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Abstract

Background: Feline immunodeficiency virus (FIV) and human immunodeficiency virus (HIV) are recently identified
lentiviruses that cause progressive immune decline and ultimately death in infected cats and humans. It is of great interest
to understand how to prevent immune system collapse caused by these lentiviruses. We recently described that disease
caused by a virulent FIV strain in cats can be attenuated if animals are first infected with a feline immunodeficiency virus
derived from a wild cougar. The detailed temporal tracking of cat immunological parameters in response to two viral
infections resulted in high-dimensional datasets containing variables that exhibit strong co-variation. Initial analyses of
these complex data using univariate statistical techniques did not account for interactions among immunological response
variables and therefore potentially obscured significant effects between infection state and immunological parameters.

Methodology and Principal Findings: Here, we apply a suite of multivariate statistical tools, including Principal Component
Analysis, MANOVA and Linear Discriminant Analysis, to temporal immunological data resulting from FIV superinfection in
domestic cats. We investigated the co-variation among immunological responses, the differences in immune parameters
among four groups of five cats each (uninfected, single and dual infected animals), and the ‘‘immune profiles’’ that
discriminate among them over the first four weeks following superinfection. Dual infected cats mount an immune response
by 24 days post superinfection that is characterized by elevated levels of CD8 and CD25 cells and increased expression of IL4
and IFNc, and FAS. This profile discriminates dual infected cats from cats infected with FIV alone, which show high IL-10 and
lower numbers of CD8 and CD25 cells.

Conclusions: Multivariate statistical analyses demonstrate both the dynamic nature of the immune response to FIV single
and dual infection and the development of a unique immunological profile in dual infected cats, which are protected from
immune decline.
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Introduction

Infections with both human and feline immunodeficiency

viruses cause progressive deterioration of immune responses and

are characterized by decline of CD4 cells. Although circulating

CD4 T cell count is an excellent indicator of disease progression,

the mechanisms involved with control of HIV and FIV and

maintenance of immunological competency are still under active

investigation. In part, this is because host and virus factors that

affect disease outcome are complex and change over time, which

makes it difficult to identify specific parameters responsible for

immunological health in infected individuals. However, there are

several lines of evidence that suggest protection from the

pathogenic consequences of HIV-1, SIV or FIV is achievable.

First, there are intriguing reports that the asymptomatic period of

HIV-1 infected persons may be prolonged in individuals

concurrently infected with distantly related HIV-2 [1]. Second,

the most effective lentivirus vaccine trial to date are with modified

live viruses in the rhesus macaque model [2]. Last, primary

infection of cats with FIV derived from naturally infected wild

cougars also confers protection against disease caused by virulent

domestic cat FIV [3,4]. Significantly, in the SIV/ macaque

experimental model and the natural FIV cat system, protection

can occur without clear indicators of, or correlation with, specific

anti-viral responses [3,5,6]. Although preventing infection is a

principal goal, understanding how a primary infection with an
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attenuated or genetically distant virus can ameliorate the

pathological consequences of a more virulent virus would have

significant impact on therapeutic strategies.

FIV infection of cats provides an important animal model to

address this significant question because cats are the only hosts

that develop an immunodeficiency syndrome from a natural

lentivirus infection that can be used for experimental studies.

Previous studies have established that a primary infection with

cougar-derived strain PLV-1695 (PLV hereafter) protects cats

from CD4 decline caused by subsequent infection with a virulent

feline immunodeficiency virus (FIVfca) strain (FIVC36; FIVC

hereafter) [3]. Both experimental and natural infections of cats

with FIVC lead to a fatal immunodeficiency syndrome [7] similar

to that observed in humans infected with HIV-1 [8,9]. PLV-

infected cats develop low level viremia after an initial peak of virus

replication [10,11] but there are no clinical manifestations of PLV

infection in domestic cats or in the natural cougar host [12–14].

Though primary PLV infection did not elicit antibody or cellular

adaptive responses that provided protection to FIVC infection, of

importance, CD4 cell depletion was abrogated in dual, but not

single, FIVC infection [3,11]. Initial analyses of a complex data set

comprised of relevant immune soluble and cellular factors

indicated that IFNc differed significantly among cats with single

and dual infections at some time points. However, no other clear

association of immune parameters with viral infection status was

detectable using univariate statistical methods [3].

We undertook the present study because, despite the broad

recognition of the dynamic and inherently multivariate nature of

the immune response, immunological studies often resort to simple

univariate statistical techniques (such as t-tests or analysis of

variance) applied separately to each response parameter in the

experimental data [15]. Such analysis may obscure, or fail to

reveal, important features of the data. A rich set of multivariate

analysis methods exists in the statistical literature and they are

frequently applied in other fields (e.g. ecology or environmental

sciences) to investigate complex systems (e.g. comprising individ-

uals or molecules with overlapping functions, amplifying down-

stream effects of small perturbations, etc.). Indeed, greater insight

into the immune response is reached where appropriate statistical

analyses are employed [16–19].

