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Partitioning Regulatory Mechanisms
of Within-Host Malaria Dynamics Using
the Effective Propagation Number
C. J. E. Metcalf,1* A. L. Graham,2 S. Huijben,3 V. C. Barclay,3 G. H. Long,4 B. T. Grenfell,2,5

A. F. Read,3,5 O. N. Bjørnstad3,5

Immune clearance and resource limitation (via red blood cell depletion) shape the peaks
and troughs of malaria parasitemia, which in turn affect disease severity and transmission.
Quantitatively partitioning the relative roles of these effects through time is challenging.
Using data from rodent malaria, we estimated the effective propagation number, which reflects
the relative importance of contrasting within-host control mechanisms through time and is
sensitive to the inoculating parasite dose. Our analysis showed that the capacity of innate
responses to restrict initial parasite growth saturates with parasite dose and that experimentally
enhanced innate immunity can affect parasite density indirectly via resource depletion. Such a
statistical approach offers a tool to improve targeting of drugs or vaccines for human therapy by
revealing the dynamics and interactions of within-host regulatory mechanisms.

In the bloodstream phase of many malaria
species, including those infecting humans,
infected red blood cells (RBCs) burst in

synchrony, releasing merozoites that must lo-
cate and infect a new RBC rapidly or else they
die (1). After 24 to 72 hours (depending on the
Plasmodium species), the next generation of mer-
ozoites bursts out. The cycle repeats itself until
the host dies or clears the infection (fig. S1).
Clearance of infection requires various complex
immunological and physiological processes, the
relative roles and timing of which have proven
difficult to quantify (2–4).

We propose a straightforward statistical ap-
proach to the problem. Building on the analogy
between cell-to-cell propagation and host-to-
host transmission (5), we borrow a model from
between-host disease population ecology (6) to
show how cell-to-cell transmission ofmalaria can
be estimated using standard experimental data
from rodent malaria (the modeling framework is
readily extended to suitably detailed data on hu-
man malaria; see below). If It is the number of
infected RBCs at time t, and St is the number of
uninfected RBCs, then the expected number
of infected RBCs observed at time t + 1 will be
E[It+1] = Pe,tStIt, where E denotes the expec-
tation and Pe,t is the effective propagation number
of the infection at time t. This number can be
thought of as the product of merozoite burst size,

contact rates between merozoites and uninfected
RBCs, and invasion probability given that a con-
tact has occurred. This quantity is analogous to
the transmission coefficient in canonical models
of between-host infection dynamics (7). The ef-
fective propagation number will vary through
time as a function of variation in the availability
of susceptible RBCs and efficacy of immune
mechanisms. Taking the log on both sides of the
relationship above, we can write

logðE½I tþ1�Þ ¼ logðPe,tÞ þ logðI tÞ þ logðStÞ

ð1Þ
Applying regression techniques toEq.1enables

estimation of Pe,t whenever time series of I and S
are available. While of critical interest in its own
right, Pe is also important because of its relation to
the within-host basic (R0) and time-varying
effective (Re) reproductive ratios. For blood-
phasemalaria, these two dimensionless quantities
are defined as the number of newly infected cells
that would arise from the merozoites that burst
from a single infected cell in an otherwise un-
infected bloodstream, and the average number of
new infected cells per infected cell in a previously
infected bloodstream, respectively (8). From our
estimates of Pe,t , we can directly quantify the ef-
fective reproductive ratio as Re,t = Pe,tSt. When
Re > 1, within-host parasite density will increase.
When Re < 1, parasite density will decrease. The
maximum upper bound on Re (and R0) is the
burst size, or number ofmerozoites emerging from
a single infected RBC, and is attained if the in-
vasion probability upon contact is 1 and if crowd-
ing and immune effects are absent.

