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Rubella is generally a mild childhood disease, but infection during early preg-

nancy may cause spontaneous abortion or congenital rubella syndrome (CRS),

which may entail a variety of birth defects. Since vaccination at levels short of

those necessary to achieve eradication may increase the average age of infection,

and thus potentially the CRS burden, introduction of the vaccine has been limited

to contexts where coverage is high. Recent work suggests that spatial heterogen-

eity in coverage should also be a focus of concern. Here, we use a detailed dataset

from South Africa to explore the implications of heterogeneous vaccination for

the burden of CRS, introducing realistic vaccination scenarios based on reported

levels of measles vaccine coverage. Our results highlight the potential impact of

country-wide reductions of incidence of rubella on the local CRS burdens in dis-

tricts with small population sizes. However, simulations indicate that if rubella

vaccination is introduced with coverage reflecting current estimates for measles

coverage in South Africa, the burden of CRS is likely to be reduced overall over a

30 year time horizon by a factor of 3, despite the fact that this coverage is lower

than the traditional 80 per cent rule of thumb for vaccine introduction, probably

owing to a combination of relatively low birth and transmission rates. We

conclude by discussing the likely impact of private-sector vaccination.
1. Introduction
Rubella is a mild infection if contracted during childhood, but infection during early

pregnancy can lead to birth of a child with congenital rubella syndrome (CRS),

entailing numerous potential disabilities with substantial financial and social costs

[1,2]. Although a completely immunizing, safe and relatively cheap vaccine exists,

the possibility that inadequate vaccination coverage may increase the CRS burden

by raising the average age of infection without sufficiently decreasing transmission

(a pattern suggested to have occurred in Greece [3] and Costa Rica [4]) has led to con-

siderable caution in its introduction. This caution may be meretricious, but it may
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also result in a missed opportunity because the rubella vaccine is

easily combined with the measles vaccine, and the current

enhanced efforts at measles control could potentially provide

an effective vehicle for, at least, local elimination of rubella [5].

However, unless control measures are synchronized within a

state or a broader region, there is a risk that the benefits of

reduced disease incidence will be inequitably distributed, and

potentially even worsened in some communities. The reason

for this risk is that spatial heterogeneity in vaccine coverage

may lead to broken chains of transmission and transient local

elimination of rubella in certain areas [6]. Women in these com-

munities may then remain susceptible to rubella into their

childbearing years. Exposure through rare contacts with infected

individuals from communities in which vaccine coverage is low

enough to allow rubella to circulate could then occur, thus enhan-

cing the CRS rate. In this way, age-specific risk of a disease is

affected by vaccine-induced heterogeneities in circulation, oper-

ating either via spatial heterogeneities in vaccine cover or via

homogeneous vaccine cover of sufficient magnitude to break

the chains of transmission and push communities below the criti-

cal community size (e.g. the population size above which

immunizing childhood infections are not vulnerable to stochastic

extinction [7]).

Here, we use a uniquely detailed spatio-temporal dataset

from South Africa to explore both the basic epidemiology of

the infection, and the repercussions likely to follow the introduc-

tion of a rubella-containing vaccine, using recent measles

coverage as a template. Rubella vaccination has not been intro-

duced into the public sector in South Africa, but incidence

data are available via measles surveillance activities. In addition

to estimating rubella transmission rates and contact patterns, a

key question addressed here is whether spatial variation in vac-

cine coverage (as reported in South Africa for measles [8,9]) is

likely to lead to increases in the CRS burden at either global or

local scales. Specifically, we explore what spatial patterns of vac-

cination might inadvertently favour metapopulation rescue

effects (i.e. re-introduction of the infection into districts where

it has gone locally extinct) developing methods to test for the

effect of the link between connectivity, coverage and population

size. We then assess whether observed measles coverage levels

are likely to result in global or local increases in the CRS burden.
2. Material and methods
2.1. Data
The data on laboratory-confirmed cases of rubella were obtained

