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Abstract Natural enemy–victim systems may exhibit a
range of dynamic space–time patterns. We used a the-
oretical framework to study spatiotemporal structuring
in a transient natural enemy–victim system subject to
differential rates of dispersal, stochastic forcing, and
nonlinear dynamics. Highly mobile natural enemies that
attacked less mobile victims were locally spatially seg-
regated from each other when governed by approximate
linear dynamics. In contrast, in nonlinear dynamical
systems, such as cyclic populations, interacting species
achieved local aggregation with each other regardless of
dispersal rates, and aggregation was enhanced specifi-
cally when highly mobile enemies attacked less mobile
victims. These patterns of spatial aggregation held under
varying levels of stochastic forcing. This work thus
shows a range of dynamic spatial patterns in interacting-
species models, and how spatial aggregation between
natural enemies and victims can be achieved in locally
unstable populations that are linked through dispersal.

Keywords Predator–prey interactions Æ Spatial
aggregation Æ Nonparametric spatial covariance
function Æ Coupled map lattice

Introduction

Participants in a natural enemy–victim system exhibit a
range of spatially and temporally dynamic metapopula-

tion structure. Describing such spatiotemporal patterns is
a central problem in ecology and is paramount to
understanding the underlying processes that govern such
dynamics (MacArthur 1972; Steinberg and Kareiva
1997). In particular, there has beenmuch recent interest in
exploring the space–time properties of seasonal popula-
tions (Saravia et al. 2000; Winder et al. 2001; Tobin and
Bjørnstad 2003, Labra et al. 2003), which can apply to, for
example, pest outbreaks and invasions of exotic species.
In many respects, understanding these seasonal and more
transient systems may be more critical in developing
ecological paradigms, as stochastic disruptions, such as
habitat fragmentation or the invasion of new species, can
be frequent relative to the return times of long-term
spatiotemporal systems (Hastings and Higgins 1994;
Hastings 2001). We previously examined the spatial
dynamics and cross-correlation in a transient predator–
prey system within both an empirical and theoretical
context, and observed that the transition from eruptive
pest abundance to regulation by a specialist predator was
associated with a transition in spatial structure (Tobin
and Bjørnstad 2003). In this paper, we extend this work
by addressing the roles of dispersal, stochasticity, and
nonlinear dynamics on patterns of spatial aggregation
and segregation in seasonal predator–prey populations.

Regional stochasticity [i.e., the Moran effect (Moran
1953)] and dispersal have been argued to play important
roles in mediating the spatiotemporal dynamics of an
individual species (Hassell et al. 1991; Ranta et al. 1998;
Hudson and Cattadori 1999; Peltonen et al. 2002).
Dispersal can induce synchrony in populations because
it links neighboring populations, while spatially corre-
lated climatic forcing can cause populations to behave
similarly over large scales. Peltonen et al. (2002) argued,
in a study of several forest insects and associated cli-
matic data, that on a landscape scale, regional stochas-
ticity was the dominant force in synchronizing
populations. However, theoretical studies have sug-
gested that ecological interactions that produce nonlin-
ear dynamics, such as through limit cycles or chaos, can
affect the level of synchrony in populations whether
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dispersal or the Moran effect dominates (Ranta et al.
1998; Bjørnstad et al. 1999; Bjørnstad 2000). Ripa (2000)
furthermore contended that dispersal could only be a
synchronization force when local dynamics were close to
unstable, while Lande et al. (1999) showed that dispersal
can increase the level of synchrony in populations that
were weakly regulated and when the scale of dispersal
was less than the scale of the correlation to the stochastic
event.

