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Abstract Highly infectious, immunizing pathogens can cause violent local
outbreaks that are followed by the agent’s extinction as it runs out of susceptible
hosts. For these pathogens, regional persistence can only be secured through spatial
transmission and geographically asynchronous epidemics. In this paper we develop
a hazard model for the waiting time between epidemics. We use the model, first, to
discuss the predictability in timing of epidemics, and, second, to estimate the strength
of spatial transmission. Based on the hazard model, we conclude that highly epidemic
pathogens can at times be predictable in the sense that the waiting-time distribution
between outbreaks is probabilistically bounded; The greater the spatial transmission
the more periodic the outbreak dynamics. When we analyze the historical records of
measles outbreaks in England and Wales between 1944 and 1965, we find the wait-
ing-time between epidemics to depend inversely on community size. This is because
large communities are much more tightly coupled to the regional metapopulation. The
model further help identify the most important areas for spatial transmission. We con-
clude that the data on absence of these pathogens is the key to understanding spatial
spread.

Keywords Measles · Inter-epidemic periods · TSIR model · Disease ecology ·
Population dynamics

O. N. Bjørnstad (B)
Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
e-mail: onb1@psu.edu

O. N. Bjørnstad · B. T. Grenfell
Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University,
University Park, PA 16802, USA

O. N. Bjørnstad · B. T. Grenfell
Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA

123



266 Environ Ecol Stat (2008) 15:265–277

1 Introduction

Acute, immunizing pathogens result in death or recovery of the host and immune-
mediated resistance to future reinfection. When these disease agents enter a local
community they spark epidemics that deplete the pool of susceptibles until the chain
of transmission is broken and the pathogen goes locally extinct. Ultimately, such patho-
gens can only persist within the metapopulation setting. [The notion of a metapop-
ulation, here, is taken from theoretical ecology: a collection of largely independent
populations (and, in our context, host communities) linked by relatively infrequent
inter-migration (with respect to the organism in focus; here the pathogen).] Following
local extinction, the susceptible population will build up—from births and, possibly,
loss of immunity in previously immunized hosts—until (a) the pathogen is reintro-
duced through spatial transmission from some other community and (b) the local
susceptibles have grown numerous enough for any index case to spark off a new chain
of transmission. Regional (‘metapopulation’) persistence requires the rate of replen-
ishment of susceptibles to be adequate and the rate of spatial transmission, through the
movement of susceptible and infected hosts, to be adequate. Quantifying the rates of
spatial transmission (‘spatial coupling’), therefore, is a critical challenge in epidemiol-
ogy because both spread and persistence depends on the coupling of local populations
(Keeling et al. 2004). This, incidentally, echoes a contemporary theme in population
ecology (Hanski and Gaggiotti 2004).

Among the most infectious of human pathogens are many of the so-called childhood
diseases, of which measles is an example (Fine and Clarkson 1982; Anderson and May
1991). Innately, children are not necessarily much more susceptible than adults, but
the high contagiousness and strong immune-stimulation of these agents result in a low
age of infection. As a consequence, transmission in the pre-vaccination era was largely
amongst children. The local epidemic dynamics of this class of pathogen have received
much attention, and several studies have revealed a close match between theoretical
predictions and epidemiological surveillance data, notably for measles and whooping
cough. Moreover, the study of their spatial spread comprise an extensive literature in
epidemiology, ecology, geography, and statistics (Bartlett 1956, 1957, 1960; Murray
and Cliff 1975; Cliff et al. 1993; Xia et al. 2004). Still, much remains to be discovered,
both about the patterns and determinants of spatial transmission, and—as is the focus
of this paper—the statistical methods that may be used to explore them. In this study
we use a stochastic SIR (susceptible-infected-recovered) model (Bjørnstad et al. 2002)
to develop an estimator for spatial transmission of measles among populations in the
United Kingdom.