from the South African National Institute for Communica-

ble Diseases, a division of the National Health Laboratory Service

(NICD-NHLS). Specimens were submitted as part of national,

active, case-based measles surveillance. In South Africa, measles is

a notifiable disease, and all patients meeting the suspected-measles

case definition (rash and fever with at least one of cough, coryza or

conjunctivitis) should have specimens taken. Blood and throat/

nasopharyngeal swab or urine specimens are sent on ice to the

NICD-NHLS for laboratory confirmation where testing is conducted

at no charge. All serum specimens from suspected-measles cases

were tested for the presence of rubella-specific immunoglobin anti-

bodies, using an enzyme-linked immunosorbent assay (ELISA;

Enzygnost, Siemens, Marburg, Germany).

District-level population sizes were obtained from Statistics

South Africa and birth rates through adjusting census microdata

(https://www.international.ipums.org/international/) on num-

bers of infants with subnational data on infant mortality rates
[10]. Districts range in population size from less than 100 000

(three districts in the Northern and Western Cape) to more

than 3 million (for the three districts with capitals Durban,

Cape Town and Johannesburg). District-scale measles vacci-

nation coverage of 1 year olds (inferred from the number of

doses given among children less than 1 year old) from 2000 to

2010 was obtained from the South African National Department

of Health Expanded Programme on Immunization (J. van den

Heever 2011, personal communication). This was used to simu-

late spatially variable rubella vaccination coverage over the

time-frame for which incidence data were available; years prior

to 2000 were assumed to have the same coverage as 2000. To

analyse spatial connectivity between districts, matrices describ-

ing the distance between each of the districts and the cost of

travelling between each of the districts were obtained [11].

To estimate the cost of travelling, in each case, population-

adjusted district centroids were calculated, using gridded popu-

lation data (www.afripop.org) to locate a ‘centroid’ for each

district at the settlement of greatest population size. The great

circle distances between each centroid and every other centroid

were calculated, as well as the ‘accessibility’ distance, calculated

using land-use data to represent the ease of movement across a

realistic landscape [11,12].

2.2. Fitting the time-series susceptible – infected –
recovered model

To estimate the overall rate of transmission, averaging across the

age-heterogeneities, we use the time-series susceptible–infected–

recovered (TSIR) model. A widespread issue for the analysis of

infectious disease dynamics is under-reporting, resulting in the

total number of infected individuals being unknown. However,

reporting rates can be indirectly estimated. Here, we consider

the dynamics of total number of susceptible individuals, St, and

infected individuals, It, at time t. If reporting rates are stable

through time, and all individuals eventually succumb to infection,

numbers of susceptibles in any given location will track local

births, Bt, and infected individuals. The balance equation for sus-

ceptible individuals is

Stþ1 ¼ St þ Bt �
IðrÞt

r
; ð2:1Þ

where r is the reporting rate, and IðrÞt is the reported number of

infected cases. Ignoring observational uncertainty, the actual

number of infected individuals can be reconstructed as

It ¼ IðrÞt =r: Rearranging equation (2.1) provides the relationship

from which the reporting rate and the dynamics of the suscep-

tible population can be inferred through susceptible

reconstruction [13,14]:

St ¼SNt þD0 þ
Xt�1

k¼0

Bk �
Xt�1

k¼0

IðrÞk

r
: ð2:2Þ

In equation (2.2), S represents the average proportion of

individuals that are susceptible, Nt represents the population

size and D0 is the unknown deviation around the average at the

time of the first observation in the time-series. To estimate r and

reconstruct a full time-series of susceptible ‘deviations’, Dt, that

details how the numbers of susceptible individuals vary around

the average number of susceptible individuals, we write

Xt�1

k¼0

Bk ¼ Dt �D0 þ
1

r

Xt�1

k¼0

IðrÞk ; ð2:3Þ

where Dt ¼ St �SNt: From this, Dt can be estimated as

the residuals from the possibly locally varying regression of the

cumulative number of births on the cumulative number of

cases, and r can be estimated as the inverse slope of this
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regression [13,15]. Note that the average number of susceptible

individuals cannot be directly estimated, as it is confounded

with the intercept of this regression equation.