Although many past studies in spatiotemporal ecol-
ogy have centered on single-species dynamics, much
attention is also given to the space–time dynamics of
age-trophic interactions, particularly those involving
natural enemies and their victims (Hassell et al. 1991;
Bascompte and Solé 1995; Maron and Harrison 1997;
Wilson and Hassell 1997; Wilson et al. 1999; Ims and
Andreassen 2000; Keeling et al. 2000; Bjørnstad et al.
2002; Tobin and Bjørnstad 2003). Past theoretical work
studied the spatial cross-covariance between natural
enemies and victims to show, depending on dispersal
ability, a high degree of within-patch synchrony, or
spatial lag between the two (Bjørnstad and Bascompte
2001). In nature, lagged spatial responses have been
observed in the dynamics of two aphid prey species and
a generalist predator, in which the spatial pattern of the
latter was more often than not positively associated with
the spatial patterns of aphids at the previous time step,
whereas the inverse was observed for that of the prey
(Winder et al. 2001). Because of the importance of the
dynamics of spatially extended, multitrophic interac-
tions in ecological theory and practice, we studied the
roles of potential factors in the spatial structuring of
such populations.

Our primary objective was to examine space–time
dynamics in a predator–prey system during the coloni-
zation phase of the predator. We were particularly
interested in the joint effects of dispersal ability, non-
linearity, and stochasticity on this type of space–time
interaction to elucidate the mechanisms and/or processes
that govern predator–prey seasonal dynamics. We
examined the effects of differential rates of dispersal on
patterns of spatial auto-covariance and cross-covari-
ance. We subsequently explored the degree of spatial
aggregation or segregation between predator and prey
when local dynamics were approximately linear or
nonlinear in the presence or absence of regional and
local stochasticity. In this paper, we show that the dis-
persal ability of interacting species can influence the lo-
cal spatial aggregation depending on details of temporal
dynamics.

Materials and methods

Natural enemy–victim model

We used the discrete-time density-dependent Lotka–
Volterra model as the basis for simulating dynamics.
Local pre-dispersal dynamics of predator (P) and prey

(N) abundance at time t and spatial location i were
calculated according to:

N 0i;tþ1 ¼ ðNi;tÞ exp rð1� Ni;tÞ � hi;t � aPi;t
� �

; ð1Þ

P 0i;tþ1 ¼ ðNi;tÞ 1� expð�aPi;tÞ
� �

; ð2Þ

where r is prey growth rate, and a is the predator–prey
interaction strength (Murray 1993). The parameter a
was held fixed at 2.25 to maximize predator efficiency
(Tobin 2002). The primed vectors on the LHS represent
pre-dispersal local abundance. Stochasticity (local and
global) in prey dynamics were added according to:

hi;t ¼ ð1� qhÞðUi;tÞ þ qhVt
� �

; ð3Þ

where qh represents the global correlation in the sto-
chastic forcing. Both Ui,t and Vt were sequences of
independent zero-mean Gaussian random variables with
variance r (cf. Bjørnstad 2000). Environmental stochas-
ticity was thus assumed to be temporally independent yet
possibly spatially correlated. Because of the transient
nature of our field system, we simulated 30 generations of
spatiotemporal dynamics, realized according to Eqs. 1, 2,
and 3 in 30 · 30 coupled map lattices with absorbing
boundaries. Prey and predator abundance were thus
represented as 900 · 1 matrices, N and P, respectively.
Following local dynamics, individuals were assumed to
disperse to the four adjacent cells according to:

Ntþ1 ¼ D� N 0t ; ð4Þ

Ptþ1 ¼ D� P 0t ; ð5Þ

where D is the 900 · 900 dispersal matrix and · de-
notes matrix multiplication. Values of the dispersal
matrix were assigned according to the desired level of
dispersal ability. For example, in the case when half of
individuals remain and half disperse, then the values in
D are 0.5 along the diagonal and 0.125 at each of the
four entries that link the neighboring cells. Initial prey
was assumed to be randomly distributed at low abun-
dance according to a uniform distribution from [0, 1]. To
investigate transient spatiotemporal dynamics following
predator colonization, initial predator abundance was
random over �5% of the cells and zero elsewhere. We
simulated this system, and conducted subsequent anal-
yses, in S-Plus (Mathsoft 2000) on a 250 CPU Linux
cluster operated by the Center for Academic Computing
—Numerically Intensive Computing Group of Penn-
sylvania State University.

