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Understanding the scaling of transmission is critical to predicting how infectious diseases will affect populations of different
sizes and densities. The two classic “mean-field” epidemic models—either assuming density-dependent or frequency-dependent
transmission—make predictions that are discordant with patterns seen in either within-population dynamics or across-population
comparisons. In this paper, we propose that the source of this inconsistency lies in the greatly simplifying “mean-field” assumption
of transmission within a fully-mixed population. Mixing in real populations is more accurately represented by a network of
contacts, with interactions and infectious contacts confined to the local social neighborhood. We use network models to show
that density-dependent transmission on heterogeneous networks often leads to apparent frequency dependency in the scaling of
transmission across populations of different sizes. Network-methodology allows us to reconcile seemingly conflicting patterns of
within- and across-population epidemiology.

1. Introduction

Transmission is the driver of host-pathogen interactions and
the most important determinant of disease dynamics. The
patterns and dynamics of transmission within any given
host population depend on how infectious and susceptible
hosts interact, both spatially and socially [1]. Ultimately,
pathogen transmission at the population level is determined
by patterns of mixing at the individual level. Network
science has highlighted that the mean and variance in
transmission among individuals is key to the dynamics of
spread within a given population network [2–5]. Predictions
of disease dynamics, however, often require that we make
projections from one population to another. Population size
(i.e., counts), and possibly density, is a common metric
with which to characterize differences among populations.
Thus, a central challenge in infectious disease ecology is to

understand how the distribution of contacts scales across
populations of varying size.

Classically, the complex biology of host mixing has
been characterized using select formulations from a small
number of candidate mathematical models (e.g., [6–11]). If
we consider only the increase in infected individuals (i.e.,
due to disease transmission), then the rate of increase in the
number of infected individuals (I), dI/dt, is given by the
number of susceptible hosts, S, times the force of infection
(the per capita rate of infection). The force of infection, in
turn, is the product of the rate of contacts among individuals,
the probability of a contact being with an infectious host,
and the probability of that contact giving rise to an infection.
The first and third terms are commonly combined into a
transmission term, β. In the simplest case, the rate of contact
among hosts is assumed constant (i.e., independent of both
population size and density). In a well-mixed population, the
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probability of any given contact being infected is then I/N ,
where N is the population size (i.e., count), and the rate of
increase of infected individuals in the population is given by

dI

dt
= βS

I

N
. (1)

This formulation is commonly referred to as frequency-
dependent transmission (note that there has been extensive
discussion of the appropriate terminology for these models;
here, we defer to the derivations and terminology of Begon
et al. [10]). Alternatively, if transmission scales linearly with
population density (i.e., β = θN/A, where A is area occupied
by the population) then we arrive at the density-dependent
transmission model:

dI

dt
= βSI. (2)

Though the derivation of (2) is stated in terms of population
density, the dependence on area is commonly suppressed
by assuming that area is constant through time [10], and
thus population size and density are equivalent measures.
Begon et al. [10] caution, however, that this simplification in
interpreting the two models leads to challenges in compar-
ing dynamics across different populations that presumably
occupy ranges of a different area. The frequency- and
density-dependent transmission models are extreme special
cases. While a variety of alternative or intermediate models
have been proposed on theoretical or empirical grounds
(see [9–11]), these remain the dominant archetypes in the
literature.

Both models assume homogeneous mixing (“mean
field”) with no explicit spatial or social structure. While
the mechanism of transmission is not explicitly considered
in the derivation of (1) and (2), the choice between these
two models is often motivated by the mode of transmission.
Vector-borne and sexually transmitted diseases are generally
assumed to be transmitted in a frequency-dependent manner
because the mean number of contacts is independent
of population density (if the number of sexual partners
or vector attack rates are constant, e.g., [12]). Directly
transmitted diseases, in contrast, are typically expected to
spread in a density-dependent manner (because the number
of encounters may increase with density and/or popula-
tion size). Alternatively, the density-dependent transmission
model has been equated with homogeneous or uniformly
random mixing among individuals in contrast to frequency-
dependent transmission, which is taken to reflect some
degree of local heterogeneity in the population (i.e., in sexual
partners) [13]. Begon et al. [10], however, have argued
that heterogeneity of the contact structure is orthogonal to
the distinction between density- and frequency-dependent
transmission.