Armed with the time-series It and Dt, seasonal transmission

rates can be estimated [13,15]. The generation time (serial inter-

val) of rubella (approximately the latent plus infectious period)

is approximately 18 days [16,17]; so we assumed that the time-

scale of the epidemic process was approximately two weeks,

and aggregated the data accordingly. The number of infected

individuals at time t þ 1; depends stochastically on It and St

with expectation ltþ1 ¼ bsStIat ; where bs is the seasonally vary-

ing age-averaged transmission rate and s denotes the season.

The exponent a, usually a little less than 1, captures heterogene-

ities in mixing not directly modelled by the seasonality [13,15]

and the effects of discretization of the underlying continuous

time process [18]. Then, taking logs on both sides of the relationship

for the expectation, we can write

logðE½Itþ1Þ�Þ ¼ logðbsÞ þ a logðItÞ þ logðDt þ �SNÞ: ð2:4Þ

Given estimates of It and Dt, regression can be used to esti-

mate bs. We use the profile of the likelihood estimated across a

range of values of the proportion susceptible to estimate �S
[14,15]. We have previously found that low reporting rates

result in strongly downwards-biased estimates of a, which

result in unrealistic dynamics. We previously proposed a Whittle

estimator to correct for this [19]. However, that approach requires

very long time-series. In this study, we therefore fix a at a

consensus value of 0.97 [15,18,20] and estimated seasonal trans-

mission as above. The transmission rate estimated in this way

may reflect a broad range of processes that occur consistently

over the course of a year. For childhood infections, low trans-

mission usually mirrors periods of school vacation, indicating

that the parameter captures mixing among school children [19];

for other infections, climatic variables such as absolute humidity

(e.g. influenza, [21]) may be more important.

Transmission of childhood infections in both industrialized

and pre-industrialized countries usually scales in a frequency-

dependent fashion, because social clique size is relatively con-

stant [15,19,22]. Therefore, it is convenient to consider the

alternative parametrization of the TSIR, where lt ¼ b‘ St It/N,

where b‘ ¼ b N. Because standard errors on district estimates

were considerable due to low local incidence, we used the

South-Africa-wide estimate of seasonality in transmission, and

adjusted the median value for each location by the ratio between

the local population size, and the size of the entire population of

South Africa [20]. Note that although the number of years avail-

able in this dataset is small relative to previous analyses (e.g. in

England and Wales, 1944–1964 [15]), because dynamics are pre-

dominantly annual, extreme deviations from this pattern and

corresponding biases are relatively unlikely.
2.3. Critical community size
Because population size is a key determinant of stochastic

extinction for strongly immunizing infections, population size is

negatively correlated with the number of fade-outs (or proportion

of zeros) in the time-series of incidence [15,23]. The point where

this line intercepts with zero provides an indication of the critical

community size, or population size below which the infection is

subject to stochastic fade-outs. Because under-reporting could

lead to apparent fade-outs where there are none, we define

fade-outs as corresponding to a month with zero reported cases.
2.4. Spatial dynamics: connectivity
To quantify spatial dynamics, we can define a spatial coupling

parameter that measures how tightly each region is linked to

the metapopulation [24]. During fade-outs, in location j, the
probability that no epidemic results following a spatial contact

is 1/(1 þ bsSt,j), and conversely, a new epidemic is sparked

according to the time-varying hazard:

hðt; jÞ ¼
bsSt;jð1� expð�cjxt;jytÞÞ

1=ð1þ bsSt;jÞ
; ð2:5Þ

where cj is a parameter that describes the coupling of community j
to the regional metapopulation; xt,j is the local proportion of sus-

ceptibility (St,j/Nt,j,) and �yt is the probability that a non-local

individual is infectious ð
P

k=j Ik;t=Nk;tÞ. Methods from survival

analysis can be used to estimate cj for every location [20,24].

