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Incidence of whooping cough, unlike many other childhood dis-
eases for which there is an efficacious vaccine, has been increasing
over the past twenty years despite high levels of vaccine coverage.
Its reemergence has been particularly noticeable among teenagers
and adults. Many hypotheses have been put forward to explain
these two patterns, but parsimonious reconciliation of clinical data
on the limited duration of immunity with both pre- and postvac-
cine era age-specific incidence remains a challenge. We consider
the immunologically relevant, yet epidemiologically largely ne-
glected, possibility that a primed immune system can respond to
a lower dose of antigen than a naive one. We hypothesize that
during the prevaccine era teenagers’ and adults’ primed immunity
was frequently boosted by reexposure, so maintaining herd immu-
nity in the face of potentially eroding individual immunity. In con-
trast, low pathogen circulation in the current era, except during
epidemic outbreaks, allows immunity to be lost before reexposure
occurs. We develop and analyze an age-structured model that
encapsulates this hypothesis. We find that immune boosting must
be more easily triggered than primary infection to account for
age-incidence data. We make age-specific and dynamical predic-
tions through bifurcation analysis and simulation. The boosting
model proposed here parsimoniously captures four key features
of pertussis data from highly vaccinated countries: (i) the shift in
age-specific incidence, (ii) reemergencewith high vaccine coverage,
(iii) the possibility for cyclic dynamics in the pre- and postvac-
cine eras, and (iv) the apparent shift from susceptible-infectious-
recovered (SIR)-like to susceptible-infectious-recovered-susceptible
(SIRS)-like phenomenology of infection and immunity to Bordetella
pertussis.

Whooping cough was historically viewed as an acute, immu-
nizing disease (1). As with many of the other classic child-

hood infections, the development of candidate vaccines was early
and promising. Within three decades of the isolation of the domi-
nant etiological agent, Bordetella pertussis, an international effort
produced a whole-cell vaccine that could successfully prevent
large-scale outbreaks (2, 3). In the United States, for the first
forty years after the introduction of the vaccine, whooping cough
incidence steadily declined until, by the 1970s, it was all but
eradicated (4). Since the 1980s, there has been an increase in
whooping cough cases in teenagers and adults, even among
those previously vaccinated, with a concurrent unforeseen rise
in incidence (5, 6) (Fig. 1). The US patterns are mirrored in most
other countries for which control through mass-vaccination had
initially appeared to be very successful, including Canada, most
European countries, Australia, and Taiwan (7–12). The epide-
miological patterns differ in low vaccine uptake regions, such as
Africa and South East Asia where disease burden remains high
(13, 14). One estimate suggests that these areas each experience
over 12 million pertussis cases and there are 170,000 deaths
due to pertussis in Africa alone each year (15). The recent ree-
mergence in highly vaccinated regions is evidence that vaccine-
induced immunity is not as protective as had been hoped.
Somehow, herd-immunity has steadily eroded during the past
three decades despite continuous immunization efforts. Some

public health agencies are introducing a teenage booster vaccine
in an effort to restore population-level immunity (16). This is a
new strategy that has only been implemented in a few regions
and it is important to understand how the underlying biology
and ecology of pertussis may impact the success of this booster
vaccination campaign (17).

Three broad classes of hypothesis have been put forward to
explain the shifts in total and age-specific incidence. (i) Better
diagnostic techniques and increased awareness in the medical
community of the possibility of infections of B. pertussis in adults
have led to a rise in diagnoses but not true disease incidence.
However, the frequent, pronounced, and highly symptomatic
outbreaks within high schools over the past two decades have
established this phenomenon as a change in infection patterns,
not merely diagnostics (5). (ii) Another hypothesis is that the
changes in incidence are caused by antigenic evolution of B. per-
tussis away from the original vaccine-targeted strain (18, 19). The
evidence for this is inconclusive, with one study finding that
B. pertussis has not exhibited accelerated evolutionary rates that
would be indicative of positive selection (20) and others finding
that there is evidence of high levels of polymorphism in antigenic
sites, suggestive of positive selection driven by interactions with
host immunity (18). Whereas vaccine-driven evolution may help
to explain the increase in total incidence, it can not explain the
shift in age-specific incidence (Fig. 1B). (iii) A third class of
explanations involves changing population-level immunity, via
some mixture of loss of immunity and reexposure (4, 21).