For host populations of constant size, occupying ranges
of constant area, and pathogens that do not cause mortality,
the frequency- and density-dependent formulations are
equivalent. One may think of both as having a force-
of-infection (= per susceptible rate of infection) equal to

β′I , where β′ = β/N for the former and β′ = β for the
latter. However, they make very different predictions about
dynamics and control—such as targets for vaccination
coverage and culling [9, 14]—when the host population
size varies as a result of extrinsic forces or disease-induced
mortality because of their implicit scaling-laws. In the
frequency-dependent model, the realized population-level
per capita (per susceptible-and-infected) transmission rate

(̂β = dI/SIdt) declines with increasing population size (N).
As a consequence, the basic reproductive ratio, R0—which
defines the epidemic invasion criterion (R0 > 1)—remains
constant across varying population sizes. In contrast, the
density-dependent model predicts a constant per capita
transmission rate across population density. In this model,
̂β is independent of population size, so consequently R0

increases with N . The difference in the predictions of the
two models leads to important and divergent predictions for
dynamics: the frequency-dependent model has no threshold
density for invasion [15] and predicts that moderately
infectious pathogens (R0 > 2) that result in lethal infections
should lead to extinction of the host and the pathogen
[14, 16] while the density-dependent model predicts a
critical host density for pathogen invasion and long-term
persistence and coexistence of the host and pathogen [17].
Further, for endemic, immunizing pathogens of hosts with
a relatively long lifespan, L, the mean age-of-infection
is predicted to be approximately L/R0 [17, 18]. Thus,
based on these models, we expect that frequency-dependent
pathogens should exhibit constant mean age-of-infection
and proportion of the population that is susceptible while,
with density-dependent pathogens, mean age-of-infection
and susceptible proportion decay with host population size.

Though the theoretical predictions of the frequency- and
density-dependent transmission models are clearly distinct,
the empirical patterns that emerge when transmission rates
(or R0) have been estimated in real populations are less clear
[11]. When reviewing the literature, we find that the patterns
do not align with the classic dichotomy between directly
transmitted pathogens and sexually or vector transmitted
pathogens (Table 1). The different theoretical predictions
with respect to the scaling of dynamics with population
size are particularly relevant, as we often observe disease
processes at one scale (or location) and make inference
about the behavior at another. As such, understanding how
transmission scales across populations of different sizes are
critical to making valid predictions.

Numerous empirical observations have provided direct

measures of R0 and/or ̂β from collections of host populations
that vary in size geographically, or individual populations
that vary in size through time (Table 1). For example, two
directly transmitted pathogens within the morbilliviridae

have had ̂β estimated for a broad range of population sizes:
both measles [19] (Figure 1) and phocine distemper virus

[20] found ̂β to be inversely related to population size, and
as a consequence, R0 to be relatively invariant. These scaling
patterns are as predicted by the frequency-dependent model,
despite these pathogens being directly transmitted (and not
“frequency-dependent” STDs or vector-borne pathogens)
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Table 1: Empirical examples from the published literature of beta and R0 measured in host populations differing in size, indicating the
empirical observations and the likely mean-field scaling model.

Host-pathogen system Empirical observations Model supported Reference

Humans-measles
Humans-pertussis
Humans-diphtheria
Humans-scarlet fever

Found R0 to be relatively invariant across
population sizes.

Frequency dependent [15]

Humans-smallpox Transmission was inverse of population size Frequency dependent [58]

House finches-mycoplasma Transmission was independent of flock sizes Frequency dependent [59]

Pigs-Aujeszky’s disease virus (ADV) R0 was invariant across different population sizes Frequency dependent [21]

Harbor seals-phocine distemper virus
(PDV)

Density-dependent scaling did not explain
differences in transmission between
different-sized seal haul-out sites

Frequency dependent [20]

Rana mucosa-chytridiomycosis
Transmission rate increases and saturates with
density of infected individuals

Frequency dependent [33]

Tasmanian devil—devil facial tumor
disease

Maintenance of high prevalence following
population decline

Frequency dependent [34]

Brushtail possums-leptospira
interogans

Density-dependent model fit experimental
infection rates

Density dependent [60]

Elk-brucellosis

Population density was associated with an
increase in seroprevalence but could not
differentiate among linear and nonlinear effects of
host density.