This analysis can be extended to identify a parametric form

for connectivity such as specified by the gravity model [25] for

which contacts between locations j and i is given by

ci;j ¼ u
Nt1

j Nt2

i

dk
i;j

 !
; ð2:6Þ

to capture the fact that traffic to a particular district is expected to

increase in a generalized bilinear fashion with recipient and

donor population sizes (Nj and Ni) but decrease with some

measure of their separating distances, di,j (which might reflect

Euclidean distances, road distance, cost of travel, etc., as

described above). The u-parameter scales the overall mobility

and the exponents t1, t2 and r controls the topology of the spatial

network. Within this more spatially resolved model of coupling,

new epidemics will be sparked according to the refined version

of equation (2.5)

hðt; jÞ ¼
bsSt;jð1� expð�xt;jSci;jyi;tÞÞ

1=ð1þ bsSt;jÞ
; ð2:7Þ

where yi,t is the probability that an individual from patch i is

infectious (Ii,t/Ni,t). To counter biases due to under-reporting,

we restricted this analysis to time-points where four weeks had

passed with no reported rubella incidence.

2.5. Simulating the metapopulation dynamics of
rubella in South Africa

Using the magnitude of seasonality, and connectivity between

locations, we developed a simulation model of rubella in South

Africa (see the electronic supplementary material, appendix

S1). The key element of the model is a matrix that, at every

time-step, defines transition from every possible epidemio-

logical stage (e.g. infected, susceptible and recovered) and age

combination to every other epidemiological stage and age combi-

nation, following methods developed in [26]. This was extended

to also capture spatial dynamics where the number of immi-

grants was specified according to connectivity estimates

described above. A key element of the model is the pattern of

contacts and transmission over age. This can be captured by a

Who-Acquires-Infection-From-Whom (WAIFW) matrix. Every

cell of the matrix captures the strength of contact between the

age classes represented by each row and column. We evaluated

two different WAIFW structures (i) a model of age contacts

fitted using a smooth surface [27], and (ii) the empirically

derived POLYMOD matrix [28]; and evaluated their validity

using approaches developed by Rohani et al. [29]. We used the

framework to explore the impact of vaccination on the CRS

burden, obtained by combining the fertility profile of South

Africa with the simulated age profile of incidence (see the

electronic supplementary material, appendix S1).

To identify how spatial heterogeneity in vaccination might

affect age-incidence for rubella, and consequently the CRS

burden, we generated vaccination profiles reflecting the same

overall mean coverage, but a range of different distributions

across space using a beta-binomial distribution. Given the impor-

tance of population size for patterns of human movement

http://rsif.royalsocietypublishing.org/
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implied in the connectivity analyses (see below), we particularly

wished to explore the impact of the degree to which vaccination

coverage was correlated with population size. We refer to the

strength of this correlation as the degree of polarity. To

implement a range of polarities, we used ‘fuzzy ordering’. This

involves generating normal deviates around the coverage

values obtained from the beta-binomial (see above). Values of

coverage for a particular population size are then paired up

according to the ordering of these normal deviates. Lower var-

iances used to derive deviates will result in tighter correlations

between population size and coverage; the opposite results

from high variances. In this way, we can create a gradient ran-

ging from low to high ‘polarity’. The resulting vector of

vaccination coverage will have slightly different levels of popu-

lation scale coverage, given the distribution of coverages

among populations. We therefore adjusted the resulting vector

of vaccination probabilities to have the same mean at the scale

of the population (set to 0.8) by multiplying the coverage

values by a constant. We then explored the effect of the range

of vaccination polarity scenarios on the CRS burden of the

population as a whole, and within districts.