It is of great therapeutic importance to understand the immune

environment that is associated with disease attenuation in chronic

lentivirus infections. Thus, we conducted a multivariate analysis on

the measured immune parameters collected during the first four

weeks following inoculation with virulent FIVC into naı̈ve and PLV

infected animals. The clinical parameters of this study, outlined

briefly here, are reported in detail in TerWee et al. [3]. Our aim in

the present analysis was to ascertain whether the primary immune

response to FIVC was affected by the presence of PLV using a suite

of multivariate statistical methods that are suitable to explore data

for typical experimental infection studies; those with small sample

size, missing values, and co-variation among measured parameters.

We pursued this with a three-fold strategy: (i) we quantified and

characterized the co-variation among responses, (ii) we investigated

significant effects of infection and co-infection on these responses,

and, (iii) we identified combinations of responses that discriminate

among infection groups. By drawing composite immunological

profiles of the different infection groups, our analyses demonstrate

that these profiles do indeed distinguish groups at several time points

during the first weeks of infection with virulent FIVC. Importantly,

we identify an immunological response in dual infected cats that is

unique from those mounted to either single infections with exotic

PLV or virulent FIVC that suggests underlying mechanisms for

disease abrogation.

Materials and Methods

Study Design and data Pre-processing
The experimental design is described in detail by Terwee et al.

[3]. Two groups of 10 cats were sham inoculated or inoculated

with PLV at day 0. At day 28, five cats in each group were

inoculated intravenously with FIVC. Thus, we investigated four

infection groups, each containing five animals: two single infected

groups (one with FIVC and one with PLV), one group infected

with both PLV and FIVC (dual infected) and one uninfected

group. Using the approaches described in [3], eleven immune

response parameters were measured on the 20 cats; namely,

CD25, neutrophils, CD8, CD4, TNFa, Lymphocytes, IL12, IL10,

IL4, IFNc and FAS (see Table 1 for a list and descriptions). This

was performed repeatedly at four time points post-FIVC infection;

Table 1. List of immunological response parameters used in the analysis.

Symbol Description

Th-1 and Th-2 cytokines: Soluble factors modulating innate and adaptive immune response

IL-4 B-cell growth factor, ‘Th2’cytokine

IL-10 B-cell survival and proliferation, ‘Th2’. Generally antagonistic to TNFa

IL-12 Stimulates production of IFN-c and TNFa, ‘Th1’

TNFa Stimulates systemic inflammation, regulates apoptosis, neutrophil chemoattractant

IFNc Proinflammatory cytokine, stimulates IL-12 and TNFa, antagonistic to IL-4, ‘Th1’

FAS ‘Death receptor’, induces apoptosis

Circulating immunocytes: Peripheral markers of immune homeostasis

Lymph T and B Lymphocytes, NK cells and monocytes

CD4 Cell surface marker for T helper cells (lymph subset)

CD8 Cell surface marker for cytotoxic T cells (lymph subset)

CD25 Cell surface marker for activated T cells (both CD4 and CD8) and T regulatory cells

Neutr Neutrophils; granular leukocytes, phagocytic. (innate immune system)

doi:10.1371/journal.pone.0007359.t001
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namely, days 31, 37, 52 and 59, referenced to the start of the

experiment; these are days 3, 9, 24 and 31 post-FIVC challenge.

Values for the immune parameters are also available at day 45,

but we excluded this day because 5 of the 20 cats were missing

cytokine measures.

This dataset was not complete for each value at each time point

due to limitations of sample availability. From a total of 55 values

for each infection group at each time point; day 31 had 14 (of 55)

missing values for the uninfected group and 7 (of 55) missing from

the FIVC group; day 37 had no missing values; day 52 had 1 (of

55) missing value for the FIVC group and 1 (of 55) for the PLV

group; day 59 had 6 (of 55) missing values for the PLV group. We

used Nonlinear Iterative Partial Least Squares (NIPALS; see http://

biomserv.univ-lyon1.fr/,dray/files/softwares/nipals.R [20] to

impute missing values – the nipalsPCA function from the pcaMethods

package of the R language [21] produced a full ‘‘reconstructed’’

data set.

Since our immune responses are expressed in different

measurement units and present very different spreads, we also

applied a data Normalization at the outset; for each day and each

response, we subtracted the mean and divided by the standard

deviation. This was done for all 20 cats, and thus represents an

overall re-centering and re-scaling of the data, which does not

affect relative positions and spreads of the four infection groups.

Statistical Analyses
To address challenges set out in the Introduction, we employed

a few broadly used multivariate techniques, which we summarize

here and detail below:

(i) The levels of many proinflammatory cytokines and immu-

nocytes in our data do co-vary, i.e. have a systematic

tendency to move upward or downward of their averages

together (positive co-variation) or in opposite directions

(negative co-variation). The nature of this co-variation is

informative, and can be quantified and characterized

through Pearson’s correlation coefficients. In addition to studying

the pair-wise correlations, we also performed a spectral

decomposition of the Pearson’s coefficients matrix – which is

equivalent to applying Principal Component Analysis (PCA

[22,23]) to the normalized data.

(ii) To investigate significant effects of single and dual infection

on the responses, we used Multivariate Analysis of Variance

(MANOVA; [22,23]) with tests based on Pillai’s trace. Since

the responses have a marked co-variation structure, these

provide enhanced power relative to univariate tests assessing

differences in infection group means separately for each

response [24].

