
3140

Ecology, 85(11), 2004, pp. 3140–3150
q 2004 by the Ecological Society of America

POPULATION TIME SERIES: PROCESS VARIABILITY, OBSERVATION
ERRORS, MISSING VALUES, LAGS, AND HIDDEN STATES

JAMES S. CLARK,1,3 AND OTTAR N. BJØRNSTAD2

1Department of Biology and Nicholas School of the Environment, Duke University, Durham, North Carolina 27709 USA
2Departments of Entomology and Biology, 501 ASI Buildings, Penn State University,

University Park, Pennsylvania 16802 USA

Abstract. Population sample data are complex; inference and prediction require proper
accommodation of not only the nonlinear interactions that determine the expected future
abundance, but also the stochasticity inherent in data and variable (often unobserved)
environmental factors. Moreover, censuses may occur sporadically, and observation errors
change with sample methods and effort. The state variable (usually density or abundance)
may be hidden from view and known only through highly indirect observational schemes
(such as public health records, hunting reports, or fossil/archeological surveys). We extend
the basic state-space model for time-series analysis to accommodate these dominant sources
of variability that influence population data. Using examples, we show how different types
of process error and observation error, unequal sample intervals, and missing values can
be accounted for within the flexible framework of Bayesian state-space models. We provide
algorithms based on Gibbs sampling that can be used to obtain posterior estimates of
population states and of model parameters. For models that can be linearized, results can
be used for direct sampling of the posterior, including those with missing values and unequal
sample intervals. For nonlinear models, we make use of Metropolis-Hastings within the
Gibbs sampling framework. Examples derive from long-term census and population data.
We illustrate the extension to discrete state variables with multiple stages using a Time-
series Susceptible–Infected–Recovered (TSIR) model for mid 20th-century measles infec-
tion in London, where birth rates are assumed known, but susceptibles and infected indi-
viduals arise from imperfect reporting.

Key words: Bayesian analysis; fossil pollen; measles; observation error; population regulation;
state-space model; stochasticity; time-series analysis.

INTRODUCTION

The combined importance of observation error and
process variability in population surveys is increasing-
ly recognized. An integrated framework for analysis is
needed, because process variability is part of popula-
tion growth, whereas observation errors are not (Tur-
chin 1995, Bjørnstad et al. 2001, Dennis et al. 2001,
de Valpine 2002, de Valpine and Hastings 2002, Calder
et al. 2003). Both can be large, and it can be difficult
to incorporate them into a coherent modeling frame-
work.

Even in data-rich systems, models can be highly un-
certain (Pascual et al. 1997), with nontrivial conse-
quences for inference (Wood and Thomas 1999). Eco-
logical data are often limited and indirect (Legendre
1993). Nonlinear process models are commonly needed
to describe population growth (e.g., Nisbet and Gurney
1982, Turchin 1995, Bjørnstad and Grenfell 2001), and
these may need to be embedded within complex ‘‘data
models’’ (Wikle 2003, Clark et al. 2004). Dynamics
may involve networks of interactions among different
life stages (e.g., Tuljapurkar and Caswell 1997) that
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themselves are variable (Clark 2003, Clark et al. 2003,
2004), and interactions among different species whose
abundance are not always monitored (Stenseth et al.
1997). Data often miss obscure or hidden states, as not
all life stages may be observed (Bjørnstad et al. 1999).
Data may be densities (continuous state) or counts (dis-
crete state). The ‘‘latent’’ variables—unobserved abun-
dance of key species or life stages—may require es-
timation (Calder et al. 2003, Wikle 2003) or accom-
modation using time-lagged responses (e.g., Royama
1992, Bjørnstad et al. 2001). Sample intervals may be
uneven or missed entirely, and sampling methods may
change over time, meaning that the error structure will
be nonstationary. As a consequence, descriptive time-
series analysis ‘‘has not proven terribly useful in anal-
ysis of (population) dynamics’’ (Hilborn and Walters
1992:309). Yet there are growing numbers of accu-
mulating long-term data sets (Kendall et al. 1998, In-
chausti and Halley 2001) that should hold important
insights, provided that models can accommodate the
principal sources of variability in the data, including
population fluctuations that cannot be ascribed to mea-
sured covariates (termed ‘‘model misspecification’’ or
‘‘process error’’), nonlinear relationships, and errors in
measurement (‘‘observation error’’).
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These issues are of immediate concern in population
risk assessment, which depends on a full treatment of
variability and uncertainty (Boyce 1992, Ludwig 1999,
Ellner and Feiberg 2003, Staples et al. 2004). Inade-
quate data are used with models to predict ‘‘population
viability,’’ extinction probability, risk of infection, or
expected time to extinction. Yet predictions may be
sensitive to model assumptions, and they may depend
critically on missing components (J. S. Clark, G. Fer-
raz, and N. Oguge, unpublished manuscript). Simula-
tions demonstrate that the predictions needed by ecol-
ogists and managers may be highly sensitive to model
uncertainties (e.g., Ludwig 1999, Clark 2003, Ellner
and Feiberg 2003; but see Akcakya and Burgman 1995
for an alternative view). Ecological inference, there-
fore, requires a coherent probability framework that can
be used to link ‘‘inadequate data’’ with the process
models that describe underlying dynamics.