There is ample evidence that immunity to whooping cough
wanes after both vaccination and natural infection (22, 23, 24).
Serological surveys suggest that people who are reexposed to
B. pertussis can exhibit boosting of antibody titers, without
developing clinical symptoms (9, 25–27). In addition, studies on
vaccine efficacy have shown that the pertussis booster vaccine
(Adacel) elicits a significantly stronger immune response than
the primary vaccine (Daptacel) despite containing five times less
pertussis toxin (28). This is to be expected because immune mem-
ory cells respond more quickly and to lower doses of antigen
when primed than when naive (29, 30). Recent advances in ima-
ging technologies have made it possible to observe the kinetics
of primed, tolerized and naive T cells in response to antigenic
stimulation in vivo and demonstrated that primed T cells are
more efficient at identifying and responding to antigen presenting
cells than naive ones (31, 32). This suggests that a brief exposure
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to a small amount of antigen can restimulate B. pertussis immu-
nity, extending its efficacy without causing symptomatic or trans-
missible infection. We herein refer to this phenomenon as
“immune boosting.” Previous work has explored the effects of
immune boosting on disease dynamics in general, and pertussis
in particular (33, 34). However, in previous models of disease
transmission, this phenomenon has generally been presumed
to be no more likely than primary infection (21, 35–37). The
model analyzed here incorporates immunological evidence on
the sensitivity and speed of primed B and T cells by allowing
individuals who are reexposed to B. pertussis antigens to generate
an immune response to a more casual contact than would be
necessary to cause a primary infection. This allows our model to
capture the age-specific incidence in both the pre- and postvac-
cine eras using estimates of the immune duration that are in
accord with clinical evidence.

There have been many models that incorporate loss of immu-
nity and reexposure in an attempt to understand the pre- or post-
vaccine era data. One model has predicted the recent rise in cases
as a consequence of a contrast between permanent infection-
induced immunity and shorter-lived vaccine-induced immunity
(4). However, it is becoming increasingly clear that immunity
to both natural infection and vaccination wanes with time (22).
A second model allowed for some loss of infection-induced
immunity, but found that it would have to last for more than
thirty years on average to explain the observed dynamical pat-
terns (35). A third model explained the shift in age distribution
as a result of loss of immunity combined with the probability of
being observed clinically as a function of time since last exposure
(21). All of these models share one common feature: they assume
that, given equal levels of contact with the pathogen, secondary
exposure is less likely to boost immunity than primary exposure
is to generate symptomatic infection and an immune response.
In this paper we show that loss of immunity and high rates of

immune boosting when circulation is high, consistent with immu-
nological evidence on the effects of priming on immune response
kinetics (29, 30), can account for the observed epidemic reemer-
gence and age shift. Additionally we predict the outcome of
instituting high coverage of a teenage booster vaccine, which has
recently been recommended in a number of regions, including
Massachusetts (16, 38).

We develop and analyze a susceptible-infectious-recovered-
susceptible (SIRS)-type model with immune boosting in which
antigenic stimulation before immunity has been fully lost can
lead to increased immunity without symptomatic or transmissible
infection, and compare its predictions to historical and recent
age-incidence data from Massachusetts. Our model predicts
repeated boosting after priming by initial infection in the prevac-
cine era, thereby reducing adolescent and adult cases and gener-
ating the observed shift in age distribution and the pathogen’s
epidemic reemergence with increasing vaccine coverage in the
decades after the vaccine’s introduction. The model is moreover
a parsimonious explanation of the increasing apparency of wan-
ing immunity as vaccine coverage causes a shift from a more
susceptible-infectious-recovered (SIR)-like to more SIRS-like
system. Additionally, the model allows for a suite of complex dy-
namical behaviors even in the prevaccine era, a period for which
preexisting models do not parsimoniously explain the dynamics
observed in pertussis globally.