To evaluate the prospects of introduction of rubella-containing

vaccine in South Africa, we implemented vaccination scenarios

reflecting actual reported coverage levels for measles across dis-

tricts using the data described above. To be conservative, we

considered only the first dose of measles containing vaccine,

and did not model supplementary immunization campaigns.

Further, to consider the ‘worst case scenario’ and to reflect the

discrepancy between country-reported values and UNICEF-

WHO values at the national scale (UNICEF-WHO adjusted

values tend to be rather lower than national reports [30]), we

used simulations with both reported estimates of coverage, and

by reducing all estimates of coverage by 15 per cent.
3. Results
The data consist of weekly time-series of reported rubella inci-

dence from 1998 to 2010, stratified by the 52 districts of South

Africa (figure 1a) and by age (figure 1b and table 1). The data-

set report on a total of 16 466 cases. The country-wide median

age of infection was 6 years (figure 1b), and within any single

week the case numbers ranged from zero to 90 reported cases

(figure 1a). Country-wide outbreaks follow a predominantly

annual pattern, but local dynamics are more variable.
3.1. The time-series susceptible – infected – recovered
We applied a smoothing spline with 6 degrees of freedom to

patterns of birth and incidence taken across the entire country

(figure 2a) for susceptible reconstruction for years starting in

2000. This indicates an increase in reporting over the time-

course of the data (figure 2b), with a steep increase during

2009–2010 when a measles epidemic occurred. We then

identified the starting proportion susceptible and seasonal

pattern of transmission using profile likelihood. As detailed

in §2, we fixed a at the consensus estimate of 0.97

[15,18,20] before fitting the TSIR. The estimated seasonal pat-

tern of transmission reflects the timing of school holidays

(figure 2c), with low transmission during the school

summer vacations in South Africa (usually around four

weeks including the 25 December and 1 January). The TSIR

model provides a good fit to the short-term dynamics of

the infection (figure 2d ). We also used susceptible reconstruc-

tion in each province to estimate province-specific reporting

http://rsif.royalsocietypublishing.org/
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Table 1. Province characteristics. Average age of infection is the mean reported age from incidence reports from each province across the entire time-series;
birth rates are taken as described above; and under-reporting is obtained via susceptible reconstruction from the TSIR (see §2) and reflects the proportion of
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age of infection is likely to be an underestimate, owing to biases from measles-targeted sampling; the R0 estimate may be correspondingly high; in the
associated estimation, G refers to the inverse of the birth rate and A is the average age of infection.

ECP FSP GAP KZP LPP MPP NCP NWP WCP

average age of

infection, A

7.0 7.1 5.9 6.0 7.0 7.0 8.0 7.0 6.0

birth rate per 1000 per

year, B

22.4 20.5 20.3 23.0 24.2 23.5 21.1 22.76 22.09

estimate of R0, as

1 þ G/A, where

G ¼ 1000/B

7.4 7.9 9.3 8.2 6.9 7.1 6.9 7.3 8.5

average under-reporting 0.00045 0.00026 0.00035 0.00031 0.00031 0.00036 0.00038 0.00039 0.00038
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rates (equation (2.2)), given expectations of heterogeneity

among districts in reporting rates.
3.2. Spatial dynamics
To estimate connectivity, we used the country-wide under-

reporting rate to reconstruct the susceptible profile of each dis-

trict, as province-specific estimates of under-reporting did not
capture the expected increase in reporting rate over time