Spatial coupling is fundamental to the dynamics and management of several
acute animal and human pathogens (Keeling and Rohani 2002; Smith et al. 2002;
Keeling et al. 2004). Yet, during the course of outbreaks in well-mixed local pop-
ulations, the epidemic trajectory of measles will be virtually unaffected by immi-
grant infection; Indeed, Bjørnstad et al. (2002) calculated that measles epidemics run
according to their deterministic course, as soon as there is a handful of local infec-
tious individuals. [We note that this is a nontrivial ‘emergent’ property of measles’
dynamical clockwork; immigration, perturbations and stochasticity have been shown
to have significant effects in other childhood infections (Rand and Wilson 1991; Rohani
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et al. 2002)]. Hence, data richness—in the sense of numerous mortality and morbidity
reports—certainly holds the key to estimation of local transmission dynamics
(Finkenstadt and Grenfell 2000; Bjørnstad et al. 2002; Finkenstädt et al. 2002). How-
ever, such reports do not tell us much with respect to spatial transmission; for this,
the binary measure of pathogen absence and presence holds crucial information.

Bartlett (1956) discussed how the interepidemic period—the so-called fade-out
length—in small communities depends critically on the spatial transmission rate. In
the following, we first quantify how the interepidemic period is determined by two
waiting-time processes: (i) the build-up of local susceptibles and (ii) spatial transmis-
sion. We validate the resultant predictions of how the probability of initiating a new
epidemic depends on both local susceptible numbers and regional infectives (i.e. the
size of the pathogen donor community) using nonparametric regression. Finally, we
show that the associated probability of sparking new epidemics, can be used for max-
imum likelihood estimation. Because we focus on measles, we open with a preamble
summarizing the current understanding of measles dynamics.

2 Preamble

Within the field of population dynamics and quantitative epidemiology, measles has
become a prototype. There are at least two reasons for this: (1) the simple dynamical
clockwork of measles and (2) the excellence of data-recording. The first relates to
how measles has no alternative host and no functional strain structure (there are many
different viral variants, but cross-immunity appears to be perfect). The second, results
partly from how measles is easily diagnosed, and partly from measles historically
being a dangerous and highly contagious infection that was subjected to mandatory
notification. In England and Wales detailed surveillance protocols were put in place
around 1940. In what follows we will focus our analysis on the data collected between
1944 and the onset of mass-vaccination in 1967 in the urban centers (954 cities and
towns) of England and Wales. These records are particularly complete as incidence
was recorded for each week and each community separately. During this period there is
a well-characterized under-reporting bias of about 40–55% (Fine and Clarkson 1982;
Bjørnstad et al. 2002; Finkenstädt et al. 2002). The unreported cases are due to the
rare miss-diagnosis and the more common failure to seek medical attention. From
a strictly statistical perspective, these reports are unlikely to be missing ‘completely
at random’, yet the observational process appears to approximate a simple binomial
filter (Clark and Bjørnstad 2004), so any biases are likely to be relatively weak. Bar-
ring the under-reporting, however, the records are complete, and testify to spectacular
outbreaks of infection. Except for less than a handful of cities (>300 thousand inhab-
itants) among the almost thousand locations, historical measles incidence exhibited
periods of intermittent extinction. Regional persistence, therefore, hinged on episodic
reintroduction and spatial transmission.

In light of this, we have previously developed a discrete-time stochastic model—the
so-called TSIR model—for the local dynamics of measles (Finkenstadt and Grenfell
2000; Bjørnstad et al. 2002; Grenfell et al. 2002). In any given location, j , we denoted
number of infected individuals at time t by It, j , the number of susceptible individuals
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by St, j , and the transmission rate by βu, j . The subscript u signifies that transmission
may depend on seasonal variation in aggregation of susceptible and infected children
(Fine and Clarkson 1982), so that the force of infection experienced by each local sus-
ceptible individual due to local transmission is φt, j = βu, j I α

t, j . The exponent α allows
for nonlinearities in contact rates that may arise because of nonhomogenous mixing
(Liu et al. 1986), as well as the discrete-generation approximation of a more continuous
infection model (Glass et al. 2003). The expected number of infected individuals, λt, j

arising from local transmission in pathogen generation t+1 is then λt, j = βu, j I α
t, j St, j .

The time step is the epidemic generation length (= latent + infectious period ≈2 weeks
for measles).

Our previous analysis of local dynamics indicates that transmission rates scale in
a so-called frequency-dependent manner between populations of different size
(Bjørnstad et al. 2002). That is, seasonally averaged transmission rate β j are
inversely proportional to population size according to (see Bjørnstad et al. 2002:
Fig .7a): log(β) = 3.64−1.02 ∗ log(N j ) (R2 = 0.95). In terms of local transmission,
it is therefore sometimes useful to consider the dynamics in terms of the proportions of
the local population that are susceptible, xt, j = St, j/N j , and infected, yt, j = It, j/N j .