(iii) To identify combinations of responses that discriminate

among infection groups, we used Linear Discriminant Analysis

(LDA; [22,23]. Instead of analyzing the responses as a

function of the infection groups, this analyzes the groups, as

labeled, as a function of the responses – which here take the

role of a vector of discriminating features. LDA produces

linear combinations of immune response parameters,

interpretable as ‘‘immune profiles’’, which best distinguish

among infection status.

Principal Component Analysis
PCA is a method to extract directions, i.e. linear combinations

of variables, which are most relevant to the variability of a multi-

dimensional data cloud. PCA is based on the spectral decompo-

sition of the variance-covariance matrix of the data and produces a

set of orthogonal eigenvectors, each identifying a direction,

associated with eigenvalues listed in decreasing order. The

eigenvalues represent variances of the data along the directions

described by the corresponding eigenvectors/linear combinations.

Thus, the first eigenvector (linear combination) identifies the

direction of largest variability, the second the one of next largest

variability, subject to the constraint of being orthogonal to the first,

etc (see Figure 1). In addition to the pair-wise measures of linear

association provided by the entries of the variance-covariance

matrix, the relative size of its leading (largest) eigenvalues capture

the degree of linear interdependence among the variables as a

group. For the analysis of immunological responses, interdepen-

dencies can be crucial since the immune system has many

feedback loops that cause cell and cytokine levels to be associated.

PCA is used as a dimension reduction and data visualization

technique. If a few leading eigenvalues strongly dominate all

Figure 1. (A) Box-plots of (absolute) pair-wise correlations and
(B) Scree plots from PCA. (A) The horizontal axis indicates the four
days of analysis, and the vertical axis shows the distribution of absolute
pair-wise correlations among the 11 immunological response param-
eters. Open circles indicate parameter pairs with particularly strong
correlations (‘‘outliers’’ in the box-plots). Note that on day 52, the
majority of parameters have lower correlations overall, but there are
several that are highly correlated (anti-correlated). (B) The ordered PCA
components are shown on the horizontal axis (EV stands for
eigenvector). The vertical axis shows the share of overall variability
explained by each component, in different colors for each of the four
days of analysis.
doi:10.1371/journal.pone.0007359.g001
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others, the data is well captured (in terms of its variability

structure) by a projection on the space spanned by the

corresponding eigenvectors. Consequently, in many applications,

PCA can be used to produce 2 or 3-dimensional plots that provide

a satisfactory visualization of high-dimensional data. PCA for each

of four days in our study was carried out on the normalized data

(i.e. in terms of the correlation matrix) using the princomp function

from the stats package of the R language [21].

Multivariate Analysis of Variance
MANOVA is the multivariate analogue of an Analysis of

Variance (ANOVA) model, and allows a simultaneous comparison

of the means of several responses across ‘‘treatment groups’’,

taking into account their co-variation – as represented by the error

variance-covariance matrix in the MANOVA model. Tests for

mean differences between two groups are usually based on

Hotelling’s T2 statistic. When the problem comprises more than

two groups, as is the case in our study, several statistics can be

used, including Pillai’s trace, Wilk’s l, Lawley-Hotelling’s trace,

Roy’s Greatest root, etc. The resulting tests are generally in accord

with each other; we focused on Pillai’s trace, since it provides

multivariate tests that are robust to differences among the error

variance-covariance matrices within groups, as well as to

departures from the assumption of multivariate normality [24,25].

When assessing group differences in a multivariate setting,

MANOVA can avoid misleading conclusions associated with the

use of univariate t- or F-tests for individual responses. Intuitively,

the reasons for this are that (a) univariate tests do not account for

co-variation among responses, and (b) in addition to better power

due to accounting for co-variation, multivariate tests allow a better

handle of false positives (whose joint probability increases when

performing multiple univariate tests) [21,26].

Two-way MANOVA models (PLV infection = Yes, No,

crossed with FIVC infection = Yes, No, including overall level,

main effects of each infection and interaction effect) were fitted for

each of the four days on the normalized data using the manova

function from the stats package of the R language [21]. In

particular, for each day and each effect, we computed Pillai’s

trace-based p-values. For comparison with the MANOVA, we also

fitted two-way ANOVA models separately for every immunolog-

ical response using the aov function in R. In particular, for each

day, response and effect, we computed F-based p-values. This

produced 11 ANOVA p-values (one for every response) for each

MANOVA p-value, so the former were adjusted with a simple

Bonferroni correction (i.e. multiplied by 11).

Linear Discriminant Analysis
Like PCA, LDA is a method to extract directions, i.e. linear

combinations of variables. However, in LDA the directions are

selected based on their ability to separate labeled groups in a multi-

dimensional data cloud [27]. The spectral decomposition of a matrix

is employed also here; while PCA uses the variance-covariance

matrix of the data, LDA uses the between groups variance-covariance

matrix normalized against the within groups variance-covariance

matrix. Again, the technique produces a set of orthogonal

eigenvectors (each identifying a direction) associated with eigenvalues

listed in decreasing order; the first eigenvector (linear combination)

identifies the direction of maximal group separation, the second the

one of next maximal separation, subject to the constraint of being

orthogonal to the first, etc., where group separation is defined

benchmarking between group against within group variation.