Despite long recognition of these challenges (e.g.,
Kuno 1971, Walter and Ludwig 1981, Morris 1983),
flexible statistical approaches for time-series data are
recent. Ives et al. (2003) provide an approach that can
be applied to multiple species when components can
be linearized. Calder et al. (2003) reviewed a Bayesian
state-space framework (Carlin et al. 1992, West and
Harrison 1997), for accommodating process and ob-
servation errors in ecological data that provides for
simultaneous inference on parameters and latent vari-
ables and readily accommodates nonlinear models. In
this study, we extend this state-space approach to ac-
commodate the sources of stochasticity that are com-
mon in population time series. We present general re-
sults and demonstrate their application to long-term
sample data subject to a range of errors, including an-
imal population surveys, fossil pollen, and underre-
porting in epidemic models, where states are discrete
and partially observed. We focus on inference and the
role of different classes of stochasticity. A companion
paper treats structured populations that are partially
observed through capture–recapture methods (J. S.
Clark, G. Ferraz, and N. Oguge, unpublished manu-
script).

THE BASIC STATE-SPACE MODEL

Let xt represent log density, ln(nt). The state-space
model consists of two equations (Carlin et al. 1992,
Calder et al. 2003), a process equation (1a) and an
observation equation (1b):

x 5 f (x ) 1 « (1a)t t21 t

y 5 g(x ) 1 w (1b)t t t

where yt represents the observations of log abundance.
The first ‘‘process equation’’ describes how log density
changes through time. Examples include a random walk

«tn 5 n e [f(x ) 5 x ]t t21 t21 t21 (2a)

exponential growth

b «1 tn 5 n e [f(x ) 5 x 1 b]t t21 t21 t21 (2b)

and density-dependent growth, for instance as given by
the Ricker model (sometimes called the discrete logis-
tic):

n 5 n exp(b 1 b n )t t21 0 1 t21

xt21[ f (x ) 5 x 1 b 1 b e ]. (2c)t21 t21 0 1

The process model may contain parameters to be
estimated from data (the bs). The notation f(xt21; b) is
used to indicate that the growth rate function involves
parameters to be estimated. For exponential growth, b
5 b. For logistic growth, b 5 [b0, b1] T, where T denotes
the transpose, and bold font is used to signify vectors.
If we assume that «t is a zero mean Gaussian process
with variance s2,

2« ; N(0, s )t (3)

then the process variance is lognormal, and the process
equation (1a) represents population growth with mul-
tiplicative lognormal errors. From (Eq. 1a) and (Eq. 3)
it follows that xt z xt21, s2 ; N(f(xt21), s2), where ‘‘;’’
means ‘‘is distributed as,’’ and ‘‘z’’ means ‘‘conditioned
on.’’

The second, observational equation (1b) describes
the effect of sampling, or ‘‘observation error.’’ This
equation can include systematic biases that might de-
pend on density, in terms of g(xt), and observation er-
rors (wt). For the simple unbiased lognormal obser-
vation error model,

2w ; N(0, t )t (4)

so that yt z xt, t2 ; N(xt, t2), where t2 is the error
variance. The continuous state and error structure out-
lined in Eqs. 1–4 assume that the population is rela-
tively abundant and that densities are large. If abun-
dances are low, a discrete-state model is preferable
(e.g., Bjørnstad et al. 2002). If counts are low, it may
be necessary to use a discrete sampling distribution for
the observations (e.g., Stenseth et al. 2003, Clark et al.
2004). Both of these issues are illustrated below.

