regional coupling significantly
increased with population size and decreased with
distance from Lima (log(c) ¼ 5.98 þ 0.67log(N) 2

1.14log(d þ 1), p , 0.05 for both coefficients). However,
this relationship explained a small amount of the

http://rsif.royalsocietypublishing.org/
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variance (r2 ¼ 0.05), probably reflecting the complexity
of the metapopulation structure in Peru. Highly
coupled areas were concentrated along major roads
(figure 5). A major new facet to the CRS story is that
we found a significant negative correlation between
the proportion of incidence occurring in individuals
aged greater than 15 and the degree of coupling
(figure 6).
4. DISCUSSION

The major conclusion of our analysis is the importance
of the metapopulation structure of Peru for rubella
age–incidence curves and consequently for the spatial
and temporal pattern of the risk of CRS. Heterogeneity
in the degree of coupling of different locations across the
country leads to highly variable rubella incidence
(figure 1) and this affects the age profile of suscepti-
bility (figure 6), the key variable in determining the
burden of CRS. In locations that are weakly coupled
to the metapopulation, regular local extinction result-
ing from the high CCS of rubella [12] will be followed
by prolonged periods without re-introduction, which
will allow susceptible individuals to leak into older age
classes [10]. In agreement with this, a survey of sero-
negativity in post-partum women in Peru identified
J. R. Soc. Interface (2011)
considerable geographical structure, with much higher
sero-negativity in the distant forest locations than in
the costal region around Lima [30]. Additionally, CRS
incidence in hospitals in, for example, Loreto, the
weakly coupled province in the northeast of the
country, are also high relative to central and coastal
locations [31].

In an endemic situation, where transmission is invar-
iant with population size, all else being equal, infant
vaccination against rubella will reduce transmission
globally, and the highest burden of CRS will be concen-
trated in large populations. By contrast, where rubella
persists through metapopulation dynamics, with regu-
lar extinctions and re-introductions, R0 is not as
critical as the accumulation of susceptible individuals
that occurs following fadeouts. The highest burden of
CRS will consequently be found in less connected
locations. Previous analyses for measles in England
and Wales might suggest that these would be smaller
locations [27,32]; however, our analysis in Peru indicates
that connectivity is more tightly determined by dis-
tance to Lima (figure 3), although small remote
places remain particularly vulnerable given their
higher potential for local extinction. This has public
health ramifications, both in defining the burden of
CRS and in considering allocation of effort in vacci-
nation campaigns, reinforcing the importance of
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vaccination targeting women of childbearing age [33],
but also emphasizing the spatial dimension of vaccine
allocation. Locations where it is hardest to carry out
vaccinations may also be the hardest to reach; and
our results suggest that these may be precisely the
locations with the highest cumulative CRS burden.

Our results also broaden our picture of the determi-
nants of rubella dynamics more globally, highlighting
for example the importance of transmission within
schools, as evinced by both the peak in the relative
age-specific FOI around 13 (figure 2, as compared
with approx. 9 for England and Wales; [34]) and low
transmission during school holidays (figure 4). The pat-
tern of FOI over age estimated (figure 2) is overall
similar to other estimates for rubella [29], although
transmission is lower in later age classes; however, this
qualitative difference might simply reflect poor esti-
mation of the FOI over age at later age classes [29].
Evidence for a slope close to 21 characterizing the
relationship between average transmission and popu-
lation size also suggests that R0 is relatively invariant
of population size. Since varying R0 is another potential
determinant of regional variation in the burden of CRS,
this provides valuable support for the suggested role of
connectivity (figure 6), further reinforced by the link
between fadeout length and proportion of cases occur-
ring in individuals older than 15 years. This would
not be expected if high average age was simply the
result of lower transmission rates.

Our TSIR analysis assumes that reporting rates are
homogeneous over space. If, as is reasonable to expect,
J. R. Soc. Interface (2011)
in reality more remote locations have lower reporting
rates, incidence in these locations will be underesti-
mated, and susceptibility will be overestimated. The
outcome will be higher estimates of connectivity
for these remote locations, which is in the opposite
direction of our expected effect, and therefore our con-
clusions are likely to be robust to this. More erratic
reporting rates might also lead to biases; however, the
link between connectivity and age of infection (a rela-
tively independent indicator of this process) rather
than simply extinction here provides further support
that the pattern identified is a real one.

Given both variable presentation and distance from
the initial infection, CRS is hard to detect [2,3], and
direct observations on the burden of CRS are rare
[35]. For much of the world, indirect measures based
on the profile of susceptibility [36] constitute the best
information we have. Our results suggest that this
may underestimate the CRS burden considerably at a
local scale. For example, at weakly coupled locations,
with log coupling estimated at approximately 10, the
predicted average proportion of cases in individuals
greater than 15 is 0.22, i.e. a more than fivefold increase
relative to the expected endemic estimate of 0.04.
Although the dangers of inadequate vaccination
implementation should be kept clearly in view [9], our
results suggest that ignoring the metapopulation con-
text may also result in an underestimate of the
burden, and this might be an important consideration
in the cost–benefit analyses of vaccine introduction in
the context of increased interest in a global rubella con-
trol programme. However, it should also be considered
that Peru may be a particularly extreme example of
the metapopulation effect: a survey of rubella sero-nega-
tivity in women of childbearing age across a range of
South American countries generally found no major
differences in rural versus urban populations (Argen-
tina, Brazil, Chile, Jamaica, Trinidad, Uruguay), but
significant differences across Peru, with, for example,
40 per cent sero-negative in the northern forested part
of the country, versus 20 per cent elsewhere [37]. Data
of this form from a range of other countries allowing
exploration of this issue would be of considerable value.
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