A variety of immune and nonimmune factors
determine the magnitude of Pe and thus Re. The rel-
ative importance of these factorswill varyduring the

course of an infection because of time-dependent
variation in RBC availability/susceptibility and
the density of immune effectors (9, 10). A stan-
dard approach to quantifying this variation is to
test data against mathematical models that in-
corporate a series of differential equations chosen
to reflect processes involving explicitly defined
interacting populations of cells and effectors, as a
function of time and/or pathogen titer (3, 5, 11–18).
Focusing on Pe allows us to avoid many complex
unknowns required for this approach, not least the
arbitrary choice of specific functional forms for key
relationships such as immune killing (14, 19)
and the need to wrestle with parameter identifi-
ability issues (12, 18, 20).

To illustrate our data-driven approach, we used
data on the rodent malaria Plasmodium chabaudi
in laboratory mice. Infected RBCs burst every
24 hours in this species, releasing on average six
merozoites (21). Applying Eq. 1 therefore re-
quires daily estimates of numbers of infected and
uninfected RBCs.We analyzed experimental work
on CD4+ T cell–depleted mice (22), intact mice
infected at a range of starting parasite densities
(23), and mice treated with a neutralizing anti-
body that acts to up-regulate immunity (24), all
infected with the AS clone of P. chabaudi [see
figs. S2 to S4 and (25) for details]. Framing our
analysis in ecological terms (4, 14), we contrasted
bottom-up processes (analogous to resource avail-
ability for free-living organisms) with top-down
mechanisms (analogous to control by natural ene-
mies). There are twowidely recognized bottom-up
controls in malaria dynamics (3, 4, 11–13, 26–28):
the availability of susceptible cells, and age-
dependent variation in susceptibility of these cells.
For example, younger RBCs (reticulocytes, less
than 4 days old) are less susceptible to P. chabaudi
AS infection than are normocytes (29). Both
RBC availability and age distribution are shaped
by infected cell density (because parasites de-
stroy RBCs) and by RBC supply [erythropoiesis
and/or splenic retention of uninfected RBCs (30)].
Top-down regulatory mechanisms include in-
nate and adaptive immunity provided by effec-
tors ranging from macrophages to strain-specific
antibodies (9).

We first estimated the time-varying quantities
defined above. In both CD4+ Tcell–depleted and
intact mice, the effective propagation number
(Pe,t) fluctuated considerably over the course of
the infection (Fig. 1). This, combined with the
fluctuations in susceptible RBC supply, led to var-
iation in the effective reproductive ratio (Re,t),
typically ranging from 4 to 6 early in the infection
to less than 1 later on. The effect of treatments on
Pe,t and Re,t revealed three broad determinants of
within-host malaria dynamics in rodents, as de-
tailed below.

Dose dependence of early innate immunity.
Comparing the dynamics of Pe across inoculum
sizes in intact mice (Fig. 1) reveals a surprising
and conspicuous dose dependence in the early
propagation of the parasite:Higher starting numbers
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of parasites resulted in substantially higher ef-
fective propagation numbers early in infections
(Fig. 2). This curve resembles the type II func-
tional response classically described for predator-
prey systems: If the immune response has a
“predator” handling time associated with each
“prey” caught (i.e., infected RBCs or free mer-
ozoites killed) [e.g., (31)], the prey death rate per
capita will decline as a function of prey numbers.
This interpretation is also compatible with innate
immunity modeled as drawing on a limited pool
of effectors (32). Thus, early host defenses [active
within 1 to 4 days and thus likely to reflect an arm
of innate immunity (9)] can retain Re near 1 for
small numbers of parasites (Fig. 1), but if numbers
of parasites are above a threshold, this control is
overwhelmed. In fact, the upper limit of the range
of burst sizes reported for the AS clone (6, 21) is
close to the maximum estimate of Re observed at
high doses (Fig. 1), which suggests that for suf-
ficiently high inocula, there is negligible loss of
parasites to immunity in the early phase. More

effective control at low doses might contribute to
the dose dependence of pre-patency observed in
human malaria infections during neurosyphilis
treatments (33). However, detecting dose depen-
dence of innate immune efficacy in human hosts
is likely to be complicated, because evidence
from both neurosyphilis treatments (2, 3) and
vaccine trials (10) points to considerable patient-
to-patient variability in innate immunity.