The likelihood can be written in terms of the log
abundances, x, and the time series of log observa-
tions, y:

2 2p(x, y z b, s , t )

process model
|

| |
T

2 2p (x z m , s ) p [x z f (x ; b), s ]} P1 0 0 1 t t21
t51

data model
|

| |
T

2p [y z g(x ), t ] .3 P (5)2 t t
t51

There are two probability densities, one associated with
the process (p1) and one with observations (p2). We
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FIG. 1. The basic state-space model for exponential
growth. Data constitute the upper level of the graph and con-
sist of observations y. The lower two levels are not observed
and, thus, must be estimated. These include the latent process
x, the parameter describing constant per capita growth b, and
variances for the process error s2 and observation error t2,
which, in this example, are assumed to be constant.

refer to these as the ‘‘process model’’ and ‘‘data
model,’’ respectively. Note that this likelihood is con-
ditioned on the initial state x0. The two sides of Eq. 5
are proportional (rather than equal) to one another, be-
cause the right hand side lacks the normalization con-
stant that makes the integral equal to unity. This con-
stant can be obtained by a sampling-based approach
(Gelfand and Smith 1990), such as Markov Chain Mon-
te Carlo (MCMC) integration. Previous ecological ap-
plications of MCMC for simulation of Bayesian pos-
teriors include Bjørnstad et al. (1999), Millar and Mey-
er (2000), Calder et al. (2003), Clark et al. (2003,
2004), Stenseth et al. (2003), and Wikle (2003).

Fig. 1 illustrates the relationship between process
and data. Change in density over time can be described
by a first order Markov process x 5 x1, x2, . . . , xT; the
future (xt21, xt12, . . . ) is conditionally independent of
the past (. . . , xt22, xt21). Thus we can model the process
for a given time t by focusing on the arrows that are
directly connected to xt in Fig. 1. These include the
observation at time t, yt, and the state of the process
immediately before and after t (i.e., xt21 and xt11). The
conditional distribution for a given unobserved state xt

simplifies to

A
2 2 2p(x z x , x , y , b, s , t ) } p [x z f (x ; b), s ]t t21 t11 t 1 t t21

B C
2 23 p [x z f (x ; b), s ]p [y z g(x ), t ]. (6)1 t11 t 2 t t

In terms of Fig. 1, the three densities on the right hand
side are (A) the arrow pointing from xt21 to xt, (B) the
arrow pointing from xt to xt11, and (C) the arrow point-
ing from xt to yt. Analysis is simplified because we
need only specify these ‘‘local’’ (conditional) relation-
ships. We can use a sampling-based approach to mar-
ginalize over the full model, which contains additional
densities for parameters. We illustrate with an example.

Exponential growth

The simple exponential growth model (Fig. 1) serves
as a reference against which different types of com-

plexity can be compared. The parameter b represents
per capita rate of change (Eq. 2b). We employ previous
assumptions for stochastic terms (Eqs. 3, 4) and a nor-
mal distribution for the unknown initial log abundance,
x0 ; N(m0, ).2s0

To complete the Bayesian model, we require prior
distributions for unknown parameters. For convenience
we use priors that are conjugate with the likelihood
(Calder et al. 2003), such that prior and posterior dis-
tributions have the same form. The variance parameters
s2 and t2 have inverse gamma (IG) priors, which are
conjugate for the normal likelihood:

2 2s ; IG(a , b ) t ; IG(a , b ). (7)s s t t

In some cases, we use ‘‘noninformative’’ priors, mean-
ing that prior distributions are rather flat and only weak-
ly influence parameter estimates (Hartigan 1998). A
noninformative inverse gamma density (IG) prior has
parameter values that are small (a, b K 1). In other
cases, we have information on variances that is incor-
porated by way of informative priors.

The conjugate prior distribution for the growth rate is
Gaussian with prior mean B0 and variance Vb. The prior
is noninformative for large Vb. The full model is

2 2p(b, s , t , x z y, . . .)

T T
2 2 2} N(x z m , s ) N(x z x 1 b, s ) N(y z x , t )P P0 0 0 t t21 t t

t51 t51

2 23 N(b z B , V )IG(s z a , b )IG(t z a , b ) (8)0 b s s t t

where ‘‘. . .’’ represents prior parameter values. The
joint posterior is normalized using a sampling-based
approach. The Gibbs sampler is a MCMC technique
that draws alternately from the conditional posteriors
for each of the unknowns, including all of the xs and
the parameters b, s2, and t2 (Gelfand and Smith 1990,
Gilks et al. 1996). Due to conjugacy, each can be sam-
pled directly from conditional posteriors (see Appen-
dix). We immediately turn to complications that typi-
cally confront most analyses.