(figure 2b) and detectable differences between provinces

were relatively small (table 1). The estimated value of regional

coupling (equation 2.5, binomial log likelihood of 22136 for

52 parameters on N ¼ 9875 data points) significantly increa-

sed with population size (see the electronic supplementary

material, figure S1), and this relationship explained a consider-

able amount of the variance (r2¼ 0.32). For the parametric

http://rsif.royalsocietypublishing.org/
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estimate of coupling, a comparison of the binomial log

likelihood resulting from equation (2.7) indicates that for

both Euclidean distance models and ‘cost’ models for di,j,

the k coefficient is so small that the denominator is basically

1, indicating that differences in connectedness are predomi-

nantly explained by population size. For N ¼ 9875 data

points, with a log likelihood of 22635, parameters are u ¼

7.9 � 10–12 (CI: 1.9 � 10–13, 3.5 � 10–10, confidence interval

obtained by inverting the hessian [31]), t1 ¼ 1.4 (CI: 1.2, 1.5),

t2 ¼ 1.1 (CI: 0.9, 1.4), k ¼ 0 (CI: 0, 0), for both the cost and dis-

tance models; identical values are obtained if the denominator

is dropped.

3.3. The critical community size
The proportion of zeros for each district in the time-series is

tightly negatively linked to log district population size

(F1,50 ¼ 49.1, p , 0.001), suggesting that the CCS is larger

than a million (figure 3). However, given the risk of under-

reporting, this is likely to somewhat overestimate the CCS.

To assess this, using parameter estimates described above,

we established a model for age-structured rubella dynamics

across the 52 districts in South Africa. We evaluated the

model by comparing the predicted incidence, age profile of

infection and profile of fade-outs with the observed (see the

electronic supplementary material, figure S2–S4; figure 3).

The pattern of incidence and its age profile are in accord

with the data; the pattern of the profile of fade-outs in

the simulations relative to the observed implies that on the

basis of parameters available here, the CCS for rubella is

broadly overestimated using the method of proportion of

fade-outs over time; the model prediction yields a value

closer to 100 000 than 1 000 000.
3.4. Impact of introduction of rubella vaccine on the
congenital rubella syndrome burden

Using the structured model described above, we

implemented a range of vaccination coverage scenarios, to

compare the CRS burden across a range of polarities of vac-

cination coverage in situations where the country-wide

coverage level is retained constant (see the electronic sup-

plementary material, figure S5). This analysis indicates

that high polarity may have opposite effects at the global

and local scale. The country-wide CRS ratio is lowest for

simulations that correspond to the highest polarity in vacci-

nation coverage (figure 4a), while the number of districts

with an increase in the CRS burden is highest (figure 4b).

This indicates that where the correlation between coverage

and district population size is high (corresponding the high

polarity), although the population of South Africa as a

whole may experience a decrease in the relative burden of

CRS, particular districts may experience an increase. This

occurs because in high-polarity simulations the strong corre-

lation between coverage and district size means that many of

the large districts that are sources of infected immigrants are

vaccinated. Consequently, the number of circulating infected

immigrants is lower. This means that there can be a longer

wait before a fade-out ends in the districts with smaller popu-

lation sizes that are below the CCS. Because this waiting time

enables susceptible individuals to age into childbearing

years, these districts have a much higher CRS burden than

observed in the absence of vaccination.

The simulations of the observed coverage for South Africa

indicate that if the current estimates reflect future coverage, the

chances of an increase in the burden of CRS per 1000 live births

across 30 years are relatively low (figure 5, all points bar one are

below the y ¼ x line). We explored robustness of the conclusion

that even with coverage as low as 65 per cent (the average fitted

in figure 5) the CRS burden was reduced, via a range of sensi-

tivity analyses. Repeating the analysis shown in figure 5 using a

fitted WAIFW (see the electronic supplementary material,

figure S2, second row) rather than the polymod WAIFW

resulted in no increase in the CRS burden at the national

scale, indicating robustness in the pattern of transmission

over age (see the electronic supplementary material, figure

S6). Increasing transmission as high as R0 ¼ 12 with the poly-

mod WAIFW did lead to an increase in the CRS burden in a

subset of districts over 30 years, but the country-wide outcome

remained a reduction in the CRS burden (see the electronic

supplementary material, figure S7).
4. Discussion
While the burden of CRS may be small relative to the overall

disease burden of children in certain regions, the low cost of

the rubella vaccine, the relatively low transmission rate of the

infection compared with measles and the ability to deliver

vaccine without administering an extra shot mean that it

may be one of the diseases most effectively tackled. Conver-

sely, once immunization against rubella is implemented,

ceasing vaccination is likely to result in a considerably

increased CRS burden; so long-term maintenance of coverage

must be assured.