Whereas with MANOVA we model our immunological

parameters as a function of the infection status, with LDA we

analyze infection status as a function of the immunological

parameters, which here represent discriminating features. LDA,

therefore, allows us to extract ‘‘immune profiles’’ (combinations

of the response parameters) that provide maximal separation

among infection status. LDA, like PCA, can be used for dimension

reduction and data visualization. If a few leading eigenvalues

strongly dominate all others, the data is well captured (in terms of

group separation) by a projection on the space spanned by the

corresponding eigenvectors.

LDA for each of the four days was carried out on the

normalized data using the lda function from the MASS package of

the R language [21]. Since our focus was on the association

between immune response parameters and infection status, we

produced projective graphics called bi-plots obtained through LDA.

These LDA bi-plots (see Figure 2) comprise: (i) Projections of the

data points, marked by groups, on the plane spanned by the first

and second LDA directions. (ii) Elliptical contours capturing each

group’s variability in the plane of the bi-plot. (iii) Loadings for the

11 immune response parameters, i.e. coefficients with which the

responses enter LDA directions (which help us interpret the

‘‘immune profiles’’ we extracted); each response is represented as

an arrow in the bi-plot, with orientation expressing signs, and

horizontal and vertical sizes proportional to the loadings of the

feature relative to the first and second LDA directions,

respectively. (iv) Eigenvalues associated with LDA directions, i.e.

the discriminatory ‘‘contribution’’ of these directions; each

eigenvalue is represented as a bar in an inset graph – black bars

are eigenvalues for first and second directions, which span the

plane of the bi-plot, and the white bar is the eigenvalue for the

third direction, which is not rendered in the bi-plot (since there are

four groups in our study, all subsequent eigenvalues are 0 by

construction). In addition to standard plotting commands, the

functions s.class and s.arrow from the ade4 package of the R

language [21] were used in implementing the bi-plots.

Results

Immune response parameters co-vary
We expect substantial interdependencies for the immunological

parameters in our study (Table 1). For instance, some responses

will positively co-vary because they are subsets (CD4 and CD8

cells are both lymphocytes), or if there is a primary B cell

proliferative response – Th2 – (IL4 and IL10), or a proinflamma-

tory response – Th1 – (IL12, TNFa, IFNc, FAS). Moreover,

cytokines classified as ‘Th1’ often will negatively co-vary with those

classified as ‘Th2’, but in some cases cytokines such as IFNc and

IL10 will positively co-vary [28] due to co-expression associated

with regulation of the immune response. Thus, individual cytokine

levels can be less informative on the nature of the immunological

response at any time point than the suite of cells and cytokines.

The 11 immune parameters we considered do indeed present

strong co-variation at each of the four times. We summarized pair-

wise linear associations computing the four correlation matrices

(Pearson’s correlation coefficients), and performed PCA on each.

Figure 1, upper panel, shows box-plots of the absolute values of the

correlations at days 31, 37, 52, and 59 – the mean (median)

correlations at these days are 0.39 (0.34), 0.33 (0.27), 0.27 (0.17)

and 0.33 (0.31), respectively. The absolute correlations are well

removed from 0 with numerous large values; the majority of these

correlations are statistically significant (see Tables 2 and 3).

Figure 1, lower panel, shows the shares of variability explained by

each principal component at days 31, 37, 52, and 59. The leading

eigenvalues dominate strongly in each day, with percent of

explained variability for first (second) components equal to 47%

(17%), 40% (24%), 36% (19%) and 36% (26%), respectively. This

Immunology of FIV Coinfection
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indicates a large degree of linear interdependence among the

variables as a group, at all four times. The bulk of the (absolute)

correlation values and the dominance of the leading eigenvalues

decrease from day 31 to 52. In particular, days 52 and 59 present

the lowest level of co-variation, while having a few very strong

pair-wise associations.

We further explored the ten strongest pair-wise correlations at

each time to identify immunological parameters with the most

marked associations (Table 2; this represents approximately the

top 20% of the correlations in each day – the reported values are

all statistically significant, except for two, as noted in Table 2).

There is a strong positive correlation between total lymphocyte

counts and both CD4 and CD8 counts at all time points. CD4 and

CD8 levels also show strong positive correlation at all time points.

We note that CD4 and CD8 are cell surface receptors expressed

on T lymphocytes, and that CD25 can be expressed on both CD4

and CD8 cells if they are activated. Thus, strong positive

correlations of these cellular markers are to be expected if there

is a general expansion of T lymphocyte subsets. In fact, the

strongest correlations occur among cellular parameters for days

Figure 2. Bi-plots from LDA, for days 31 (upper left), 37 (upper right), 52 (lower left) and 59 (lower right). The horizontal and vertical
axes on each panel represent first and second LDA direction, respectively. The arrows depict loadings of the 11 responses; their orientation and
length indicate the role of each immunological parameter in relation to the LDA directions and the different infection groups, on each of the analysis
days. The insets in each panel show first, second and third LDA eigenvalue (discriminatory importance of the corresponding LDA directions).
doi:10.1371/journal.pone.0007359.g002
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31, 37, and 52. The correlation between FAS and IFNc is

consistent and increases with time from the FIVC infection,

peaking at day 59 (bold in Table 2).