Black Noddy on Heron Island

Ecological data are typically not this simple. To be
of much use for estimating growth rates, data sets must
be ‘‘long term.’’ Long-term data accumulate stochas-
ticity from many sources. Samples are often unevenly
spaced in time or missed entirely, and observation er-
rors vary as sampling methods and sampling effort
changes. Increase in the Black Noddy (Anous minutus)
population on Heron Island, part of Australia’s Great
Barrier Reef, illustrates some typical challenges. About
fifty breeding pairs were observed in the early 1900s.
Eighty years later the estimate exceeded 60 000 (Ogden
1993). Several population estimates are available at
irregular intervals, obtained by methods that were nei-
ther standardized nor bounded by estimates of uncer-
tainty. Only the most recent censuses in 1985 (Barnes
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FIG. 2. Estimates of population density of the Black Nod-
dy (1910–1992), shown as the posterior mean (solid line) and
95% credible intervals (dashed lines) for the model that ad-
mits uneven sample intervals. Posteriors for errors are taken
as square roots (standard deviations) to have the same units
as density (and, thus, the same scaling as the vertical axis).
The base of each error posterior plot is zero. Above each
sample point are posterior distributions for observation errors
tt. At lower right is the posterior density for the square root
of process error s. All error posteriors integrate to 1.0 and
have the same vertical scale, which, for clarity, is omitted.

FIG. 3. Missing values in the exponential model with ob-
servation errors that differ in distribution from one sample
to the next.

and Hill 1989) and 1992 (Ogden 1993) report standard
errors, and each is obtained by different methods. The
three most obvious departures from the basic model
outlined in the previous section are that (1) the distri-
bution of observation errors varies from sample to sam-
ple, (2) our knowledge of sampling accuracy and bias
varies, and (3) sampling has happened at irregular in-
tervals.

Variable observation errors.—For sample-specific
observation errors we allow that each observation yt

has a distribution with a unique variance, with the ob-
servation at time t distributed as N(yt z xt, ). In model2tt

8, we can include a prior for each variance, depending
on the available information, ). ForT 2P IG(t z a , bt51 t t t

the early censuses, we have limited prior insight and
use a noninformative prior IG(0.5, 0.01). For two recent
censuses, we have estimates of 40 718 6 3214 (1985;
Barnes and Hill 1989) and 63 140 6 7043 (1992; Ogden
1993). If these error estimates were known to be pre-
cisely correct, we could fix the error variances at the
corresponding log values 5 0.00577 and 52 2t t1985 1992

0.0112. Given that error estimates themselves are un-
certain, we use informed priors to allow that standard
errors are themselves estimated and, thus, have some
degree of uncertainty. From moments of the inverse
gamma we used parameter values having means equal
to the reported values, and variances equal to the re-
ported values squared, respectively, IG(3, 0.0115) and
IG(3, 0.0224). These are reasonable assumptions that
we use for demonstration. A full sensitivity analysis to
prior values is readily accomplished using models de-
scribed here. Sensitivity to the prior is judged by the

effect of modifying the prior on the posterior. Imple-
mentation entails several extensions to the basic model
that are given in the Appendix.

Uneven census intervals.—Although the process var-
iance does not have an explicit time dimension, a time
scale is implicit. The variance applies to a specific time
increment, and variability in the process depends on
time elapsed between censuses. As the interval between
observations widens, the variability contributed by pro-
cess error increases correspondingly. With process er-
ror, the growth that accrues over this interval is

b1« dt tn 5 n (e ) .t t2dt

The corresponding state-space model for log density is
given by

x 5 x 1 d b 1 d « y 5 x 1 w . (9)t t2d t t t t t tt

Credible intervals on log abundance xt (dashed lines
in Fig. 2) integrate estimates of both process and ob-
servation error. Intervals are broad for early censuses,
when sampling intervals are wide, and observation er-
rors are estimated to be large (posterior densities shown
above data points in Fig. 2). Intervals narrow toward
recent times, when censuses are more frequent, and we
have more information on observation errors. The
small process error estimated here (lower right in Fig.
2) indicates that much of the scatter in data, particularly
for early censuses, is assigned to observation errors.

Missing data.—The uneven sample intervals can be
viewed as a special case of the general problem of
missing data (Fig. 3). The representation of credible
intervals for densities xt in Fig. 2 follows standard prac-
tice—the dashed lines are interpolations between cen-
sus dates. But the uncertainties only apply at times for
which they were estimated. The uncertainty in popu-
lation size in, say, 1935 is not accurately represented
on this graph, because we have no estimate for 1935.
The uncertainty in 1935 is not the interpolation between
the closest estimates (1928, 1948). Rather, it depends
on the full time series of observations, on the model,
and on the priors. It is most strongly affected by the
time elapsed since the last and until the next censuses,
respectively. A probability statement for population
size in, say, 1935 thus requires direct estimation.
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FIG. 4. Posterior densities for the Black Noddy from the
model that treats noncensus years as missing values. Sym-
bolism is as in Fig. 2.