Estimation of spatial covariance

We used the nonparametric spatial covariance function
to measure local spatial structure for each species and
their interaction (Bjørnstad and Falck 2001). This
approach uses a smoothing spline to measure the cor-
relation between the density of pairs of samples over a
continuous function of the distance separating samples,

222



without assuming any functional form a priori. We used
30 equivalent df, which were determined by the square
root of the total number of cells in the coupled map
lattice, in the spline estimations using spline as an
equivalent kernel. We derived Monte Carlo distributions
of 500 replicated simulations of the 30-generation sea-
sonal predator–prey system, and erected 95% confidence
intervals as the 0.025 and 0.975% quartiles of the dis-
tribution (Efron and Tibshirani 1993). We focused on
estimating ‘‘local’’ spatial clustering (i.e., the spatial
auto-correlation function as the distance between pairs
of sampled values approaches 0) because it generally
dictated the range of spatial structure—greater devia-
tions from 0 in local correlation resulted in longer ranges
of spatial continuity—but we also estimated spatial
correlation over a range of lag distance; however, for
reporting, we will focus on the local spatial covariance as
a surrogate for defining spatial pattern.

Dispersal in approximate linear and nonlinear dynamics

The range of dispersal rate, from 0 (no dispersal) to 1 (all
individuals disperse), was partitioned into 0.1 intervals.
We then estimated the local spatial cross-covariance
function for each combination of predator and prey
dispersal rate and at each generation when assuming
linear dynamics (r in Eq. 1=1.5) and two-phase limit
cycles (r=2.5). For these simulations, the variance of the
0-mean random stochastic component (r used for U and
V in Eq. 3), was fixed at 0.1, and qh was fixed at 0.3
(Tobin and Bjørnstad 2003). A summary of these vari-
able and parameter combinations is presented in Table 1.

Joint effects of dispersal and stochastic forcing

Based on results from varying dispersal rates in the
preceding section, we used fixed dispersal rates of
predators and prey to explore spatial cross-covariance

when the dynamics were approximately linear and
nonlinear, and when the level of stochastic forcing is
altered. We used a system of ‘‘highly mobile’’ prey, in
which 75% of individuals disperse evenly to one of four
adjacent cells, with ‘‘less mobile’’ predators, in which
25% disperse, and a system of the inverse. For these two
systems, we estimated the local spatial cross-covariance
function at each generation under linear dynamics
(r=1.5 in Eq. 1), two-phase limit cycles (r=2.5), qua-
siperiodicity (r=3.0), and chaos (r=3.5). We also used
both systems of predator–prey dispersal abilities when
governed by two-phase limit cycles (r=2.5) to explore
the strength of the stochastic component by using values
of r of 0, 0.05, 0.1, 0.5, and 1 when qh=0 and 0.3. A
summary of these variable and parameter combinations
is presented in Table 1.

Results

Different combinations of prey and predator dispersal
rates influenced the local spatial auto-covariance for
each species and their interaction (cross-covariance)
when dynamics were assumed to be linear and when the
temporal dynamics were at equilibrium (i.e., asymptotic)
(Fig. 1). For each individual species of predator and
prey, dispersal enhanced local spatial clustering, which
in turn extended the range of spatial structure. When
considering the local spatial aggregation between
predators and prey, however, the results were more
complex. Highly mobile predators that attacked less
mobile prey resulted in very low levels of local cross-
correlation. For example, when predators and prey
disperse at a rate of 0.75 and 0.25, respectively, the local
asymptotic cross-correlation was �0.07, whereas for the
inverse conditions, the local asymptotic cross-correla-
tion was 0.61 (Figs. 1, 2). However, during the estab-
lishment phase of predator dynamics, the behaviour of
the cross-covariance function was similar regardless of
predator–prey dispersal rate combination (Fig. 2). It is

Table 1 Combinations of values used in simulations (500 simulations, 30 generations of the seasonal predator–prey system over a 30 · 30
coupled map lattice) to estimate generation-specific local spatial cross-correlation. qh Global correlation in the stochastic forcing

Dispersal Values (Eqs. 4, 5) Dynamics (Eq. 1) Stochasticity (Eq. 3)