1. Results
1.1. The Model. Whooping cough incidence in Massachusetts
began to decline after the introduction of the whole-cell pertussis
vaccine in the 1930s and steeply declined after the inception of
routine vaccination in 1950 (Fig. 1A). As in other high-vaccine
coverage populations, however, the disease made a surprise
reemergence in the 1980s. The reemergence was accompanied
by a dramatic shift in age-specific incidence, with the majority
of cases moving from young children to teenagers resulting in
a U-shaped age-incidence curve (Fig. 1B).

To understand the reemergence and age shift we developed
an SIRS-type model that allows for boosting of immunity propor-
tional to, and potentially greater than, the force of infection
(Fig. 2). To accommodate the notion of immune boosting we
divided recovered individuals into two classes: R (recovered)
andW (waning). R contains recently recovered or boosted, highly
immune individuals.W contains individuals who are still immune
to infection but can have their immunity boosted upon reexpo-
sure. In the absence of exposure, people in W will eventually
lose immunity altogether and return to the susceptible class.
When the force of infection is high, boosting is frequent and
recovered individuals rarely revert to the susceptible class. The
mathematical model derivation is as follows. The force of infec-
tion (i.e., the per susceptible rate of infection), λ, is given by

λ ¼ β∑
Na

a¼1

Ia; [1]

A

B
Fig. 1. (A) The number of reported pertussis cases in Massachusetts. The
main plot shows cases aggregated yearly from 1910 to 2008. (Inset) Cases
aggregated monthly from 1990 to 2008. (B) The distribution of ages of
reported infections in Massachusetts. (Left Cases identified between 1918
and 1921, with cases aggregated into twelve age groups (year long from
0 to 10 years of age, then 10–15, and >15). (Right) Cases identified between
January 1988 and December 2008, with all cases aggregated into year-long
age intervals.

Fig. 2. A flow-diagram of the basic model. Individuals in class R (recovered)
are resistant to infection and immune boosting. Those in W (waning) are
resistant to infection but their immunity can be boosted at a rate determined
by the force of infection, λ, and the value of the boosting coefficient, κ. The
duration of immunity to infection is determined by the length of time spent
in the circled loop, which depends on the relative magnitude of the compet-
ing rates κλ and σ.
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where a is the age group, Na is the total number of age classes
tracked, Ia is the proportion infected in each age group, and β is
the transmission coefficient. The proportion of the population
susceptible to boosting (ba) and receiving a dose of vaccine
(da) at any given age are

ba ¼ ∑
n

i¼1

Wa;i; and [2]

da ¼ αa−1

�
Sa−1 þ∑

n

i¼1

Wa−1;i þ Ra−1;i

�
[3]

respectively. In the above equations, i is the stage of the gamma-
chain and n is the number of gamma stages, allowing for nonex-
ponential waiting times between events (e.g., ref. 39). When
n ¼ 1 the model collapses to the case of exponentially distributed
waiting times between classes. For simplicity all figures in the
main text except 3a and 5 show results from the exponential
model, but we show in the supplementary materials that all
conclusions remain for the more realistic but less tractable non-
exponential model. The differential equations for the first age
class, a ¼ 1 (corresponding to 0–0.5 years), which includes births
into the population are:

dS1
dt

¼ μð1 − ν1Þ − ðα1 þ μþ λÞS1 þ 2σW 1;n [4]

dI1
dt

¼ λS1 − ðα1 þ μþ γÞI1 [5]

dR1;1

dt
¼ κλb1 þ γI1 þ μν1 − ðα1 þ μþ 2σÞR1;1 [6]

dW 1;1

dt
¼ 2σR1;n − ðα1 þ μþ 2σ þ κλÞW 1;1 [7]

dR1;i

dt
¼ 2σR1;i−1 − ðα1 þ μþ 2σÞR1;i [8]

dW 1;i

dt
¼ 2σW 1;i−1 − ðα1 þ μþ 2σ þ κλÞW 1;i; [9]

where μ is the birth (and death) rate, σ is the rate of loss of
immunity in the absence of boosting, γ is the recovery rate, κ
is the boosting coefficient, and ν are the age-specific vaccination
probabilities. We use half-year age classes because the high-risk
age group is the 0–6 mo old prevaccination infants. For all other
age classes, a ¼ 2;3;4;:::;Na, the equations are given in the SI Text.