The classic concern for rubella vaccination has been that

insufficient vaccination coverage of children may lead to an

http://rsif.royalsocietypublishing.org/
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increase in the burden of CRS because of an increase in the

average age of infection, insufficiently offset by reduced inci-

dence. However, evidence, including high average age of
rubella infection [20,32,33], in many countries suggests that

rubella may frequently have a low R0 (although see [34]). In

this situation, reducing incidence requires relatively lower

coverage (particularly if the birth rate is not too high

[6,35]), and problems may rather emerge from stochastic

dynamics in a metapopulation and waiting times following

local extinction before re-introduction [20]. Given an average

age of infection for rubella in South Africa suggesting that R0

is not excessively high (table 1, even in the face of a likely

downward bias due to sampling targeted at measles that clas-

sically has a much lower age of infection), and the relatively

low birth rate (around 20 per 1000 per year https://www.

international.ipums.org/international/), this was the focus

of our analysis here.

We first characterized seasonal dynamics and the meta-

population structure of rubella transmission in South Africa.

Susceptible reconstruction suggested changes in reporting

rates compatible with the occurrence of a measles outbreak

from 2003 to 2005 [36] and a larger outbreak in 2009 and

2010 [37]. Seasonal dynamics followed school terms, as fre-

quently observed for immunizing childhood infections [19]

including rubella [20,33] and district population size proved

to be the key determinant of movement between districts

(as measured via the duration of rubella fade-outs, see

above), with larger populations producing both more

infected emigrants and attracting more infected immigrants

(in line with previous work [24,38]). This conclusion may

be affected by the fact that spatial variation in reporting

rates is likely, with a higher index for reporting and testing

in some provinces (e.g. Gauteng, Western Cape and

KwaZulu-Natal and perhaps Northern Cape) than in others

(Limpopo, Mpumalanga, North West, Eastern Cape), a pat-

tern likely to be correlated to some extent with urbanization

https://www.international.ipums.org/international/
https://www.international.ipums.org/international/
https://www.international.ipums.org/international/
http://rsif.royalsocietypublishing.org/
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and population density; although this did not emerge

strongly in estimates of coverage obtained via susceptible

reconstruction (table 1). Incorporating Euclidean distance

between districts or ‘cost of travel’ did not improve the

model, but this might be partly because the spatial scale of

case data available was too coarse relative to the range of

actual travel decisions (districts often cover large areas, and

many settlements, thus the representation of each with dis-

tances or costs of travel between single district centroids is

likely to be an oversimplification). This observation brings

to the fore an important caveat relative to the broader

predictions of our model: if district population sizes do not

actually reflect population sizes relevant to epidemiological

dynamics, then predictions relative to changing CRS burdens

across the region in response to vaccination will be affected.

For all our model predictions, caveats linked to heterogeneity

in reporting rates should also be considered.

The missing element for developing a simulation of rubella

is then the structure of transmission over age. We used two

approaches (i) we fitted a smooth WAIFW to the observed

age-incidence data combined with data on the demographic

structure of the population (see the electronic supplementary

material, appendix S2) and (ii) we used the average WAIFW

indicated by diary studies across Europe (both shown in the

electronic supplementary material, figure S2). The former

cannot capture the complexity of changing contacts between

adults and children, but conversely, it is not clear that the

latter is appropriate in the social and cultural context of

South Africa. However, both provided similar qualitative con-

clusions, and are likely between them to capture a large part of

the possible range of transmission structures. Empirical sur-

veys that could ascertain the validity of these approaches are

desirable, however; and again, model predictions will be

vulnerable to misspecification of contacts over age.