In an epidemic metapopulation, there will—in addition to the strictly local
production—be some infections that arise from the contact between local suscep-
tibles and infectious individuals elsewhere. With this in mind, it is natural to modify
the equation for the expected incidence as (Bjørnstad et al. 2002; Xia et al. 2004):

λt, j = βu, j (It, j + ιt, j )
α St, j , (1)

where ι represents infection that arose from spatial contagion.
The growth of an epidemic will be stochastic according to some generalized birth-

and-death processes (Bartlett 1956). Approximating the trajectory of measles as a
piecewise constant (at the one-generation scale) birth-and-death process, the expecta-
tion, λ, will be realized according to (Kendall 1949; Bjørnstad et al. 2002):

It+1, j ∼ NegBin(λt, j , It, j + ιt, j ), (2)

where NegBin(a, b) signifies a Negative Binomial process, with expectation a and
clumping parameter b. This follows from assuming a birth-and-death process with a
per capita growth rate, which in our case is λ/(I + ι). Then starting with one infected
individual, the number of individuals one-generation later will be distributed accord-
ing to a geometric distribution with expectation λ/(I + ι). From I + ι individuals we
get a sum of I + ι geometrics, from which Eq. 2 follows.

The associated balance equation for the susceptibles is:

St+1, j = St, j + B Nt, j − It+1, j , (3)

where B is the per capita birth rate. Note that these equations ignore mortality because
both case fatality from measles and child/adolescent mortality rates have been very
low in developed nations during recent times.
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The number of susceptibles, St, j —and thereby the proportion of susceptible, xt, j —
is not directly observed. However, we can reconstruct these variables by rewriting the
recursive equation (3) according to Finkenstadt and Grenfell (2000):

St, j = S j + D0, j +
t∑

k=0

B Nk, j −
t∑

k=0

Ik, j/ρ, (4)

where S j is the mean number of susceptibles of community j , D0, j is the unknown
deviations around the mean at time 0, and ρ is the reporting rate. This rate was around
50% in England and Wales during the prevaccination era (ρ = 0.52, SE = 0.01)
(Bjørnstad et al. 2002). We can reconstruct the time series Dt, j of how the local suscep-
tible numbers deviate from the local mean value, Dt, j = St, j − S j , by rewriting (4) as,

t∑

k=0

B Nk, j = D0, j + 1/ρ

t∑

k=0

Ik, j + Dt, j , (5)

from which it is clear that Dt, j is the residual from the regression of cumulative number
of births on the cumulative number of cases. Note, that this reconstruction still works
when D0, j and the reporting rate ρ is unknown because these are accommodated by
the intercept and slope of the cumulative-cumulative regression. The method does not
allow the independent estimation of the mean number (or mean proportion) of sus-
ceptibles. However, previous analyses estimated the mean proportion of susceptibles
to be around 4% (although it may be as large as 5–8%) (Bjørnstad et al. 2002).

In our previous study (Bjørnstad et al. 2002; Grenfell et al. 2002), we found that
the full stochastic model (1–3) applied to the endemic portions of the time series (i.e.
It, j > 0) gave narrow parameter estimates and encouraging long-term prediction of
the epidemic trajectories.

Except for around ten cities that were above the ‘critical community size’ (ca.
250,000–300,000), the local dynamics of measles is critically dependent on reintro-
ductions following local extinctions (as the infectious agent burns through and uses
up the susceptible population) (Bartlett 1960; Grenfell and Harwood 1997). Given the
limitation of endemic dynamics for quantifying spatial coupling (Finkenstädt et al.
2002; Bjørnstad et al. 2002), it is natural to focus on the extinction-recolonization pro-
cess. Thus while previous time series modelling provided insight into measles cycles
and epidemics, it left the central questions of spatial coupling open. In this study, we
explore the relationship between local fade-outs and spatial transmission.