Since our data comprises only 20 observations (cats), we also

considered Spearman’s correlation coefficients, which are a robust

version of Pearson’s, computed on the ranks instead of the

measured levels. Similar to the Pearson’s, the mean (median)

Spearman’s correlations at days 31, 37, 52 and 59 are 0.41 (0.39),

0.29 (0.21), 0.27 (0.24) and 0.32 (0.32), respectively. Exploring the

ten strongest Spearman’s pair-wise correlations at each time

(Table 3) also produces results consistent with Pearson’s (Table 2).

It is important to note that our co-variation analyses concern

the complete dataset from all 20 cats and do not capture or exploit

specific relationships of immunological parameters with the

infection groups; therefore the strong interdependencies detected

through both pair-wise correlations and PCA confirm the need for

multivariate techniques in investigating relationships between

these immune parameters and infection status.

Mean immune responses differ significantly across
infection status

To investigate significant effects of infection and co-infection on

the immune response parameters, and more specifically to assess

differences between group means, we fit a MANOVA model for

each of the four days considered. The model expresses our vector

of 11 responses as a function of the PLV and FIVC infection status

in a 2-way scheme comprising the four infection groups. In this

manner, the effect of the two PLV-infected groups (PLV infection

only and dual infection) can be compared with non-PLV infected

groups (FIVC infection only, and uninfected) and vice versa. Tests

based on Pillai’s trace statistics can therefore be performed for the

simple effect of PLV, the simple effect of FIVC and the

‘‘interaction’’ effect. Table 4 contains estimated effects and

corresponding p-values.

The simple effect of FIVC is significant at day 52 and 59 but not

at days 31 and 37. Conversely, the simple effect of PLV has the

highest significance at day 31, is significant at day 52 and is not

Table 2. Pearson’s coefficients of the ten strongest (absolute) pair-wise correlations between immunological responses for each
day of analysis.

Day 31 Correlation Pair Day 37 Correlation Pair Day 52 Correlation Pair Day 59 Correlation Pair

0.603 FAS, a IFNc 0.574 IL4, IL12 b,c20.352 Lymph, TNFa 20.469 IFNc, CD25

0.605 IFNc, CD8B 0.638 IL10, IL12 c 20.355 IL10, Lymph 20.486 IL10, Lymph

0.702 IFNc, TNFa 0.714 IL12, TNFa 0.480 IL10, TNFa 0.567 IFNc, IL4

0.808 CD8, CD25 0.718 IL10, TNFa 0.722 FAS, IFNc 20.583 FAS, Neutr

0.820 CD4, CD25 0.754 CD4, CD25 0.829 Lymph, CD25 0.583 FAS, TNFa

0.831 Lymph, CD25 0.782 CD8B, CD25 0.848 CD8B, CD25 20.645 IFNc, Neutr

0.836 IL10 a, TNFa 0.828 Lymph, CD25 0.858 CD4, CD25 0.777 CD4, CD8

0.847 Lymph, CD4 0.881 Lymph, CD8 0.888 Lymph, CD8 0.778 Lymph, CD8

0.873 Lymph, CD8 0.910 Lymph, CD4 0.941 Lymph, CD4 0.836 FAS, IFNc

0.943 CD4, CD8 0.966 CD4, CD8 0.941 CD4, CD8 0.898 Lymph, CD4

aPair-wise correlations that increase (bold) or decrease (italics) are highlighted.
bThe sign indicates whether a pair co-varies positively or negatively.
cAll coefficients are statistically significant (p-values substantially smaller than 0.05) using a test for association/correlation between paired sample, except for the two
negative correlations of Lymph with TNFa and IL10 at day 52, (TNFa p-value = 0.13, IL10 p-value = 0.12).

doi:10.1371/journal.pone.0007359.t002

Table 3. Spearman’s coefficients of the ten strongest (absolute) pair-wise correlations between immunological responses for each
day of analysis.

Day 31 Correlation Pair Day37 Correlation Pair Day52 Correlation Pair Day59 Correlation Pair

0.67 CD4, CD25 0.51 IL12, TNFa b20.50 IL10, CD4 0.51 CD4, Neutr

0.67 IL10, TNFa 0.53 IL10, IL12 0.54 Lymph, CD25 20.51 FAS, CD25

0.67 IFNc, CD8 0.65 FAS, IFNc 0.54 Lymph, CD8 0.52 Lymph, Neutr

0.68 FAS, IFNca 0.71 IL10, TNFa 0.55 IL4, IL12 0.52 Lymph, CD8

0.68 Lymph, CD4 0.86 Lymph, CD8 20.61 IL10, Lymph 20.55 IFNc, CD25

0.71 Lymph, CD25 0.88 CD8, CD25 0.61 FAS, IFNc 20.60 FAS, Neutr

0.78 CD8, CD25 0.89 Lymph, CD4 0.64 CD4, CD25 0.61 CD4, CD8

0.79 Lymph, CD8 0.90 CD4, CD25 0.68 CD8, CD25 20.66 IFNc, Neutr

0.80 IFNc, TNFa 0.92 Lymph, CD25 0.72 Lymph, CD4 0.84 Lymph, CD4

0.89 CD4, CD8 0.97 CD4, CD8 0.79 CD4, CD8 0.88 FAS, IFNc

aPair-wise correlations that increase are bolded.
bThe sign indicates whether a pair co-varies positively or negatively.
cAll coefficients are statistically significant (p-values substantially smaller than 0.05) using a test for association/correlation between paired sample.
doi:10.1371/journal.pone.0007359.t003
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significant at days 37 and 59. Our MANOVA testing does not