Nonlinear
density dependent

[61]

Rodents-cowpox
Both models fit to incidence time series; support
for both equivocal.

Frequency and
density dependent

[22]

Rodents-cowpox
Transmission term lies between density- and
frequency-dependent and varies seasonally.

Model is intermediate [11]

Indian meal moth-granulosis virus
A decline in transmission with increasing density
of infectious cadavers

Neither [26]

Possum-tuberculosis
Transmission did not fit frequency- or
density-dependent models

Neither [62]

Tiger salamander-Abystomatigrinum
virus

Transmission was best modeled by a power or
negative binomial function, that is, nonlinear
density dependence.

Neither [63]

Badgers-Mycobacterium bovis
Negative relationship between host abundance
and infection prevalence

Neither [64]

for which density dependence is normally expected. Other
empirical studies are ambiguous in their model support
when scaled across populations (Table 1). For example, R0

was concluded to be invariant across population sizes for
Aujeszky’s disease virus in pigs [21], supporting a frequency-
dependent model; Begon et al. [22] found equal support for
frequency- and density-dependent transmission models in
cowpox data in rodents; Smith et al. [11] have subsequently
found support for model that is intermediate to the density-
and frequency-dependent models based on an analysis of
long-term time series from the same system. Bucheli and
Shykoff [23] argued that support of the density- versus
frequency-dependent model depended on the spacing of the
host plants in pollinator-vectored anther smut. Klepac et al.
[24] found that while the density-dependent model fit the
observations of the 2002 phocine distemper virus outbreak
in the Dutch Wadden Sea better than a frequency-dependent
model, the observed dynamics in juvenile and adult seals

(which are less social) was better explained by a frequency-
dependent model.

Experimental manipulations of populations and stud-
ies of the ensuing scaling patterns are also equivocal in
their support for either frequency or density dependence.
Knell et al. [25, 26] found that transmission of Bacillus
thuringiensis and a granulosis virus increased with density of
susceptible Plodia interpunctella and decreased with density
of infectious cadavers, and thus fails to conform to the
density-dependent model. Antonovics and Alexander [27]
manipulated both host density and frequency of infected
Silene latifolia and found that deposition of the anther
smut fungus Microbotryum violaceum by pollinating insects
increased with frequency of infection, but not density, sup-
porting the notion that vector-borne pathogens are spread in
a frequency-dependent fashion. Ryder et al. [28], however,
independently manipulated the density and frequency of
two-spot lady birds, Adalia bipunctata, parasitized by the
mite, Coccipolipus hippodamiae, and found that infection
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Figure 1: Scaling of measles transmission. The estimated mean
transmission rate (β) of measles in England and Wales plotted
against increasing city size in thousands. Reproduced from [19].

rates scaled with host density because of increased promiscu-
ity at high density, in contrast to the notion that STDs spread
in a frequency-dependent fashion.

Evidence based on serology and age-serology is also
difficult to interpret, yet the serological data for a range of
directly transmitted human pathogens [17] is to a greater or
lesser extent consistent with an invariant R0 across scales and
thus, in accordance with the frequency-dependent model.
Edmunds et al. [29] found the median age at infection
for Hepatitis B virus to vary from 1–18 years in highly
endemic areas (6 African surveys, 3 in south-east Asia,
2 in Oceania, and 1 in South American). These surveys
spanned populations ranging in size from a few hundred (an
Amerindian village; [30]) to >10 million (Hu et al. [31])
and showed no negative correlation between median age
and population size. Metcalf et al. [32] similarly found no
correlation between mean age of infection with rubella and
population size in the 31 states of Mexico and Mexico City.

On the whole, scaling of ̂β and R0 across populations
tend to follow predictions consistent with the frequency-
dependent model. In contrast, dynamical patterns within
populations are often contradictory to this model and favor
the density-dependent model. A key distinction between the
frequency- and density-dependent models is that the former
predicts moderately lethal pathogens can lead to extinction
of the host and parasite. Rachowicz and Briggs [33] showed
that transmission of Batrachochytrium dendrobatidis, which
has been implicated in amphibian extinctions, in tadpoles
more closely scaled with frequency than density of infected
individuals. In general, however, there is little empirical
evidence of pathogen-induced host extinction. In a review
of 43 empirical papers, de Castro and Bolker [14] found
only one study that gives direct evidence of pathogen-

induced extinction. McCallum et al. [34] observed the
maintenance of high prevalence of the directly transmitted
devil facial tumor disease even as populations suffered
significant declines, raising the concern that the disease could
lead to extinction of the host. Under the density-dependent
model, the reduction of the susceptible population below a
threshold level drives the effective transmission rate below 1
and leads to extinction of the pathogen only. The successful
application of this principle in, for example, rabies [35],
smallpox [36], and foot-and-mouth disease [37] is consistent
with density-dependent transmission.