3 Theoretical hazards and waiting times

Following extinction, the local dynamics are converted into waiting time processes,
for which the probability that the fade-out will end (the hazard) is governed by (a) the
probability of contact between local susceptibles and regional infectives, and (b) the
probability that a local epidemic will result from such an event (Bartlett 1956). During
this period, the number of local susceptibles is building up due to births:
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St+1, j = St, j + B N j . (6)

Spatial contact, therefore, depends on the probability that an individual from
location j is susceptible (given by the proportion of susceptiblity, xt, j ), the proba-
bility that a non-local individual is infectious, yt = ∑

k �= j It,k/
∑

k �= j N j , and the
spatial isolation, 1/c j , where c j is a measure of spatial coupling of community j to
all other communities. Obviously, the probability that no spatial contacts will occur
in a given time step will be exp(−c j xt, j yt ). For relatively weak coupling, we may
assume ι ∼ Bin(1, 1 − exp(−c j xt, j yt )), though other formulations are possible (Xia
et al. 2004).

Given a spatial contact, there will be a probability 1/(1+βu, j St, j ) that no epidemic
will result: the null probability of Eq. 2 when It, j = 0 and ιt, j = 1. A new epidemic
will be sparked by the complementary probability, so that the discrete-time hazard h̄
is the probability of the joint occurrence of this event and the occurrence of a spatial
contact:

h̄(t, j) = βu, j St, j (1 − exp(−c j xt, j yt ))

1 + βu, j St, j
, (7)

which is an increasing function in the number of local susceptible, S j , and the propor-
tion of non-local individuals that are infectious, y. It may further depend on population
size, if isolation is size dependent. Notice further that because the local susceptible
population builds up through time, the hazard asymptotes to the spatial contact prob-
ability.

We previously carried out a detailed analysis of the seasonal transmission rate βu, j

in 60 communities that span three orders of magnitude in population size (Bjørnstad
et al. 2002). The transmission rate was found to vary widely through the season (see
Bjørnstad et al. 2002: Fig. 7b) reflecting the well-known dependence of transmission
on school contact rates (Fine and Clarkson 1982). The transmission rate varied by a
factor of 3.0 (median = 2.7, se = 0.22) through the season. At the same time, the
variation in proportion of infected varied by a factor of around a hundred through the
epidemic cycle (mean = 111.7, median = 71.7, se = 17.3).

The theoretical waiting time distribution between outbreaks—which also represents
the probability density function for a fade-out of length T —is given by the hazard
waiting time, W :

W (T, j) = h̄(T, j)
T −1∏

t=1

1 − h̄(t, j), (8)

where h̄(t, j) is as given in Eq. 7. [Readers familiar with survival analysis will rec-
ognize (8) as h̄(T, j)(1 − H(T − 1, j)), where H is the integrated hazard.] This
distribution depends critically on how strongly each local community is coupled to
the regional population (Fig. 1a). With strong spatial coupling, the mode of the wait-
ing-time distribution can be close to zero. Weakly coupled communities, in contrast,
may wait as much as a year (or more) between outbreaks; the weaker the coupling,
the flatter and wider the probability distribution. The waiting time distribution also
depends on the regional prevalence (Fig. 1b), which for measles ranged from 0.003
to 0.31% with a mean of 0.06% (median = 0.04%) before mass-vaccination; the
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Fig. 1 The theoretical waiting times (‘fade-out lengths’) between outbreaks as predicted by Eq. 8. The
waiting time distributions depends on (a) spatial coupling, (b) the regional prevalence of infection, (c) the
annual per capita birth rate, and (d) the transmission rate

per capita birth rate (Fig. 1c) because this determines the rate of susceptible build-up;
and the transmission rate (Fig. 1d): waiting times should be truncated during school
terms, when transmission is enhanced, as compared to holidays when transmission is
relatively low. Four important conclusions emerge from these theoretical explorations.
First, while the details of demography (such as host birth rates) and transmission (such
as term-time forcing) do affect the waiting time distributions, they should be much
less important than the several orders-of-magnitude variation in regional prevalence.
Second, any demographic and transmission variability may be swamped by variation
in spatial coupling among the communities (Fig. 1a). This effect will be shown to
be very important by the statistical estimates of coupling that we present in Sect. 5.
Third, in contrast to simple time-invariant random processes, which give rise to expo-
nential waiting-time distributions, fade-out distributions have their mode away from
zero. The deficits at short waiting times result from initially low susceptible numbers
because of depletion by previous epidemics: A new epidemic is only likely to take
hold once susceptibles build up through subsequent births. Fourth—in summary—
to predict fade-outs we need, at least, to consider (i) regional prevalence, (ii) spatial
coupling, and (iii) the density of local susceptibles.
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4 Empirical hazards