detect a significant interaction effect at any of the times

considered. However, the interaction p-value is smallest at day

52. We also conducted the MANOVA on the data without missing

value imputation. This decreased the sample size by different

amounts for each day (See Methods). The p-value for the effect of

FIVC at day 59 increased slightly (from 0.04 to p = 0.06), and the

p-value for the interaction effect of PLV and FIVC at day 52

decreased from 0.18 to 0.06 (the omitted imputed values here

involved one animal each from the FIVC and PLV group). In all,

the data highlights day 52 (day 24 post FIVC infection) as the one

in which multivariate responses are most affected by infection

status.

For comparison with the above multivariate results, we also fit

11 univariate 2-way ANOVA models for each of the four days

considered. Here the model expresses an individual response as a

function of the PLV and FIVC infection factors in the same 2-way

scheme, and F-tests were performed for the simple effect of PLV,

the simple effect of FIVC and the interaction effect. For each

effect, and each day, we therefore obtained 11 p-values – one for

every response; Table 5 lists response names, estimated effects and

p-values for the cases that remained significant after Bonferroni

correction.

Similar to the MANOVA results, interaction effects are not

detected as significant for any of the responses, at any of the times

considered. However, a number of simple effects of PLV and

FIVC status do survive the correction for multiple testing at each

time. In particular, the effect of PLV is always significant in terms

of the IFNc levels although significance declines at days 52 and 59

in this group. In contrast, the effect of FIVC is significant in terms

of both IFNc and FAS at days 52 and 59 (recall these responses

present a very strong positive correlation at these times; Table 1).

In addition, cell phenotype parameters indicative of activated

lymphocytes (CD25, CD8, CD4, lymphocyte) at day 37, and

neutrophil counts at day 59, show a significant effect of FIVC.

Thus, the ANOVA tests detect the strongest effect of FIVC

infection at days 37 and 59 and indicate IFNc as a ‘‘driver’’ of the

immune response to PLV infection at all time points. The role of

the immunophenotype is confined to day 37 (day 9 post-FIVC

infection) as a simple effect of FIVC infection. Also here, we

conducted the ANOVAs without missing value imputation,

obtaining similar results, with the exception PLV did not have a

significant effect for IL4 when omitting the missing values. In

conclusion, both ANOVA and MANOVA tests suggest that there

are differences in immune responses of groups with primary FIVC

and PLV infection. However, some critical differences exist in the

outcome of univariate and multivariate analysis approaches, which

will be interpreted further in the Discussion.

Specific immune profiles, which evolve over time,
discriminate among infection status

To identify combinations of responses that discriminate among

the infection groups (‘‘immune profiles’’), we performed LDA for

the four groups on the 11 responses, for each of the four days

considered. LDA output for days 31, 37, 52, and 59 is summarized

in the four bi-plots in Figure 2. On day 31 (3 days post-FIVC

infection; upper left panel) there is essentially one discriminating

signal in the data, with a strongly dominating eigenvalue

Table 4. Estimated effects (E) and Pillai’s trace p-values (p) for
a two-way MANOVA scheme comprising simple and
interaction effects of PLV and FIVC, for each day of analysis.

Day 31 Day 37 Day 52 Day 59

PLV p = 0.006a P = 0.16 p = 0.01 p = 0.18

E = 0.95 E = 0.81 E = 0.93 E = 0.80

FIVC p = 0.52 P = 0.07 p = 0.02 p = 0.04b

E = 0.65 E = 0.86 E = 0.91 E = 0.89

PLV 6 FIVC p = 0.96 P = 0.29 p = 0.18 p = 0.56

E = 0.36 E = 0.75 E = 0.80 E = 0.63

aSignificant results are in bold.
bThis value is not significant if the MANOVA is run without imputing the values

(p = 0.06).
doi:10.1371/journal.pone.0007359.t004

Table 5. Estimated effects (E) and Bonferroni corrected F-based p-values (p) for two-way ANOVA schemes applied to each
immunological parameter separately, for each day of analysis.

Day 31 Day 37 Day 52 Day59

PLV a IL-4: IFNc: IFNc: IFNc:

p = 0.026; E = 0.45 p = 0.001; E = 0.62 p = 0.05; E = 0.40 p = 0.02; E = 0.48

IFNc:

p = 0.001; E = 0.62

FIVC None CD25: IFNc: CD25:

p = 0.0002; E = 0.70 p = 0.02; E = 0.47 p = 0.05; E = 0.40

CD8: FAS: Neutr:

p = 0.00005; E = 0.74 p = 0.02; E = 0.46 p = 0.0002; E = 0.70

CD4: IFNc:

p = 0.0005; E = 0.66 p = 0.001; E = 0.63

Lymph: FAS:

p = 0.0005; E = 0.66 p = 0.03; E = 0.48

PLV 6 FIVC None None None None

Only significant effects are reported, with the name of the corresponding parameters.
aThis value is not significant if ANOVA is run without imputing the values (p = 0.13).
doi:10.1371/journal.pone.0007359.t005
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associated with the first LDA axis, which separates PLV infected

(single and dual) and non-PLV infected (uninfected and FIVC-

infected) cats. The feature loadings indicate that this corresponds

to a ‘‘trade-off’’ between CD8 and CD4 cell numbers, with other

immunological parameters playing secondary roles. It is also

noteworthy that PLV infection induces an elevation in neutrophil

count, CD25 cells, IFNc, and IL12 compared to uninfected or

recently FIVC-infected cats at this time point. Note that while

some separation between FIVC-infected and uninfected cats, and

single and dual PLV infected cats, exists along the second LDA

axis, the eigenvalue associated with this axis is much smaller than

the first.