Measles and phocine distemper, which have been well
studied both within and across populations, are exemplary
of the paradoxical predictions of the mixing models; both
exhibit scaling of transmission rates across populations
that is consistent with frequency dependence but local
dynamics that are consistent with density dependence [19].
We believe that this paradox arises from the application of
the same mean-field transmission model to describe both
the within-population transmission and the implicit scaling
between populations. We need to revisit the assumption
of random host mixing in the face of the strong social
and spatial structuring that may limit the interactions
between individuals [1]. The dynamics of within-population
transmission depend on both the mode of transmission
and the structure of transmission network [2–4]; however,
the scaling of transmission across populations hinges on
the social and spatial structuring of the host population,
somewhat independent of the mode of transmission. Note
that this point was already raised by De Jong et al. [15]. In
the next section, we use network models to show that the
equivocal support of the classical models can be resolved by
explicit considerations of the contact networks of social and
spatial contact patterns.

2. Epidemics and Social Networks

Network models have become very popular methods to relax
the assumption of complete mixing among individuals (see
[5] for a general review). In most natural populations and
particularly those with strong social or spatial structure,
individuals interact with only a small proportion of the
population. We first introduce the network formalism to
capturing social organization, and then we discuss the
emergent scaling of pathogen transmission on three classes
of social networks.

Epidemic network models differ from the mean-field
models in that individuals only interact within their local
social neighborhood. We can use these models to investigate

the scaling of the realized per capita transmission rate, ̂β,
with host population size in relation to both the mean neigh-
borhood size (〈k〉 = mean degree) and the heterogeneity
of contacts. Cellular automata models have similarly been
used to study the distinction between local transmission
and global dynamics (e.g., [38–41]). However, the nature of
cellular automata models limit the range of social structures
that can be studied to those that can be reasonably collapsed
to 2 dimensions (i.e., a lattice). Contact network models
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Figure 2: Classes of social networks. Two classes of social networks
where the node represents an individual and the edge a social
connection or epidemiological relevant contact according to edge
distributions (i.e., contact networks) that are described by (a)
Poisson networks and (b) power law networks.

allow the flexibility to study a wide range of social structures
with a complex mix of both local and global interactions
[42].

Various characteristics of contact network topology (i.e.,
clustering, assortativity, etc.) may vary with population size.
However, there are few empirical studies of the scaling of net-
work properties on social networks of various sizes. Here, we
focus simply on the scaling of the mean number of contacts
with network size, both because of its straight forward inter-
pretation and its parallels with the classic formulations of the
density- and frequency-dependent mean-field models. The
classic mean-field models make explicit assumptions about
the way the mean rate of contacts scales with population
density, but are restricted by implicit assumptions of how
the variance in contacts scales with density. Contact network
models make explicit the relationship between the mean and
variance of contacts in the choice of the degree distribution.
Further, contact network models relax the assumption that
population density or size is a proxy for the contact rate,
which is implicit in the mean-field models.

Host social organizations that have constraints on group
size (e.g., classroom size for school children, harem size
for some social mammals) may be adequately represented
by a Poisson distribution of social contacts (i.e., a variance
to mean ratio near 1, Figure 2(a)) [2]. In contrast, many
animal species exhibit skewed social contact networks with
few individuals having many contacts, and the majority
having few contacts (i.e., a variance to mean ratio � 1,
Figure 2(b)) [43, 44]. Following established theory, these
social interactions are commonly characterized by truncated
power laws [45, 46].