Impact of RBC age structure. If adaptive im-
munity can be assumed to be very impaired in
CD4+ Tcell–depleted mice (9), temporal fluctua-
tions in Pe will primarily reflect the action of
RBC availability, age structure, and/or innate im-
munity. The age structure of RBCs can be in-
ferred via the change in RBC numbers due to
processes other than infection of individual cells
(25) (fig. S5). Major shifts toward younger age
classes occurred over the course of the infection:
from <5% reticulocytes in uninfected mice to as
much as 80% in CD4+ T cell–depleted mice and
40% in intact infected mice (Fig. 1; proportion

occupied by gray polygons increases with
time). This replacement of normocytes by retic-
ulocytes was associated with a reduction in Pe
reflecting reduced average susceptibility of
circulating RBCs.We can build on the regression
equation defined in Eq. 1 to fit two age-specific
propagation parameters (Pe1 and Pe2, which re-
spectively account for effective propagation in
normocytes and reticulocytes) to the time series
of immune-depleted mice (25). Incorporation of
these parameters significantly improved the fit to
the temporal pattern of effective propagation rel-
ative to a model lacking age structure (fig. S7)
(likelihood ratio = 11.53, P < 0.01, df = 1). This
provides direct empirical evidence of the impor-
tance of RBC age structure to control of malaria
parasites in immune-depleted mice. Indeed, the
joint effect of RBC depletion and skewed age
structure results in a factor of 3 reduction of the
effective reproductive ratio (table S1), which sug-
gests that the many host-dependent mechanisms
of RBC reduction that are evident in both rodent

Fig. 1. Within-host effective propagation. The red line is the estimate of
effective propagation for 5 or 10 intact AS-infected mice with different inocula
sizes (unboxed panels) and five CD4+ T cell–depleted AS-infected mice (boxed
panels). The size of the inoculum is indicated at the top of each column (101,
103, 105, and 106 CD4+ T cell–depleted mice inocula sizes are comparable to

the largest levels used in intact mice); SEs from the regression are shown as
dashed vertical lines. Gray polygons show mean approximate proportion of
RBCs aged 1 to 3 days, calculated from reconstructions of RBC change (right
axis). The bottom row shows the corresponding Re up to day 50 for intact mice;
Pe changes little over the later days.
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and human malaria (30) may reflect an evolu-
tionary adaptation.

Impact of adaptive immunity. Using the two
RBC age-specific parameters estimated from
immune-depleted mice (Pe1 and Pe2), we can pre-
dict the pattern of effective propagation through
time that would be observed if all fluctuations in
Pe,t were due to bottom-up controls only, and
compare this with the observed time series in
intact mice to reveal the relative importance of
top-down and bottom-up factors through time

(figs. S8 and S9). Our approach reveals that this
is also highly dependent on initial parasite dose.
For mice inoculated with high doses, dynamics
for the first ~10 days were adequately explained
by RBC availability and age structure, but after
that, the effective propagation number was con-
sistently and substantially overpredicted by the
bottom-up model (fig. S9). This indicates that po-
tent top-down controls are established after about
a week. Mice infected with low parasite density
had an additional early overprediction of Pe,t be-

cause the bottom-up only model does not capture
the ability of early–innate immunity to control
propagation from low densities (Fig. 2 and figs.
S8 and S9). We can extend the model to in-
corporate early immunity (Fig. 2) by defining
early parasite survival to be a function of parasite
density that increases toward a plateau, and fit-
ting this to time series of intact mice (25) (fig.
S10). A combined model of bottom-up and early
innate controls can precisely predict the early
propagation numbers and course of infection, but
not the later propagation numbers (fig. S9). The
failures of prediction from this simple model
reflect the action of adaptive immunity. Converse-
ly, successes of this restricted model highlight the
interval of time over which failure to account for
resource limitation as a mechanism of malaria
control could impair inference about immunity
(fig. S8).