Simulation and analysis of the model shows that weak boosting
[κ ≤ 1 (i.e., boosting requires comparable dose as primary
infection)], would result in (i) a short duration of immunity and
many teenage and adult cases even in the prevaccine era, and
(ii) a monotonic decline in total incidence as vaccine coverage
(pvacc) increases (Fig. 3). Neither of these patterns are consistent
with the data. In contrast, for moderate boosting [κ ≫ 1 (i.e.,
boosting requires substantially lower exposure than infection)]
the model predicts both the observed shift in age-specific inci-
dence (Fig. 3 A and C) and a threshold vaccine coverage (pvacc),
above which increasing coverage leads to epidemic outbreaks
and increased incidence (Fig. 3B). This suggests the possibility
of vaccine failure in the presence of high vaccine coverage
(pvacc > 1 − 1∕R0) even in the absence of vaccine-driven antigenic
evolution.

1.2. Model Parametrization. We parametrized the model using
simple or commonly cited parameter values for everything but
κ, the boosting coefficient, which we estimated from the prevac-
cine era data (see SI Text). The recovery rate, γ, was fixed at
17 y−1, corresponding to a mean infectious period of 21 d (21,
35, 40–42). The transmission parameter, β, is not well identified
(see discussion in ref. 44). We chose a value that corresponds to a

A

C

B

Fig. 3. (A) The model-predicted age distribution at differ-
ent levels of vaccine coverage for κ ¼ 0.5 and κ ¼ 20 and
n ¼ 10. The y-axes indicate the proportion of the total popu-
lation infected at age a, averaged over time. (Top) Predicted
age distributions for κ ¼ 0.5, with pvacc ¼ 0 (black) or pvacc ¼
0.8 (red). The only age group whose incidence significantly
changes from the pre- to postvaccine era is young children
who are directly protected by the vaccine. (Bottom) The
same results, but for κ ¼ 20. Vaccination results in a decrease
in infant cases and an increase in teenage and adult cases,
consistent with the data. (B) Mean asymptotic incidence as
vaccine coverage increases for κ ¼ 0.5 (red), κ ¼ 20 (black),
and κ ¼ 5;000 (green). For low κ disease incidence monoto-
nically decreases as vaccine coverage increases. For the mod-
erate value of κ incidence decreases until a critical vaccine
coverage threshold (pvacc ≈ 0.55 with these parameters), at
which point it begins increasing again, thereby predicting
failure to control disease in the presence of high vaccine cov-
erage. For extremely high κ, herd immunity is restored and
incidence decreases monotonically again. (C) Contour plot of
the ratio of secondary to primary cases across vaccine cover-
age (pvacc) and varying values of the boosting coefficient (κ).
The area of parameter space in which there are more pri-
mary than secondary cases is in shades of blue. Areas in
which more secondary cases are expected are in shades of
purple to red. For low values of κ, the model predicts more
secondary than primary cases even in the absence of vaccine
coverage (purple in the bottom left corner). For values of κ >
1 the model allows for predominantly primary cases in the
prevaccine era (blue on the left), shifting to predominantly
secondary cases with higher vaccine coverage (purples and
reds on the right). For areas of parameter space in which
there are coexisting cyclic and equilibrial attractors, the
results from the fluctuating regimes are shown.
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basic reproductive ratio of 15, which is in the middle of the
estimated range (43). The loss of immunity rate, σ, was fixed
at 1∕10 y−1, corresponding to a mean duration of immunity of
10 years. This rate is near the middle of recent estimates for
natural infection-induced immunity, and on the high end for vac-
cine-induced immunity (22) (see Fig. S1 for bifurcation diagram
with σ ¼ 1∕20). The birth and death rate, μ, was fixed at 1∕50 y−1
(see Fig. S2 for bifurcation diagram at other values of μ). For
simplicity of analysis, we fixed the population size at 1 so we
work on proportions rather than absolute numbers. For the age-
specific model, we incorporated a few additional parameters that
allowed us to vaccinate in the model at the age classes at which
vaccines are actually given in Massachusetts: 0.5, 2, and 5 years
of age.