The probability calculations present clear hypotheses about how the hazard depends
on local susceptible density, regional prevalence and, possibly, local community size
if spatial coupling depends on size. In the case of our epidemic binomial variate, which
flags whether or not a fade-out ends (‘success’) or continues (‘failure’) in any given
time-step, we can use nonparametric logistic regressions to test for these hypothe-
sized functional relationships. We used a nonparametric logistic regression (using a
2D-spline with 4 equivalent-degrees-of-freedom), a binomial error and a logit link
(Hastie and Tibshirani 1990). To enhance power—particularly for large cities with
scarce and rather brief fade-out periods—we grouped the data for the 20 communi-
ties closest to the target sizes of 2,000, 10,000, 50,000 and 200,000 inhabitants. In
order to minimize the effect of underreporting, we discarded the initial two observa-
tions in each fade-out (Bartlett 1960; Grenfell and Bolker 1998) before calculating the
empirical hazard functions. In this way, the singleton zero-incidence weeks that may
represent underreporting during deep troughs rather than true fade-outs will not unduly
bias the analysis. Figure 2 confirms how—for a given host community size—the haz-
ard of sparking an epidemic is a function of the proportion of susceptibles and the
regional infection level. The hazards further appear to asymptote for high susceptible
and regional infective densities. Moreover, the asymptotic probability is an increasing

200k

Fig. 2 The empirical hazard of ending a fade-out (and sparking of a new epidemic) as a function of pro-
portion of local susceptibles and proportion of regional infecteds. The empirical hazards are split by local
community size. The empirical hazard is estimated using a nonparametric logistic regression
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Fig. 3 The average fade-out length (±1 SD) during 1944–1965 for the 954 urban communities in England
and Wales

function of local community size. This suggest that larger communities are, as may
be expected, less isolated than smaller ones.

National notification was made mandatory by the UK Registrar General (OPCS)
in 1940 in England and Wales (Fine and Clarkson 1982). With allowance for the und-
erreporting, the weekly data are complete for the 945 cities and towns in England
and Wales (Grenfell and Bolker 1998). We focus on the data from 1944 (after the
major perturbations of World War II) until mass-vaccination started in 1967. Figure 3
shows the average fade-out length as a function of community size. Two key points are
apparent: (i) the average fade-out length follows a tight inverse relationship with com-
munity size; and (ii) the variance in the fade-out length (reflected in the error bars)
are progressively wider in smaller communities, mirroring the widened theoretical
waiting-time distributions as coupling decreases (Fig. 1).

As the theory predicts, the consequence of the greater isolation and slower sus-
ceptible replenishment of smaller communities is less frequent outbreaks and longer
fade-outs. This, of course, was presciently recognized in Bartlett’s sequence of seminal
papers on the stochastic theory of measles epidemics (Bartlett 1956, 1957, 1960).

5 Estimating spatial coupling

Conditional on the data on susceptibles and the regional prevalence of infection, we
can combine the theoretical hazard model (Sect. 3) with standard likelihood theory
to estimate the spatial contact rate, c—a hitherto elusive parameter in epidemiology.
The theoretical waiting time distribution may be seen as representing the expectation
of a binomial process for which the log-likelihood of the fade-out data is given by:

�(c j |It−1, j = 0) =
∑

It−1, j =0

ln
(

h̄
zt, j
t, j (1 − h̄t, j )

1−zt, j
)

, (9)
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where zt, j is one if It, j > 0 and zero otherwise, and h̄t, j is given by Eq. 7. The
associated score function, U = ∂�/∂c, and Fisher information, i = −∂2�/∂c2, are:

U (cj) =
∑

It−1, j =0

x y
(
S β + ec x y (z − S β + S z β)

)
(
ec x y − 1

) (
ec x y + S β

) , (10)

and

i(cj) =
∑

It−1, j =0

ec x y x2 y2 (
2 ec x y S β + S β (z + S z β−1) +e2 c x y (z−S β + S z β)

)
(
ec x y−1

)2 (
ec x y+S β

)2 ,

(11)

respectively, where all symbols are as defined in Eq. 7. Note that subscripts are sup-
pressed in Eqs. 10 and 11. We use Newton–Raphson to solve for U (c) = 0 and
find the maximum likelihood estimate of c. Following elementary likelihood theory
(McCullagh and Nelder 1989), we calculate its asymptotic standard error as
se(ĉ j ) = i−1(ĉ j ).