The discrepancy between observed and pre-
dicted values of Pe allows us to calculate the
efficacy of immune clearance via the proportion
of infected cells pt that must be killed to obtain
the observed number of parasitized cells while
accounting for RBC limitation (25). To visualize
changes in immune efficacy (parasite kill rates),
we plotted the smoothed surface of this fraction
through time, ranking mice by early parasite den-
sity (Fig. 3A). Immune efficacy peaks around
0.85, indicating that at its maximum efficacy,
adaptive immunity removes on the order of 85%
of parasites per day, resulting in a factor of 13
reduction in the effective reproductive ratio
(table S1). From an applied point of view, this
quantification might represent a useful yardstick
against which the efficacy of immunity elicited
by candidate vaccines or new drugs could be mea-
sured. The peak efficacy was similar in all mice,
irrespective of inoculating dose, but the timing of
the peak varied. Mice receiving higher doses ex-
perienced an earlier peak in parasitemia (Fig. 3A,
dashed line) and an earlier increase in immune
efficacy (as early as day 8 versus as late as day 20
for the lowest dose; Fig. 3A). Declines in im-
mune efficacy occurred after initial parasitemia
was controlled, with kill rates approximately halved
(Fig. 3A). This decline—which might reflect
down-regulation of immunity (under host or par-
asite control), depletion of the immune effector
pool, and/or antigen escape—allowed the re-
emergence of parasitemia in some mice (fig. S3).
The pattern of decline was complex and dose-
dependent (Fig. 3A). Higher starting densities
resulted in a rapid dip in immune efficacy fol-
lowing the initial peak. Subsequently, in response
to recrudescence (fig. S3, peaking at around 15
days, fig. S11), immune efficacy increased and
then decayed again (around day 35). By contrast,
mice infected with intermediate starting densities
experienced slower declines in immunity. Feed-
backs inherent in activation of adaptive immunity
may partly underlie this variability (34, 35): If
conditions at the peak of infection are such that
few susceptible RBCs are available, control may
be achieved by relatively less sustained immune

Fig. 2.Decelerating con-
trol. Effective propaga-
tion over the first 2 to
4 days (with the last day
set when Pe,t starts to de-
cay sharply; see Fig. 1)
for four different start-
ing inoculation sizes: 101

in black (n = 10 mice,
3 days), 103 in red (n =
5 mice, 4 days), 105 in
green (n=5mice, 2 days),
106 in blue (n = 5 mice,
2 days). These results in-
dicate adecelerating func-
tion of density suggestive
of a handling-time effect
for innate immunity. Ver-
tical lines are SEs from
the regression defining
Pe,t; horizontal lines are
95% quantiles for abun-
dance of parasites observed on that day.

Fig. 3. (A and B) Visualizing efficacy of
immunity in (A) intact mice for different
starting inoculum sizes (y-axis labels),
and (B) intact mice and intact mice

treated with IL-10R, which up-regulates innate immunity (y-axis labels to the right). Surfaces show
smoothed proportion of infected cells killed, pt, against time in days (x axis) with mice ranked via their
early densities within each category (rows, y axis); dashed thick line indicates the timing of the first major
peak of infection; and for (A) the crosses indicate secondary peaks, generally following dips in immune
efficacy. In (A), higher early densities experience an earlier increase in mortality of infected cells, but this
effect decays, then increases, and finally dips again around day 35 concomitant with a resurgence of
parasites. In (B), mice treated with IL-10R experience an earlier peak in immune efficacy. However, treated
mice generally die by day 9.
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killing, with the result that immune memory is
retained less well (36) for higher inoculum sizes.