Using the age-specific incidence in the prevaccine era and
profile likelihood (45), we estimated a lower bound on the
99% confidence interval for κ at around 10. We assumed that
mean duration of immunity is at most 20 years (data from ref. 1
and Fig. S3). See SI Text for assumptions and details of the fitting
procedure. For values of κ less than 10, the model predicts that
immunity would be lost before most people die and therefore
would result in more adult cases in the prevaccine era than
are consistent with the data. The profile likelihood is flat for large
κ: there is no upper bound to the confidence interval. We chose
to use a value of κ ¼ 20 for most of the simulations, though we
have explored the system’s behavior over a wide range of κ values.
Table 1 shows all parameters.

1.3. Model Predictions. We examined the effects of increasing
vaccine coverage on the predicted age distribution of cases over
a range of κ. Because the equilibrium level of infection is pre-
dicted to be unstable in the current era (see dynamics below),
we could not analytically compute the distribution of ages at
infection, and instead simulated from the model. Vaccination
was modeled according to the protocol in Massachusetts, which
recommends that the first three doses be administered by 6 mo
of age, followed by boosters at the ages of two and five years.

For low values of κ, the model predicts (i) extremely high in-
cidence in all age groups with and without vaccination, (ii) an
equally large number of teenage and adult cases in the pre- and
postvaccine eras, and (iii) a high ratio of infant to teenage cases in
the current era due to extremely high levels of infection in the
whole population (Fig. 3A). For extremely high values of κ, herd
immunity is maintained and the model again predicts monotoni-
cally decreasing incidence with increasing vaccine coverage
(Fig. 3B). However, for moderately high κ the model parsimo-
niously predicts the observed shifts in age-specific incidence from
the pre- to postvaccine eras; (i) the emergence of a second mode
in teenagers, (ii) a decrease in infant cases, and (iii) an increase in
teenage and adult cases (Fig. 3 A and C). The shift from predo-
minantly primary to predominantly secondary cases is a direct
result of the change in dynamics, and is expected to occur at some
time after vaccine coverage is above its threshold level and the
system has entered a cyclic regime (Fig. 3C). Here, we define
“secondary cases” as cases in individuals who have previously
been immune, whether naturally or through vaccination.

The threshold vaccine coverage that predicts entrance into the
cyclic regime leads to a concurrent rise in total yearly incidence
(Fig. 3B), suggesting a possible mechanism for the recent resur-
gence of pertussis in highly vaccinated populations such as Mas-
sachusetts. The precise timing of the shift is unpredictable
because there is a period of increasing vaccine coverage during
which the low-incidence equilibrium and high-amplitude cycles
coexist (Fig. 4A).

Additionally, we examined the impact of 80% coverage with a
teenage booster vaccine on incidence and age distribution of per-
tussis cases. The model predicts that the booster would have a
moderate effect on total incidence, reducing it by approximately

14%. Most of this reduction would be due to direct protection for
people between the ages of approximately 15 and 25 (Fig. 5),
which could help to prevent outbreaks in high schools. However,
the model predicts only a modest reduction of cases in infants and
most adults of parenting age in developed countries, who are
thought to be the main reservoir for infant pertussis. Therefore,
whereas a teenage booster campaign could have a significant ben-
efit for preventing outbreaks in high schools, cocooning infants by
vaccinating family members may be a better use of the pertussis
booster vaccine in terms of protecting the highest-risk age group.

1.4. Dynamical Predictions: From SIR to SIRS-Like Behavior. Pertussis
dynamics are unusual in that their regime is not predictable based
on demographic characteristics, such as birth rate or vaccine cov-
erage, yet when multiannual cycles are present they consistently
have a three to four year period (46). The boosting model pro-
posed here suggests the existence and duration of cycles in per-
tussis dynamics are due in large part to the recruitment of
susceptible individuals through loss of immunity. It additionally
allows for a wide range of dynamical behaviors (Fig. 4), including
the aforementioned coexisting equilibrial and cyclic attractors.
This may help to explain the variable dynamics exhibited by per-
tussis.