We generated networks of size N = 100, 500, 1000,
2000, 5000, and 10000 nodes (individuals) for which the
mean number of contacts scaled in one of 3 ways: (1) the
mean number of contacts was independent of population
size (〈k〉 = 6), (2) the mean number of contacts increased
slower than linearly with population size (〈k〉 = .6 ∗ √N),
and (3) the mean number of contacts increased linearly with

population size (〈k〉 = 0.06 ∗ N). Note that all networks
have the same mean when N = 100. The constant and
linear scaling functions are analogous to the assumptions of
the classic frequency- and density-dependent transmission
functions in the mean-field models when area is held con-
stant. The intermediate function represents an intermediate
setting where, for example, the number of contacts increases
initially with population size (e.g., larger cities lead to larger
workplaces), but the total number of contacts is limited
by time or typical home range. In these models, we base
the scaling of contacts on the population size rather than
density. While in many settings it may be reasonable to
assume that the probability of a contact depends on spatial
proximity [47], the complexity of empirical contact networks
has highlighted that space is not always a reasonable proxy for
social proximity [48].

We considered the effect of local heterogeneity of contacts
by generating networks with Poisson, exponential, and
truncated power law contact distributions. The Poisson
contact distribution reflects a setting with relatively low
variance in the number of contacts and thus approximates
the homogeneous contact structure of the mean-field models
[10]. The power law contact distributions reflect extreme
heterogeneity in local contacts that is seen in many empirical
contact networks. The exponential contact distribution
represents an intermediate case. Networks were generated
using the algorithm described by Molloy and Reed [49].
We approximated a power law degree distribution using a
negative binomial distribution with dispersion parameter,
θ = 0.1. The presence of highly connected individuals, so-
called “super spreaders” [43], has been consistently shown
to have large impacts on the threshold conditions and final
size of outbreaks [4, 50]. Thus, under the assumption of
constant mean contacts for networks of increasing size, we
might expect emergent scaling of dynamics for the three
degree distributions as larger networks will better sample the
degree distribution, which would mean a greater proportion
of rare “super spreaders” in the exponential and power law
distributed networks.

For all three families of edge distributions, nodes were
connected at random with the restriction that self-loops
(nodes connected to themselves) and double edges between
nodes were disallowed. Thus, individuals cannot infect
themselves and cannot infect another in the population more
than once.

We simulated epidemics on the contact networks accord-
ing to a discrete time, stochastic susceptible-infected-
removed (“chain-binomial”) [51] model. Susceptible hosts
become infected in each time step with probability pj =
1−exp(−βI j), where I j is the number of infected individuals
within the local neighborhood of individual j at a given
time point. Thus, infection depends on the local density
of infected hosts, where density is relative to the social
neighborhood rather than a fixed neighborhood in Euclidean
space (i.e., transmission is locally density dependent).
Infected individuals were removed from the population in
each time step with probability 1 − exp(−γ), thus leading
to a geometrically distributed infectious period—the discrete
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time equivalent of the standard SIR assumptions. Removed
individuals were assumed to be permanently immune and
thus unable to be subsequently infected; in practice, these
nodes in the network are “turned off”, so while the total
number of nodes remains constant, the effective number
of nodes in the epidemiologically active portion of the
network declines (i.e., thus, for this model equivalent to
disease-induced mortality). In an important contrast to the
mean-field models, the removal of infected nodes results
in reduced contacts for their remaining neighbors. Thus,
for structured contact networks (as has been well explored
for cellular automata models [38, 39]), the local and global
impact of the removal of infected individuals can be quite
different. However, in contrast to nonnetwork models (e.g.,
cellular automata and small-world models for which only
local connections are explicit), variance in the distribution
of contacts leads to a structured cascade of infection
from highly connected individuals to less well-connected
individuals, which results in a decline in the per capita
realized transmission. This effect is equivalent to the frailty
effect discussed in mathematical demography [19]. The rate
and magnitude of this decline depends explicitly on the
distribution of the underlying transmission network [52].

For each configuration, we generated 30 networks and
simulated epidemics seeded by a single infection. In each
time step, the probability of transmission across an edge
was assumed to be 0.1, and the probability that an infected
node recovered was 0.1. We calculated, for each configuration
and each time step, the realized per capita (per infected)

transmission rate, ̂βt :

̂βt = It − It−1

StIt
, (3)

where It and St are the total number of infectious and
susceptible nodes on the network at time t. The selective
removal of highly connected nodes early in the epidemic
results in a decrease in the realized transmission rate as the
epidemic progresses [52]. To generate time-weighted realized

per capita rates, we, therefore, calculated ̂β as the intercept

of the regression of ̂βt on time. Thus, we are describing
the scaling of the rate of transmission at the initiation of
an epidemic. Calculations using the time-course average
yields similar scaling results and are, therefore, not included
(Ferrari et al., unpublished results).