To further illustrate how the time series ap-
proach can provide new insights from manipula-
tive immunological experiments, we calculated
surfaces of immune efficacy for control mice and
for mice treated with antibodies to interleukin-10
receptor (anti–IL-10R) (Fig. 3B). Treated mice
experienced a slightly earlier increase in immune
efficacy, in keeping with the accelerated innate
response generated by blockade of the potent
modulatory cytokine IL-10 (24). This slight dif-
ference in the timing of peak immune efficacy
between anti–IL-10R–treated and untreated mice
resulted in rather different maximum parasite
densities (Fig. 4A). Two factors may explain this.
First, because malaria within-host kinetics are so
dynamic, a small impact at the right time may
have a large consequence several merozoite gen-
erations later. Second, anti–IL-10R–treated mice
experienced earlier anemia (Fig. 4A), perhaps
attributable to increased bystander killing, sup-
pression of erythropoiesis, and/or retention of
uninfected RBCs by the spleen [some of which
are likely repercussions of increased tumor ne-
crosis factor–a production (30)]. Consequently,
there was a decline in the effective reproductive
ratio in treated mice, beyond the reduction due to
direct killing of infected cells (Fig. 4). Therefore,
this immune manipulation generated an apparent
increase in immune efficacy (in the sense that the
effective propagation number was reduced) that
was mediated via a resource depletion mecha-
nism. Low levels of IL-10 have been implicated
in severe anemia in human malaria (37), which
suggests that similar mechanisms could be op-
erating. An intriguing corollary is that substantial
bystander killing [whereby more than four unin-
fected cells may be killed for every infected cell
killed during rodent malaria (4)], rather than be-
ing an unintended side effect of immune activity,
may in part be an evolutionary adaptation for
using top-down mechanisms to enhance bottom-
up controls.

Discussion. Antiparasite effects of RBC re-
source limitation (e.g., via suppression of eryth-
ropoiesis or by the action of protective RBC
polymorphisms that reduce susceptibility) are
indicated by a range of studies on human malaria
(38, 39). A key merit of the effective propagation
number is that it provides a straightforward way
of controlling for effects of target cell availability
on within-host replication, thus revealing the rel-
ative and absolute strength of mechanisms that
drive within-host dynamics (e.g., killing of in-
fected cells, or heterogeneities among target cells
in transmission characteristics) and their variation
through time. The method also yields a direct
quantification of fluctuations in the within-host
effective reproduction number Re, thus identify-
ing key points for interventions—for example,
when parasite effective reproduction is so low
that any additional challenge to growth may re-
sult in clearance of the infection (8), with po-
tential relevance for applications toward human

health. Finally, our application of the methodol-
ogy to the P. chabaudi case study shows that the
method can reveal previously overlooked aspects
of control in mouse malaria, producing new hy-
potheses for the regulation of human malaria.
Interestingly, the diminishing impact of innate
immunity with increased dose may be the se-
lective pressure responsible for the evolution of
the large burst size of liver schizonts (and, as a
consequence, the long incubation period in the
liver), which is compatible with estimates of 105

to 106 merozoites released after a single infective
bite (40), which is robustly over the threshold of
innate immune escape discovered here (Fig. 2).

Previous work on malaria has fitted more
mechanistically detailed dynamicmodels to time-
series data on uninfected and infected cells
(3, 4, 11–14, 26, 41). Our simpler statisticalmethod
confirms conclusions from this work [e.g., roles

for the age structure of RBCs (12, 13) and for the
clearance of uninfected RBCs (11)] but also iden-
tifies dynamical features not previously detected
(e.g., dose dependence in the impact of innate im-
munity; complex time dependence in the efficacy
of adaptive immunity). Our method also side-
steps much of the difficulty involved in fitting
such models and provides empirical insights into
the shapes that functional forms in more mech-
anistic models should reflect [such as the dose-
dependent saturation of the early innate control
(Fig. 2) or the response surface of adaptive im-
munity (Fig. 3)]. As shown (Fig. 3B and Fig. 4),
our approach enables detailed interpretations of
existing experimental data [e.g., time series follow-
ing knockdown of immune factors (42, 43), in-
duced erythropoiesis or blood transfusions (41, 44),
etc.]. Given time series of susceptible and in-
fected RBCs, estimates of time-varying effective