FIG. 5. Estimates of population growth rate (parameter b)
for Black Noddys on Heron Island with four different as-
sumptions. (a) Error distributions come from standard re-
gression methods that assume either process or observation
error, but not both. (b) Estimates for the model with unequal
sample intervals (Fig. 2) are represented by the dashed line.
Missing values (Fig. 4) are represented by the solid line.

Missing values are readily accommodated by the
state-space framework. To emphasize this point, we
estimate population size for every year from 1910 to
1992. In this example, every year for which there is
no population estimate is treated as a ‘‘missing value.’’
Because the process itself is no longer ‘‘unevenly
spaced,’’ we use the model for evenly spaced data (Eqs.
1, 2). We estimate observation errors only for years in
which samples are available.

In the Gibbs sampler, we distinguish between sample
times for which observations are available from those
where observations are not. To sample xt for census
years, we draw values of xt as before. For years not
constrained by observations, there is no arrow con-
necting xt to yt (Fig. 3), indicating that there is no con-
tribution from yt (see Appendix).

Posterior estimates of population density are similar
for the models that assume either uneven census in-
tervals (Fig. 2) or missing data (Fig. 4). For the missing
data model, we have predictions of xt for each year
when census data are unavailable. Predictive intervals
‘‘balloon out’’ between censuses. The widths of the
balloons depend on the relative importance of process
and observation error. If the process error is large, then
the model is poorly specified, meaning that it fails to
capture the complexity of population growth. Fat bal-
loons reflect an uncertain process, in the sense that the
growth rate (b 1 «t) is highly uncertain. This can result
because the process model is inadequate, and thus the
estimate of s2 is large. This contrasts with the case
where most of the uncertainty is associated with ob-
servation error. When observation errors account for
much of the stochasticity, credible intervals are wide
at the census times themselves and predictive intervals
do not increase substantially at intervening times. In
such cases, large and uncertain observation errors dom-
inate and balloons are not fat. Both situations can be
observed in our analysis. We have a well-defined ‘‘bal-
loon’’ between the last two censuses, both of which

have small observation errors (Fig. 4). In other words,
fat balloons mean that estimates of density could ben-
efit from additional samples, because each census hav-
ing low observation error brings large benefit.

Estimates of the population growth rates depend on
model assumptions. Traditional models that assume ei-
ther observation or process (but not both) show point
estimates that differ from one another by almost 10%
(0.081 and 0.090, respectively), and they are ‘‘over-
confident’’ (Fig. 5a): credible intervals are too narrow.
For the two state-space models (embracing both sourc-
es of variability, one using the irregular-sample and the
other the missing-value parameterization), posterior
means are in better agreement (0.080 and 0.086). The
irregular-sample model steps forward with a few (nine),
large intervals. The estimate for process error is es-
pecially low for this model, with greater uncertainty
assigned to the growth rate parameter. The missing-
value model has many growth increments (82), most
of which are ‘‘unconstrained’’ by observations.

Population regulation

If f(xt) is nonlinear, we cannot sample directly from
the conditional posterior for xt. We describe the case
for uneven sample intervals, with the understanding
that, for evenly spaced censuses, time increments can



November 2004 3145POPULATION TIME SERIES

FIG. 6. Posterior distributions for parameters and latent
variables for the logistic state-space model applied to the
Bialowieza Primeval Forest moose population (1950–1990).
Process errors are estimated to be much larger than obser-
vation errors (upper panel, inset). Posteriors for estimates of
population size (dashed lines in upper and middle panels)
show large uncertainty for years lacking census data (arrows).
The posterior estimate for the density-dependent parameter
b1 has a 95% credible interval that includes zero, but the most
probable value is negative (lower right). All error posteriors
integrate to 1.0 and have the same vertical scale, which, for
clarity, is omitted.

be set equal to 1.0 (Calder et al. [2003] describe the
standard model). For nonlinear models, there can be
important implications of sample interval. We return
to this issue in the Discussion section. Certain types of
density dependence can be linearized, the Gompertz
model being an example (e.g., Ives et al. 2003). Be-
cause many population models cannot be linearized,
we use a typical example, the Ricker model (or discrete
logistic). The process equation is

xt21x 5 x 1 d b 1 d b e 1 d « .t t2d t 0 t 1 t tt
(10)

This model, applied with uneven census intervals
and missing values, is illustrated with two examples,
characterized by different sampling concerns. The
Gibbs sampler that is used for estimation is described
in the Appendix.