We find that the realized per capita transmission rate

(̂β) decreased with population size despite local transmission
being modeled as a density-dependent process (Figures 3(a),
3(c), and 3(e)). Only when the mean number of contacts
is assumed to increase linearly with population size is per

capita rate (̂β) constant across networks (Figures 3(a), 3(c),
and 3(e)). Social group sizes that increase slower-than-

linearly with community size yield intermediate results; ̂β
decays but slower than 1/N . In all cases, the local scale
transmission remains constant across network sizes; that is,
the number of new infections per susceptible-infected pair
remains constant regardless of network size or configuration
(Figures 3(b), 3(d), and 3(f)). Surprisingly, these scaling

relationships are remarkably constant across the three classes
of networks despite the difference in the variance in local
contacts. For a given network size and mean number
of contacts, the per capita transmission rate was lowest
for the Poisson networks and greatest for the scale-free
networks, in agreement with the standard observation that
transmission is positively correlated with variance in the
contact distribution. The critical finding from our analysis is
that we need to distinguish between the mode of transmission
within-populations (frequency versus density dependent)
and the scaling of transmission between populations.

3. Discussion

Classically, the choice of model to describe disease dynamics
was based on the transmission route of the pathogen,
with little regard to empirical patterns. Even though this
method may accurately describe local transmission between
individual hosts, as evidenced by the wealth of empirical
examples and the success of the resultant theory in disease
management, it is not evident that these models will scale
correctly to describe transmission across socially or spatially
distinct populations (see examples in Table 1). In the above
example, we have shown that the scaling pattern of pathogen
transmission among distinct populations can be determined
by the structure and scaling of the local host contact network
and that the scaling pattern is independent of the mode
of transmission. The scaling relationship depends explicitly
on the heterogeneity in contacts and how the average
connectivity changes with population size. In general, the
scaling of transmission is likely to depend on the particular
nature of host mixing and contact network structure—
pathogen transmission biology may not play a large role.

In all the models, the heterogeneity in the contact struc-
ture leads to a structured cascade of infection from highly
connected individuals to less connected individuals [52],
which results in a decline in the realized per capita transmis-
sion rate that is consistent with the predictions of the mean-
field density-dependent model. (Note that the constant, or
increasing, per capita transmission rate that is predicted by
the mean-field, frequency-dependent model requires that
new contacts be formed among individuals remaining in
network model to overcome this frailty effect.) However,
we only observed density-dependent scaling with population
size in network models when the mean number of contacts is
proportional to population size. This phenomenon is rarely
observed in the literature (Table 1), possibly due to natural
constraints on the number of contacts as populations grow,
due to limited time or space. Presumably, for some very well-
mixed systems such as phages in bacterial emulsions, density-
dependent scaling with population size may be possible.

Despite locally density-dependent transmission, the net-

work models predict ̂β to scale in a pattern consistent with
the frequency-dependent mean-field model when the mean
number of social contacts is independent of population size
or increases at a decelerating rate. We would expect this
scaling pattern when social forces place constraints on the
number of contacts independently of population size; for
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Figure 3: Scaling of transmission on Poisson (a, b), exponential (c, d), and scale-free (e, f) networks. Left-hand panels are the mean realized

per capita transmission rate, ̂β, plotted against network size. Right-hand panels are the mean number of infections per edge between
susceptible and infected nodes. Solid lines indicate a constant mean number of contacts for all population sizes. Dashed lines indicate a
mean number of contacts that increase proportional to the square root of population size. Dotted lines indicate a mean number of contacts
that increase linearly with the population size. Vertical bars give the standard deviation in observations from 30 simulated networks.

example, measles, for which school classroom sizes tend to be
reasonably constrained [19], and phocine distemper virus in
harbor seals, for which spatial constraints limit the number
of seals on haulouts [18].