Predator and prey 0 to 1 by 0.1 Linear (r=1.5) r=0.1; qh=0.3
Cyclic (r=2.5)

Predator and prey 0.25, 0.75 Linear r=0.0
r=0.1; qh=0.0
r=0.1; qh=0.3

Cyclic
Quasiperiodic(r=3.0)
Chaos (r=3.5)

Predator and prey 0.25, 0.75 Cyclic r=0.0
r=0.05; qh=0.0
r=0.1; qh=0.0
r=0.5; qh=0.0
r=1.0; qh=0.0
r=0.05; qh=0.3
r=0.1; qh=0.3
r=0.5; qh=0.3
r=1.0; qh=0.3
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furthermore interesting to note that the temporal
dynamics, represented by phase plots, revealed similar
temporal patterns across predator–prey dispersal rate
combination during both the phase of predator estab-
lishment and at equilibrium (Fig. 2).

When using a prey growth rate to approximate two-
phase limit cycles (e.g., r=2.5) to study the effects of
prey and predator dispersal, we observed consequent
cycling in the pattern of the local spatial cross-correla-

tion across the range of dispersal rate combinations
(Fig. 3). The dynamics of the cross-covariance function
over time, using the dispersal rate combinations of 0.75
for prey and 0.25 for predators as well as the inverse,
showed similar patterns in other systems assumed to be
nonlinear; that is, in these nonlinear systems, the spatial
aggregation between predators and prey was enhanced,
during alternating time steps—relative to linear-
approximated systems—when predators had the greater
dispersal capacity (Fig. 4).

The level of stochasticity (i.e., the variance of U and
V, cf. Eq. 3) also influenced the dynamics of local spatial
cross-covariance when using the above-mentioned
predator–prey dispersal rate combinations and two-
phase limit cycles (Fig. 5). The presence or absence of
regional correlation to stochasticity (i.e., qh in Eq. 3)
had negligible influence on the local spatial covariance
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Fig. 1 Local asymptotic spatial auto-covariance in prey (a) and
predators (b), and their cross-covariance (c), over a range of
predator and prey dispersal rates when governed by approximate
linear dynamics

 
 

Fig. 2 Dynamics of the local spatial cross-covariance (SCCF)
between predators and prey at selected combinations of prey (Ndr)
and predator (Pdr) dispersal rates when populations are governed
by approximate linear dynamics
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Fig. 3 Changes in local spatial aggregation (SCCF) between
predators and prey over a range of dispersal rates and when
populations are governed by two-phase limit cycles. Note the
fluctuations in spatial patterns in which the local cross-covariance
is enhanced when both populations are in the decline phase of their
cyclic dynamics

224



because stochasticity was still expressed at local scales
even in the absence of any regional correlation. When
prey have the greater dispersal capacity, the pattern of
spatial aggregation between interacting species was
similar across levels of stochasticity, though there were
far greater amplitudes of the cross-covariance function
over time in less variable environments (i.e., little to
no stochasticity). However, when predators have the
greater dispersal capacity, varying the level of
stochasticity led to divergent patterns. We observed that
environmental stochasticity was a necessity for local
spatial aggregation between predators and prey while
the lack of it resulted in their local spatial segregation
(Fig. 5). However, since we focused our attention
primarily in cyclic populations, more work is needed
to determine the effects of stochasticity on spatial

structuring in populations governed by approximate
quasiperiodic and chaotic dynamics.