Bialowieza moose.—The first nonlinear example
consists of annual censuses of moose (Alces alces) in
the Bialowieza Primeval Forest (BPF) that straddles of
the border of Poland and Belarus (Jedrzejewska et al.
1997). A range of impacts has influenced ungulate pop-
ulations, including timber removal, variable hunting
pressure, and pasturing. The moose population was ex-
tirpated early in the 20th century and reintroduced. Our
example concerns the post reintroduction phase. Care-
ful censuses were conducted annually by a combination
of snow tracking, hunting, drive censuses, and counts
at baiting sites. The data used in this example are ‘‘cor-
rected’’ for several known biases, and the authors of
the study believe the residual observation errors to be
small. Despite the careful censusing, several years are
missing.

Posterior inference from the state-space model is
consistent with the view that process error dominates
observation errors (Fig. 6, upper panel). We used non-
informative priors for all parameters. For variances, we
used IG(0.01, 0.01). Credible intervals for the series
closely follow observations, with lower confidence
(wide posteriors) for years lacking census data (Fig.
6); credible intervals balloon out at missing censuses,
because process error dominates. This contrasts with
the dominant observation error estimates for the Black
Noddy example (Figs. 2, 4). Estimates of parameter b1

suggest some level of density dependence in the pop-
ulation growth: the posterior mean is negative, but the
95% credible interval does include zero (Fig. 6, lower
right).

Gelfand and Ghosh’s (1998) predictive loss provides
support for the interpretation of some density depen-
dence. This model selection index consists of a good-
ness-of-fit term Gm and a penalty for model complexity
Pm. The more complex model results in smaller Gm. As
complexity increases, Pm may initially decrease. The
eventual rise in Pm with model complexity signals ov-
erfitting. We choose the model that minimizes Dm 5
Gm 1 Pm (see Appendix). For the model without density
dependence we obtain Dm 5 4.92 1 10.1 5 15.0. For
density dependence, we have Dm 5 4.50 1 8.38 5 12.9.

Thus, predictive loss motivates inclusion of density
dependence.

Fossil pollen evidence for beech in southern Ontario,
Canada.—Fossil pollen data provide evidence for
growth of tree populations. Pollen extracted from sed-
iments of lakes, together with 14C estimates of sample
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age, provides a rough idea of population change. Data
are almost always unevenly spaced, because dates are
assigned by indirect methods that are often completed
or refined after samples are extracted for analysis. In
addition to the fact that pollen abundance is not the
same as tree abundance, there are large ‘‘observation
errors’’ that are not associated with population growth.
These include variability in sedimentation rates that
introduce variability into pollen accumulation data that
is unrelated to population growth. We demonstrate with
an example of beech (Fagus grandifolia) from Nutt
Lake, Ontario, Canada, originally analyzed by Bennett
(1987). Because processes affecting observation are
similar throughout, we use a single distribution for all
samples. Knowing that process errors are likely to be
large, we use slightly more informed priors than for
the last example, with process and observation errors
having priors IG(25, 5) and IG(2, 1), respectively.
These have mean values of 0.2 and 1, respectively.
Priors are still too weak to overwhelm the data. Time
is indexed at the beginning of the series, which is
;8000 years before present.

Posterior estimates of pollen accumulation rate are
broad (Fig. 7, upper, middle panels), with observation
errors accounting for much of the variability in the data.
The density-dependent parameter is estimated to be
about zero (Fig. 7, lower right). This does not neces-
sarily imply that density dependence is absent from the
growth of the beech population. For example, obser-
vational errors may overwhelm details of the popula-
tion growth process.

Lagged effects

Models with lagged effects are sometimes used to
assess effects of interactions involving variables that
cannot be directly observed (Royama 1992, Bjørnstad
et al. 2001). Although we do not pursue an example
here, we provide the approach for the lagged Ricker mod-
el (Royama 1992). If population growth rate depends on
the last k time increments, we have the model

k
xt2jx 5 x 1 b 1 b e 1 « y 5 x 1 w .Ot t21 0 j t t t t

j52

(11)

Matrix notation is more compact

D 5 Xb 1 « y 5 x 1 w

with densities xT 5 [x1, . . . , xT], and observations y T

5 [y1, . . . , yT]. The vectors « and w are sequences of
zero-mean Gaussian variates. There is a response vec-
tor

 x 2 x1 0 
D 5 _ 

 
x 2 xT T21 

a design matrix

x x122 12k 1 e · · · e
x x222 22k 1 e · · · e

X 5  
_ _ _ 

x xT22 T2k1 e · · · e 

and a parameter vector b T 5 [b0, . . . , bk]. Note that
we have negative indices in the design matrix. This
sets us up to use priors for lags on the first k values,
which are indexed as (2k 1 1, . . . , 0). An alternative
is to condition on the first k values of the series, and
model only those samples beginning at k 1 1. We have
the same choice for the last k values of the series. Data
modeling follows the same approach as for previous
models (see Appendix).