Fig. 4. (A and B) Top-down controls acting via bottom-up effects. Time series (×10−2 per ml) of parasites
(A) and RBCs (B) for mice treated with IL-10R (gray, n = 4) and controls (blue, n = 4). (C) Corresponding
estimates of the effective reproductive ratio Re on days 4 to 7 that would be observed in the absence of
immune killing of infected cells, obtained by combining RBC age-specific estimates of Pe obtained from
CD4+ T cell–depleted mice with the RBC dynamics and age structure indicated by these time series.
Dashed boxes in (A) and (B) show the time period plotted in (C). In IL-10R–treated mice, this predicted Re
drops precipitously as a result of RBC depletion alone (B); this anemia is not due to parasite levels, which
remain comparable in controls and treated mice (A). This indicates that immune-mediated killing of
uninfected RBCs is a key mechanism of control.
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propagation are directly accessible to anyone
with basic statistical knowledge. This should ul-
timately open the way for a complete character-
ization of the roles of direct and indirect top-down
and bottom-up mechanisms involved in the reg-
ulation of parasite densities (fig. S12 and table S1)
in the context of both single andmixed infections,
and how this in turn affects transmission and
disease severity.

The underlying process of bursting infected
RBCs and invasion of uninfected RBCs is com-
mon to blood-phase malaria across animal taxa.
The methods we introduce will consequently be
generally applicable. The strength of the mouse
data we have used is the finely resolvedmeasures
of uninfected and infected red blood cells. We are
unaware of any experimental time series in hu-
man patients in which these parameters were
directly measured, but our analyses suggest that
future longitudinal studies of individual patients
that undertake the simple assays required to di-
rectly assess RBC densities in addition to parasite
densities will lead to considerable insights into
the factors regulating human malaria.
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A Large and Persistent Carbon Sink
in the World’s Forests
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The terrestrial carbon sink has been large in recent decades, but its size and location remain
uncertain. Using forest inventory data and long-term ecosystem carbon studies, we estimate a
total forest sink of 2.4 T 0.4 petagrams of carbon per year (Pg C year–1) globally for 1990 to 2007.
We also estimate a source of 1.3 T 0.7 Pg C year–1 from tropical land-use change, consisting of a
gross tropical deforestation emission of 2.9 T 0.5 Pg C year–1 partially compensated by a carbon
sink in tropical forest regrowth of 1.6 T 0.5 Pg C year–1. Together, the fluxes comprise a net global
forest sink of 1.1 T 0.8 Pg C year–1, with tropical estimates having the largest uncertainties. Our total
forest sink estimate is equivalent in magnitude to the terrestrial sink deduced from fossil fuel
emissions and land-use change sources minus ocean and atmospheric sinks.

Forests have an important role in the global
carbon cycle and are valued globally for the
services they provide to society. International

negotiations to limit greenhouse gases require
an understanding of the current and potential
future role of forest C emissions and sequestra-

tion in both managed and unmanaged forests.
Estimates by the Intergovernmental Panel on Cli-
mate Change (IPCC) show that the net uptake by
terrestrial ecosystems ranges from less than 1.0
to as much as 2.6 Pg C year–1 for the 1990s (1).
More recent global C analyses have estimated a

terrestrial C sink in the range of 2.0 to 3.4 Pg C
year–1 on the basis of atmospheric CO2 obser-
vations and inverse modeling, as well as land
observations (2–4). Because of this uncertainty
and the possible change in magnitude over time,
constraining these estimates is critically impor-
tant to support future climate mitigation actions.
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