Combining parameters obtained from the rubella incidence

data, with the chosen transmission WAIFW, we developed a

model to characterize the effect of vaccination on the burden

of CRS. Overall, our results indicate that a global reduction in

infectious individuals moving between districts may increase

the burden in smaller populations below the CCS if these are

unvaccinated, because of longer waiting times following extinc-

tion (figure 4), making the interaction between population

movement, coverage and the CCS a key equity question. How-

ever, the current vaccination coverage results overall in a

reduction in the burden of CRS in South Africa over a

30 year time horizon (figure 5). The absence of a relationship

between district population size and reported coverage for

measles (e.g. in 2000, the correlation between vaccine coverage

and log population size was r¼ 0.05, d.f.¼ 52, p . 0.1; similar

results in other years) and relatively low variance in coverage

(s2¼ 0.03 across all years; and that or lower for each individual

year) is likely to be a key contributing factor. It is, however, key

to note that this prediction is vulnerable to errors of model mis-

specification, in particular the relevance of the spatial scale of

the data may affect conclusions, but uncertainties in reporting

and questions relative to the age-structure of transmission will

also play a role; and our estimate of CRS incidence of approxi-

mately 200 CRS cases per year (figure 5) may consequently be

either an over- or underestimate (previous analyses based on

sero-prevalence suggest a value of around 600 [39]).

An interesting point revealed by the simulations is that it

is apparent that the CCS may have been overestimated in

previous work [33,40), given under-reporting (figure 3);
in reality the CCS for rubella might be much closer to that

of measles (see the electronic supplementary material,

figure S8). Although, theory predicts a slightly larger value

for rubella given that its R0 is generally lower than that of

measles [41], this theoretical analysis did not incorporate sea-

sonality in transmission, and troughs between major

outbreaks due to seasonality are likely to determine extinc-

tion probability and increase with the R0 of the infection

(see the electronic supplementary material, figure S8).

In the absence of broad stochastic effects on age-structure

driven by extinction and re-colonization linked to the CCS,

one might expect the response of rubella in South Africa to

vaccination to be in line with previous work that suggested

the 80 per cent cut-off rule [42–45]. However, our predictions

are in line with more recent work suggesting that with a birth

rate around 20 per 1000 per year and an R0 around 6,

increases in CRS over a 30 year time horizon are unlikely

(although, again, model misspecification remains a potential

concern). In this context, an important public health dimen-

sion of the introduction of the rubella vaccine is the degree

to which it is prevalent in the private sector [45], i.e. for indi-

viduals who receive for example MMR vaccination in an

unregulated market where all vaccines are available [39].

Assuming no spatial heterogeneity in coverage, our model

suggests that such private-sector vaccination with levels of

coverage between 20 and 30 per cent should be particular

cause for concern (figure 6). Previous analyses suggest cover-

age of around 15–20% in such unregulated markets [39].

To conclude, data available for South Africa shed light

on basic aspects of rubella epidemiology (CCS, connectivity,

seasonality), but also highlight areas of consideration in a

public health setting, including metapopulation-induced

changes in age-incidence, which can lead to public health

equity issues. The methods we have developed could be

use to explore the impact of heterogeneous vaccination in

other connectivity contexts and for other infections with an

http://rsif.royalsocietypublishing.org/
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age-specific impact, such as mumps. Interestingly, our model

predictions are broadly positive relative to the introduction of

routine rubella vaccination in South Africa, despite the rela-

tively low measles vaccine coverage levels explored, with

possible relevance to a number of countries in the region.

Of course, these conclusions rest on the model assumptions

(detailed above), and the data available. Model misspecifica-

tion is always a risk, and key areas for future research include

further detail on the age-transmission profile of rubella in

developing and middle-income country settings.
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