DISCRETE-STATE MODELS

We have illustrated population growth with Gaussian
process and observation errors on log density. In fact,
Bayesian state-space models can accommodate a wide
range of assumptions about the process and data. Here
we use an epidemic time series to model discrete states
for both the process and the data.

Epidemics of immunizing childhood diseases result
from predator–prey-like interactions between infec-
tious and susceptible individuals. To understand dis-
ease dynamics, epidemiologists construct models that
include various states of the host (Anderson and May
1991, Bjørnstad et al. 2002, Grenfell et al. 2002). The
TSIR (Time-series Susceptible–Infected–Recovered)
model enumerates susceptible St and infected It indi-
viduals within the host population. Additional infor-
mation is provided by birth rate data, Bt, which supply
new susceptible individuals. The time increment in the
TSIR model for measles is two weeks—the approxi-
mate duration of infection after which individuals re-
cover. There are 26 two-week intervals in a year. New-
borns become susceptible within several months. Be-
fore vaccination began in 1966, about 95–99% of all
individuals in urban areas contracted the disease during
their lifetimes. Our example includes the 21 years of
measles case reports from London, between 1944 and
1964. Reported cases show a striking two-year cycle
during this period (Fig. 8). We apply the methods in a
discrete-state context to estimate how transmission
rates change over the course of a year. Observables
include reported infections, birth rates, and total pop-
ulation size for each of 546 two-week intervals in the
time series. We are interested in how transmission rates
vary during the course of the school year for this child-
hood infection. Our model accounts for the difference
between reported infections It and actual infections

due to underreporting, and the unobserved suscep-(o)It

tible class St.
To estimate unobserved infection rates, we use a

Bayesian framework for ‘‘susceptible reconstruction’’
as has been applied in previous efforts (Bjørnstad et
al. 2002). The approach amounts to assuming that
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FIG. 7. Fossil pollen accumulation ([no. grains] · cm22 · yr21) in Nutt Lake, Ontario, Canada (dots in upper and middle
panels), and posteriors for regression parameters (lower panels). Dashed lines are 95% confidence intervals. Data are from
Bennett (1987).

FIG. 8. Reported measles cases in London (dots) and pos-
terior estimates (95% confidence intervals) of actual cases
and susceptibles (solid lines), 1945–1965. The narrow con-
fidence intervals result in lines that are indistinguishable from
one another.

(nearly) all individuals will eventually pass through the
infected state. If so, the long-term ratio of cumulative
reported infections to cumulative births is the reporting
fraction r (i.e., the fraction of cases that are reported).
In previous analyses this assumption is used to estimate
the mean number of susceptibles in the population (by
regression), which is then used in a subsequent analysis
of the TSIR model. The Bayesian approach allows us
to incorporate this relationship directly in the analysis
of disease transmission, together with uncertainty in
the reporting rate. For clarity, our example makes use
of a simplified TSIR model.

The probability that a susceptible individual will
contract the disease is governed by the ‘‘force of in-
fection,’’ w (Bailey 1957). The time series of the un-
observed susceptible class is given by

S 5 S 1 B 2 I .t t21 t21 t (12)

Here, It is the loss of susceptibles due to infection, and
Bt represents new susceptibles due to births. We assume
that the force of infection is proportional to the fraction
of infected individuals in the population. The constant
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FIG. 9. Biweekly measles transmission coefficients (di-
mensionless), represented as the posterior means (solid line)
and posterior distributions.

of proportionality is given by the time-varying trans-
mission rate:

It21w 5 b 3t21 w Nt21

where bw is the transmission rate for biweekly w. Note
that each of the 26 parameters for bw are identical
across years. For example, b1 is estimated from time
intervals t 5 [1, 27, . . . ], b2 from to time intervals t
5 [2, 28, . . . ], and so on. With these assumptions the
distribution of new infections is

I ; Bin(S , w ).t t21 t21

The relationship between actual and reported infections
is

(o)I ; Bin(I , r).t t

The reporting rate has the expected value of

T
(o)IO t1 t513 5 0.459T0.95

BO t
t51

which represents the long-term average for this rate.
The coefficient 0.95 represents the estimated fraction
of individuals that are infected at some point during
their childhood (nearly 1; Bjørnstad et al. 2002). The
reporting rate of 0.495 is slightly lower than the 0.52
estimated using a more elaborate analysis (Finkenstädt
and Grenfell 2000, Bjørnstad et al. 2002). We assumed
uncertainty in this value. By matching moments for the
Beta density, we obtain a slightly informative prior
with the appropriate mean value with r ; Beta(45, 53).
We assume flat priors on the transmission coefficients,
Unif(bw z 0, 1000). The bw cannot exceed Nt21/It21. In
our analysis, values never approached this constraint.
The full probability model is:

(o)p[I, b z I , B, r, . . .]