By day 37 (9 days post-FIVC infection; Fig. 2, upper right

panel), the picture has become more complex. The data contain at

least two discriminating signals (see eigenvalues in the in-set), and

the four groups separate along both the first and the second LDA

axes. There is complete separation of single PLV- and FIVC-

infected cats along the first LDA axis due primarily to higher

expression of CD8, CD25 and FAS in PLV infected cats. FIVC

dual and single infected cats show a substantial overlap in the

projection on the first two LDA directions. Notably, the second

LDA direction separates uninfected from all infected cats (PLV

single, FIVC single, and dual); uninfected cats have higher CD4,

TNFa and neutrophil levels, and lower CD8, lymphocyte, IFNc
and IL10 than any of the infected groups.

The discriminating signals captured by the first and second

LDA directions provide maximal resolution of the four groups at

day 52 (24 days post-FIVC infection; Figure 2, lower left). In

particular, at day 52 we observe a clear ‘‘immunological profile’’

for dual infected cats, as they cluster far away from uninfected and

both groups of single infected cats. Based on the loadings, this

profile is characterized by higher CD8 and CD25 counts, and

elevated levels of IL4, FAS, and IFNc than that of the other

groups. FIVC single infections separate from uninfected cats and

single PLV infections due to higher levels of IL10 and lower CD4

counts. PLV infections separate from uninfected cats principally

on the basis of lower CD4 counts.

The four treatment groups are also distinguishable at day 59

(31 days post FIVC-infection; Figure 2, lower right). Dual infected

cats separate from the other three groups due to higher IFNc
levels and CD8 and lymphocyte counts. Single FIVC infected

and dual infected cats separate along the second axis. Dual

infected cats have elevated levels of TNFa, IL4, and IFNc and

CD8 cells and neutrophils compared to single FIVC infected

animals. Single FIVC infections are characterized by higher IL12

and FAS levels and lymphocyte counts than dual infections.

Uninfected and PLV single infected cats overlap in the projection

on the first two LDA axes; both have higher levels of CD4 and

CD25 cells and neutrophils compared to cats with single and dual

FIVC infection.

The ellipses in the bi-plots of Figure 2, which represent the

variance-covariance structure of the projected data points

comprising the four groups, show marked differences across

groups at each time and across times for each group. In particular,

in these projective representations the uninfected group often

appears more variable than the infected groups. However, these

ellipses are not indicative of overall variability in the 11-

dimensional response space. When considering all 11 dimensions,

the uninfected group is indeed the tightest, with a total variance

(sum of the 11 variances) that is fairly constant over time, whereas

the infected groups show higher and changing total variance

(Table 6). This indicates that infection status may affect not just the

location, but also the variability structure of the 11 immunological

measures considered here.

Discussion

In this study, we used multivariate statistical techniques to

evaluate the immunological responses of cats infected with an

apathogenic FIVC (FIVpco strain PLV-1695 derived from a

cougar), virulent FIVC, or both viruses. FIVC infection on its own

causes immunosuppression and death [7]. However, cats infected

first with PLV and then with FIVC are protected from these

consequences [3]. Immunological parameters measured on the

cats consisted of lymphocyte expression levels for five cytokines,

total number of circulating lymphocytes and neutrophils, three

functional markers displayed on T lymphocytes, and a cell surface

molecule regulating cell survival. Detecting differences among

infection groups, as well as the discriminatory roles of various

immune parameters, is complicated by interdependencies among

these parameters, their diverse kinetics, and difficulties in gauging

variability given the small sample size at our disposal. Employing

well established and straightforward multivariate statistical tech-

niques such as PCA, MANOVA and LDA, despite the limited

number of observations, we found clear evidence that the response

variables measured in our study do distinguish the four

experimental groups.

Understanding the immunological response in cats infected with

both PLV and FIVC is of particular interest in this study because

dual infected cats are protected from FIVC-induced disease. Our

data show that simultaneous infection with the two viruses elicits

an immune response that is substantially different from that

mounted to uninfected or single infection with either the

apathogenic PLV or the virulent FIVC. FIVC infection is initiated

at day 28 post-PLV infection. Notably, the immune profile of dual

infected cats resembles that of PLV, not FIVC, 3 days post-FIVC

infection (day 31). As FIVC infection proceeds to day 37, the

immunological profile of all but one of the dual infected cats starts

to resemble, or overlap with, that of FIVC infected cats. This

highlights both the variation in cat responses at this date (see

Table 6) and the dynamic nature of the immune response to a

mixed infection. By day 52 (24 days after FIVC infection) the

immunological response in dual infected cats is clearly distinct

from all groups and is dominated by an elevated level of CD8,

CD25, and FAS expressing cells, and increased numbers of

lymphocytes and neutrophils. This phenotype may reflect

expansion of an important effector T cell subset in these cats.