For extreme values of κ (0 or∞), the model collapses to a sim-
ple SIRS or SIR model respectively. In the absence of boosting
(κ ¼ 0), the model exhibits SIRS dynamics with a single stable
fixed-point attractor. However, for κ > 0 more complex dynami-
cal regimes are present. A supercritical Hopf bifurcation exists
at κHopf and produces limit cycles across all levels of vaccine cov-
erage for low but appreciable levels of boosting, with the cycle
amplitude increasing initially in proportion to ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ − κHopf
p . In

addition, a subcritical Hopf bifurcation exists such that for higher
values of κ, low birth rates, and low vaccine coverage, large-
amplitude stable limit cycles coexist with a fixed-point attractor
(Fig. 4A). As vaccine coverage ramps up (i.e., with the advent of

A

C D

B

Fig. 4. (A) Curves indicating the location of bifurcation: supercritical Hopf
(dashed line), subcritical Hopf (solid line), and fold of limit cycles (dotted line).
(B) Simulated trajectories in each dynamical regimewith κ set to 20, and three
vaccine coverages. (Top) Coexisting cycle and equilibrium. A sample trajec-
tory from the region with only a stable equilibrium is shown in the middle,
and only a limit cycle on the bottom. (C) One-dimensional bifurcation
diagram over pvacc. The maximum and minimum infected proportions of
the population are shown from simulations over increasing and decreasing
vaccine coverage, thereby capturing both attractors in the area in which they
coexist (0.4≲ pvacc ≲ 0.5). (D) Same as (C) but varying κ instead of pvacc.
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mass vaccination), the fixed point loses stability, and only large-
amplitude multiannual cycles are present. With higher κ still, the
large-amplitude limit cycle loses stability via a saddle node bifur-
cation (or folding) of limit cycles and the dynamics become
similar to those of a simple SIR model—a fixed-point attractor
reached through damped oscillations. The specific locations of
these bifurcations are sensitive not only to birth rate and vaccine
coverage, which can be well identified by data, but also the
transmission rate, β, each of which shifts and stretches the Hopf
bifurcation along the pvacc-axis (analogous to ref. 47; Fig. 4).

2. Discussion
The severity, prevalence, complexity, and recent reemergence
of pertussis has sparked much scientific inquiry. Explanations
have been proposed for various aspects of its dynamics and age-
structure in the pre- and postvaccine eras: stochastic effects (48),
disease severity as a function of time since vaccination (21, 49),
and different distributions of waiting times (36) to name a few.
Each of these considerations has helped to explain certain aspects
of pertussis dynamics: dynamic variability in the prevaccine era,
the change in age distribution with its reemergence, and its cycli-
city, respectively. However none of these can account for all the
complex facets of pertussis epidemiology. Despite the fact that
immunologists and vaccine manufacturers have long been aware
that there are differences between the kinetics of initial and
primed immune responses, population-level models have gener-
ally assumed that susceptibility to boosting, as well as sympto-
matic infection, decreases after initial exposure.

The boosting model proposed here parsimoniously captures
three key features of the pertussis data from highly vaccinated
countries despite the fact that it is deterministic and autonomous,
and assumes homogeneous mixing and no observation bias. It
provides a potential mechanism for the shift in age-specific inci-
dence, reemergence with high vaccine coverage, and dynamic

variability. The key element that allows this model to produce
all three patterns is the simple immunological consideration that
a primed immune system can respond to a lower dose of antigen
than a naive one (κ > 1). Immunological priming is a general
phenomenon in vertebrate immune systems and is neither limited
to human hosts nor Bordetella pathogens.