We further found that the scaling relationship was
independent of the variance in the edge distribution of
the contact network. Thus, the choice of the mean-field,
density-dependent model to represent populations with
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homogeneous mixing [13], is not justified and would impose
a scaling relationship that is only consistent with the extreme
case where the mean number of contacts scale linearly with
population size. As such, this observation corroborates the
heuristic argument of Begon et al. [10] that the degree of
local heterogeneity in the contact structure is “orthogonal
to the distinction between density- and frequency-dependent
contact rates and transmission.”

The network models we present here are necessarily
simplistic in that they presume that epidemic dynamics
are fast relative to ecological dynamics, so we can ignore
births, nondisease mortality, and the formation of new
connections following node removal (i.e., in the event that
node removal is interpreted as mortality rather than lasting
immunity). In principle, these should not impact our general
observations providing that births and deaths are not biased
with respect to the connectivity of nodes, an assumption
implicit in the mean-field models. In practice, however, it
is likely that births and deaths are biased with respect to
network characteristics (e.g., [53]) or that connections are
dynamic (connections accrue or change as nodes age [54]).
Understanding these mechanisms that generate contact
processes is an important ecological challenge and the effi-
cient algorithms to incorporate these dynamics into model
representations remain an important technical challenge.

The density- and frequency-dependent, mean-field mod-
els make explicit assumptions about how the mean contact
rate should scale with population density (or size if area
is held constant as is the common assumption). As Begon
et al. [10] point out, the direct application of these models
across populations presents a challenge, as it requires the pre-
sumption that either area is comparable among populations
of different size, or that the relationship between density
and contact rate is consistent across populations. A variety
of more flexible mean-field models have been proposed
that allow for more intermediate, nonlinear relationships
between density and contact rate [11]. However, while
these intermediate relationships may provide better fit to
observed dynamics, they are difficult to interpret in terms of
explicit mechanisms, as there may be a range of candidate
explanations for the nonlinear relationship between density
and contacts [11].

Contact network models, while occasionally limiting in
their complexity, present a useful tool for understanding the
role of the social contact structure in generating observed
dynamics. The focus on explicit characteristics of the con-
tact structure provides a mechanistic explanation for the
resulting dynamics compared with the phenomenological
representations of contact rate assumed in the mean-field
models. Here, we have shown the flexibility of these models
to retain commonly observed within-population dynamics
(i.e., the decline in realized transmission due to contact
frailty) and a range of scaling patterns across population
sizes as a function of the relationship between the contact
distribution and the network size. We have presented only
relatively simple examples where the mean and variance of
the contact distribution scale with network size. However, it
is reasonable to presume that a variety of additional, higher-
order characteristics of contact networks (i.e., clustering,

assortativity) may also scale with population size or den-
sity. The challenges of projecting even simple mean-field
models across populations highlights the need for a greater
understanding of how the characteristics of contact network
correlate with more directly measureable metrics such as
population size and density in order to make the lessons from
contact network epidemiology predictive.

In conclusion, we must understand the local mixing
dynamics of the host population rather than assume an
implicit mixing structure defined by the pathogen in order
to make predictions about epidemic dynamics across scales.
Both experimental and theoretical work is needed to resolve
the uncertainty about the scaling of transmission with
population size and density. Experimentally, proper model
systems will permit exploration of the effects of population
size and density on mixing behavior and epidemic dynamics.
Critically, this may depend strongly on behavioral responses
to population size or density at the scale of individuals
(e.g., [28]) that give rise to important deviations from the
simple scaling models. Theoretically, method development
and application will allow the study of contact network
properties from field-sampled data on real populations.
Network models in physics and epidemiology have provided
great insights into the effect of heterogeneities and network
topology on epidemic dynamics; however, connecting these
insights to dynamics in real systems is challenging because of
the need for fully censused populations to recreate contact
networks and the assumption that network topology is
static (though see [55]). The development of statistical
methods to conduct inference on social network models
[56] may prove useful to understand network assembly rules
and for generating candidate networks for investigation of
epidemic dynamics through simulation; in particular, how
models of host movement and interaction among individuals
give rise to scaling rules—be they network properties or
mean-field approximations—for population mixing [57].
Overall, increasing the comprehension of host contact and
mixing dynamics—through experimental and theoretical
methods—will permit a more complete understanding of
epidemic dynamics.
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