T T
(o)} Bin[I z S , w (I , S , b )] Bin[I z I , r]P Pt t21 t21 t21 t21 w t t

t51 t51

26

3 Unif(b z 0, 1000)Beta(r z 45, 53)P w
w51

where ‘‘. . . ’’ refers to prior parameter values. For sim-
plicity we condition on an initial susceptible value of
S0 5 120 000. The Gibbs sampler is given in the Ap-
pendix.

Posterior estimates of transmission rates show the
increase with the autumn school term and eventual de-
cline as the school year progresses (Fig. 9, upper
panel). Posterior estimates for transmission rates are
well identified. The estimated actual infections show a
biennial cycle, with values being roughly twice as high
as those reported (Fig. 8, solid line). Given our con-
ditioning on S0 5 120 000, the time series of suscep-

tibles are tightly reconstructed. In reality the estimate
of S0 is uncertain, a fact that can be embraced through
wider priors in a refined analysis.

DISCUSSION

State-space models provide flexibility for the com-
plex processes that generate population data. Less flex-
ible alternatives can demand impossible data require-
ments and yield predictions that promote skepticism
(Ludwig 1999, Clark 2003, Ellner and Feiberg 2003).
When models cannot accommodate the important
sources of stochasticity, statistical analysis is often
piecemeal, with some things estimated first, then others
from residuals. The result can be parameter estimates
(e.g., demographic rates, strength of density depen-
dence) and predictions (future population size, extinc-
tion times) that are not clearly linked to the data or the
underlying process. Meanwhile, data may contain sub-
stantial information that is difficult to exploit.

State-space models admit complexity, and they yield
inference on the range of unobservables that affect pro-
cess and observations. Our examples address many of
the common challenges that population data present.
For the apparent exponentially increasing Black Noddy
population on Heron Island (Ogden 1993), we allowed
for process misspecification and observation errors that
differed with each unevenly spaced sample (Figs. 2,
4). Observation errors were large and heterogeneous
(Fig. 2). The estimate of population growth differed
substantially from models assuming only observation
or process errors (Fig. 5). We estimated that process
error dominated the stochasticity in carefully censused
moose populations from Bialowieza Primeval Forest,
and we identified the extent to which uncertainty in-
creased for missing censuses (Fig. 6). By contrast, ob-
servation error dominated the fossil pollen record of
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beech expansion in southern Ontario, with inference of
no identifiable density dependence (Fig. 7). The mea-
sles example illustrates how we can estimate time-vary-
ing rates and, more importantly, how we can recon-
struct the dynamics of the unobserved susceptible class
as an integral part of the statistical model for parameter
estimation (Fig. 9).

Our treatment is not comprehensive. The approach
is flexible to a variety of assumptions regarding sto-
chasticity. Non-normal errors can be accommodated
with scale mixtures (Carlin et al. 1992) or, as illustrated
by our measles analysis, by incorporating specific dis-
tributions (such as binomial, Poisson). Variances that
depend on population density could make use of the
method of Stroud et al. (2003) involving discrete mix-
tures. The approach also admits hierarchically struc-
tured parameters to accommodate variability within
populations. Clark et al. (2004) include random indi-
vidual effects in a time-series (repeated-measures) ap-
proach to estimate the range of fecundities within tree
populations. In a companion paper, J. S. Clark, G. Fer-
raz, and N. Oguge (unpublished manuscript) will apply
a random effects approach to mark–recapture data, a
type of longitudinal study with discrete states, where
subjects are partially observed. Some related approach-
es in the ecological literature include McAllister et al.
(1994), Gibson and Renshaw (1998), Bjørnstad et al.
(1999), Millar and Meyer (2000), and Stenseth et al.
(2003).

The advantages of the Bayesian state-space approach
stem from a consistent probability model that applies
simultaneously to the full process, the component con-
ditional processes, the parameters, and the data. By
building on low-dimensional conditional relationships,
it is possible to construct a model that is fully consis-
tent. The sampling-based approach provides the means
for integrating the model.
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APPENDIX

The Gibbs sampler for Bayesian state-space models is described in ESA’s Electronic Data Archive: Ecological Archives
E085-103-A1.