IL4 and IFNc are the only cytokines that contribute to the unique

immune profile of dual infected cats at day 52. The dynamic

nature of host response to dual virus infection is apparent in

comparing the profiles of days 52 and day 59. For the first time,

IFNc is clearly a driver in dual infected cats at day 59 although the

overall profile is not typically pro-inflammatory. In addition,

Table 6. Total variances within infection status groups on
different days.

Day 31 Day 37 Day 52 Day 59

Dual 14.26 12.36 9.29 10.43

PLV 12.54 7.2 15.95 9.73

FIVC 4.18 8.16 6.81 6.45

Uninfected 5.55 3.76 5.82 4.56

All cats 11 a 11 11 11

aThe total variance for all cats (last row) is 11 on each day because of
normalization.

doi:10.1371/journal.pone.0007359.t006
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increased lymphocyte counts with lower levels of CD4 and average

levels of CD8 cells compared to uninfected and PLV infected cats

suggest that B cells or NK cells may be increased in dual (and to a

greater extent in single FIVC) infected cats at this time.

How does the immunological profile of cats infected with FIVC

in the presence of a preexisting PLV infection differ from cats

infected with FIVC alone? In general, single FIVC infection elicits

an overall increase in IL10, IL4, and IL12, but lower expression of

CD25, and CD8 throughout the first 31 days of infection (day 31–

59 of the experiment) compared to other groups. Prior to day 59,

FAS levels are lower in single FIVC infected cats but are increased

at day 59 of the experiment. Neutrophil and CD4 levels also are

lower at day 59. In contrast, the immune response in dual infected

cats is an activated cellular profile maturing over the 31 days of

dual infection. It is noteworthy that the differences in the immune

response to FIVC in dual and single infected cats likely arise

during the first week of infection because after that point, the

profiles of PLV and uninfected cats are very similar. In addition,

while FIVC infection induces CD4 decline and dual infected cats

are protected from CD4 loss [3], CD4 is not associated with the

dual infection group in the first three weeks of infection. In

contrast, elevated levels of CD8 cells are consistently associated

with PLV and dual infected cats over this time frame.

We show that the immunological parameters considered in our

study present a marked co-variation structure; an indication that

multivariate statistical methods are needed to derive a clear

association between infection state and immune response.

MANOVA tests evaluate whether there are significant effects of

the treatment groups on the vector of response parameters as a

whole. Using a two-way scheme, we demonstrate that there is a

significant effect of PLV infection on immune parameters on day

31. This is also demonstrated by the LDA results from day 31,

which show a clear separation of PLV and dual infected groups

from FIVC and uninfected cats. Cell count responses, which have

high positive correlations at all times, and in particular CD4 and

CD8 counts, emerge as key differentiators between PLV and non-

PLV cats at day 31. Importantly, neither CD4 nor CD8 carry

significant effects in their individual ANOVAs for day 31 (Table 5).

Also the difference CD8-CD4, which captures the dominant

trade-off shown by the LDA loadings in Figure 2 (upper left) has

no significant effect in an individual ANOVA for this day (data not

shown). Yet, in combination with the other responses, this trade-

off has a crucial role in group separation.

Our MANOVA results also indicated that there were significant

effects of both FIVC and PLV infection on day 52 and a

comparatively weaker role of the FIVC infection at day 59, both of

which are consistent with the LDA findings. By contrast,

univariate analysis (ANOVA) identifies the strongest effect of

FIVC infection at days 37 and 59. Further, the immune

parameters that emerge as significant in the univariate analysis

(ANOVA) are not necessarily those that discriminate the four

groups as determined by our multivariate approaches. For

example, at day 52, when the effects of the dual infection are

most pronounced based on MANOVA and LDA, ANOVA results

show a marginally significant difference for IFNc between PLV

and non-PLV infections, and significant differences for IFNc and

FAS between FIVC and non-FIVC infections, suggesting that

IFNc is a strong driver of group discrimination. However, LDA

reveals a more complex interplay among the immunological

parameters at day 52. Higher levels of CD8 cell and lymphocyte

and neutrophil counts, enhanced expression of FAS, IL4, and

IFNc, and lower levels of IL10, TNFa and CD4 cell counts are all

associated with the separation of dual infected cats from all other

groups. Most important, we are able to determine that the

immunological response to single FIVC infection was relatively

stable - dominated by IL-10 and low CD25 and CD8 - in contrast

to the dynamic and pro-inflammatory profile seen in the dual

infected cats over the first month following FIVC infection.

Although we qualitatively compared output of multivariate

analyses at different time points, because of the small sample size

of this study, we limited ourselves to relatively simple techniques,

and did not venture into the more complex territory of

multivariate methods and models that would allow us to include

time as an endogenous factor in the study. We also did not attempt

to account for heterogeneity we observed in the variability

structure of the immune responses within each infection group.

Methods and models to deal explicitly with dynamics and

heteroschedasticity do exist [29–32], and we are planning to

investigate their use on more complete data sets in the future.
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