There are, of course, many factors we did not consider, which
certainly impact pertussis epidemiology and may improve the
quantitative agreement of model and data. In particular, the sim-
ple model presented here does not accurately predict the relative
heights of the observed infant and teen modes. It is likely that
age-specific transmission rates, with assortative teenage mixing
and disassortative infant mixing, will heighten the teenage peak
and decrease the number of cases in older adults and infants.
These mixing patterns will also have an effect on the outcome
of a teenage booster campaign. On the one hand, the booster
will remove much of the transmission from the high-contact rate
teenage group; on the other hand it may push the outbreaks
farther toward parenting age, which has been identified as the
main source for the severe infant pertussis cases (38, 50, 51). In
addition, there is almost certainly age-specific bias in reporting
rates, with adults generally being underdiagnosed and often only
getting tested if a child with whom they had contact was diag-
nosed (52).

These complexities notwithstanding, our estimate of κ gives
four insights into both the ease with which pertussis immunity
may be boosted and the potential population-level mechanisms
of observed disease dynamics. First, our range for the boosting
coefficient, κ > 10, implies that the probability of a partially
recovered person’s immunity being boosted is much greater
than that of a susceptible becoming infected, in accord with
experimental immunological studies on immune priming. Sec-
ond, boosting is predicted to have been common in the prevac-
cine era when there was a high force of infection, and may have
been the mechanism responsible for the very low adult incidence.
Third, pertussis reemergence in areas with good vaccine policy,
such as Massachusetts, is predicted to have been caused by the
crossing of a threshold in vaccine coverage, above which the force
of infection is low most of the time, resulting in low boosting rates
and relatively rapid loss of immunity, thus giving rise to recurrent
epidemic outbreaks. Fourth, this model suggests the existence
and periodicity of epidemic pertussis outbreaks may be critically
shaped by loss and boosting of immunity.

3. Materials and Methods
3.1. Ethics Statement. The Biomedical Institutional Review Board at Penn State
University reviewed and approved our proposal for use of human partici-
pants in our research. Because we never had access to names or other
uniquely identifying information associated with the data, informed consent
was not required.

3.2. The Data. The data from the current era included all 16,620 clinical
B. pertussis cases in Massachusetts between 1988 and 2008 (Fig. 1B). The data
were collected and maintained by the Massachusetts Virtual Epidemiological
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Fig. 5. Effect of 80% coverage with a teenage booster vaccine given at age
15. The arrows indicate ages at which vaccination can occur (0.5, 2, 5, and
15 years). The white bars show the age distribution without the booster dose
at 15 years; the black bars show the distribution with the booster. The y-axis
is normalized by the total number of cases in the no-booster regime.
Simulations carried out with n ¼ 10.

Table 1. Parameter values, corresponding to elements presented in Fig. 2 and section 1.1

Parameter Biological meaning Default value

β Transmission coefficient 260
μ Birth and death rate 1∕50
σ Loss of immunity rate 1∕10
γ Recovery rate 17
κ Boosting coefficient 20
α Aging rates αa ¼ 2 for a ≠ Na; αa ¼ 0 for a ¼ Na

ν Vaccination probabilities νy ¼ 0.8 for y ¼ 0.5;2;5 yrs; νy ¼ 0 otherwise
Na Number of age classes tracked 50 (corresponds to 25 years)
n Gamma shape parameter 1

All rates have units of y−1.
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Network and provided by the Massachusetts Department of Public Health.
The data from the prevaccine era were taken from ref. 1.

3.3. The Model. In the absence of vaccination, the model predicted stable,
equilibrial dynamics, so the age distribution could be computed analytically.
However, to calculate age-specific incidence in the cyclic regime, we
simulated the age-structured ordinary differential equation model from
which we could track the ages at infection during dynamic simulations.
The parameters were held constant at the values given in Table 1 unless
noted otherwise in the text.

The non-age-specified model is a special case of the age-structuredmodel,
with Na ¼ 1 and α1 ¼ 0. In this simplified version, vaccination is modeled as
a proportion of births, pvacc, moving directly to the recovered class. We
simulated from this simplified model to generate Figs. 3 B and C and 4 B,

C, and D, and analyzed it to generate Fig. 4A. We additionally showed that
including n > 1, thereby allowing for a more normal distribution of durations
of immunity as was used to generate Figs. 3A and 5, results in qualitatively
the same bifurcation structure (Fig. S4). More details on the model are
available in the SI Text.
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