Discussion

For each individual species, high rates of dispersal en-
hanced their respective local spatial clustering as previ-
ously reported within both an empirical and theoretical
context (e.g., Molofsky 1994; Sutcliffe et al. 1996; Ranta
et al. 1998; Kendall et al. 2000; Peltonen et al. 2002).
However, highly mobile predators that attack less mo-
bile prey can lead to interesting effects on local spatial
cross-correlation, resulting in asymptotic negative spa-
tial cross-correlation when governed by linear dynamics.
Given highly mobile predators and density-dependent
prey dynamics, low prey abundance at one time iteration
coupled with high predator abundance would result in
the inverse at the next iteration, whereby prey numbers
increase exponentially due to the loss in predator
abundance from high dispersal. When prey are mobile
and are attacked by limitedly dispersing predators, prey
that immigrate into a lattice cell occupied by few pre-
dators would rapidly increase in abundance in the ab-
sence of predators, but their increase in population
could lead to increases in predator abundance when they
do finally immigrate into the cell. This theoretical
observation is consistent with findings in nature in a
two-prey-generalist predator system (Winder et al.
2001).
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(solid lines) and the inverse (dashed lines) in a two-phase limit
cycles, b quasiperiodicity, and c chaos. The horizontal lines indicate
the degree of spatial aggregation at equilibrium under the same
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approximate linear dynamics
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This concept of spatial patterns essentially lagging
through time has been previously proposed as a source
of traveling waves by Bjørnstad and Bascompte (2001),
who based this argument on the fact that the spatial
cross-covariance, or measure of spatial aggregation (or
segregation), affects host population dynamics. We
strengthen this proposition with this work by demon-
strating the effects of predator–prey dispersal abilities on
local spatial dynamics during the colonization phase of
the predator. The concept of negative local spatial cross-
covariance does pose interesting questions in ecological
applications. For example, in conservation biology,
there is warranted concern regarding the potentially
inimical role that enemies, particularly nonnative ones,
play on the dynamics of their victims, particularly for
those that are native (Sinclair et al. 1998; Schneider
2001). Also, biological control applications are greatly
dependent on space–time overlap between natural ene-
mies and their target prey. These results suggest that
there are important consequences in the degree to which
natural enemies, whether the result is desirable or not,
can affect host dynamics based explicitly on their
respective ability to disperse.

The effects of differential rates of prey and predator
dispersal differed depending on whether the system was
governed by approximately linear or nonlinear dynam-
ics. In the former, there was segregation between pre-
dators and prey when highly mobile predators attacked
less mobile prey, while in the latter the level of local
aggregation between the two was substantially higher.
Even when chaos was assumed, there was aggregation
between the two interacting species at a local scale,
though on a regional level, populations are usually not
(Bjørnstad 2000; Tobin 2002).

Extreme oscillations in local predator and prey pop-
ulations have previously been observed, both empirically
and theoretically (Rosenzweig 1971, 1972; Pascual et al.
2001). Given that natural enemies that are more mobile
than their prey can be successful in limiting prey abun-
dance in nature (Winder et al. 2001), it is reasonable to
assume that adequate spatial and temporal overlap can
exist between the two when dispersal rates greatly differ.
We suggest that prey and predator populations, in the
absence of patches, could be cyclic, quasiperiodic, and
even unstable, and still allow spatial and temporal
overlap. In fact, some have argued that local population
stability of natural enemies and prey is not necessarily a
prerequisite for persistent host–parasitoid interactions
providing that on a regional level, the population was
divided into semi-independent subpopulations linked
through dispersal (Crowley 1981; Murdoch et al. 1985;
Adler 1993).

These results are conceptually similar to those re-
ported by Ripa (2000), who argued, albeit at a regional
level, that dispersal in a single-species space–time model
was only effective in increasing synchrony when local
dynamics were unstable. Ranta et al. (1998) also re-
ported that cyclic populations could be synchronized
through dispersal. Here, we show that locally, predators

and prey can be aggregated in space under nonlinear
dynamics, including chaos; however, single- and inter-
acting-species models have shown that on regional lev-
els, chaotic populations are difficult to synchronize
regardless of dispersal (Allen et al. 1993; Heino et al.
1997; Tobin 2002).

We have shown that the dynamics in a spatially ex-
tended predator–prey system can lead to a variety of
emerging spatiotemporal patterns. Highly mobile natu-
ral enemies, that attack fairly sessile prey when governed
by approximately linear dynamics, resulted in asymp-
totically negative local spatial cross-correlation, whereas
when differing dispersal rates were coupled with exoge-
nous dynamics, we observed a high spatial and temporal
overlap between the two. Future work should investigate
the role that differential prey and predator dispersal
rates play in inducing regional spatial correlation in
cyclic and populations.
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