The estimates of spatial coupling reveal a tight relationship with community size
(Fig. 4a; log(c) = 0.69+0.98log(si ze), p < 0.01, R2

ad j = 0.83). Note that the confi-
dence limits blow up for the largest communities, because these experience so few and
short fade-outs that the statistical power becomes very low. The scaling of c is likely
to be because of the many more susceptibles that can potentially get in contact with
regional infecteds in large communities; On a per susceptible basis there appears to be
no relationship between coupling and community size (Pearson correlation = 0.04,
p = 0.21).

The residuals around the log-linear relation (Fig. 4b) reveals some geographically
conspicuous features. The communities in Cornwall and southwestern Wales are con-
sistently more isolated than expected from their population sizes alone. In contrast,
the communities around London and in the industrial northwest are much less isolated
than expected from their sizes. Interestingly, the latter two centra have previously been
shown to be the foci from which waves of infection emanates (Grenfell et al. 2001).
Hence, our statistical analysis should allow the construction of relative and absolute
risk maps for disease spread.

6 Discussion

The spatial dimension is increasingly recognized as crucial to the dynamics and per-
sistence of acutely infectious pathogens. This is because the epidemic outbreaks that
result from rapid contagion are usually followed by deep troughs in prevalence during
which extinction of the disease-causing agent is certain in all but the largest of host
communities. Recently, significant insights into the dynamics of such pathogens have
been garnered through application of the principles of metapopulation ecology, which
explicitly considers how regional prevalence depends on rates of local extinction and
reinvasion (Keeling et al. 2004). Childhood diseases, such as measles, represent the
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Fig. 4 (a) The estimated strength of spatial coupling (with 95% confidence intervals) for the 954 urban
communities in England and Wales. (b) The residuals from the regression log(c) = 0.69 + 0.98log(si ze)
plotted at their geographic coordinates. Positive values are shaded with grey, negative values are open

archetype, here, because the complete protection awarded to recovered individuals
leads to particularly deep troughs (Grenfell and Bjornstad 2005). In this paper we
detail how stochastic process theory provides additional insights and allows for esti-
mation of spatial epidemiological parameters.

The basic notions we present are not new; Almost 50 years ago, Bartlett (1956,
1957, 1960) identified the critical community size for measles persistence and pro-
posed that the fade-outs represent realizations of epidemiological waiting time pro-
cesses. Our refined insights results from our spatio-temporally exhaustive data set
(Grenfell et al. 2001), the recent advances in susceptible reconstruction, and more
detailed descriptions of the seasonality and scaling of transmission (Bjørnstad et al.
2002; Grenfell et al. 2002). In combination, the theory, data and statistics lay bare
how—perhaps as may be expected—big host communities are more strongly coupled
to the metapopulation at large. Beyond this, the communities around central conur-
bations appear to be of disproportionate importance in the spatial transmission. Not
coincidentally, the most conspicuous areas of above-average coupling corresponds
to the two previously identified regions from which waves of infection emanates
(Grenfell et al. 2001). Together, the isolation of smaller communities and the deficit
of susceptibles at the beginning of each fade-out explain the conspicuous deviation
from exponential waiting times in the fade-out distributions, and the inverse (log-)rela-
tionship between average fade-out lengths and community size.

In this study, we have developed a theory of epidemic risk from the point of view
of local recipient communities embedded in a regional metapopulation for which we
assume we do not need to consider explicit spatial locations. Ultimately, we will
want to explicitly infer the transportation network among all communities. An uncon-
strained network would require estimation of the strength of coupling for each of the
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p(p−1)/2 pair-wise links between p local communities. This, of course, is not feasible
for the 954 communities in England and Wales given that we cannot observe spatial
transmission directly, but only its consequences when new outbreaks are sparked.
Insights into the spatial network of spread can be garnered from detailed sociological
(Eubank et al. 2004) and transportation data (Guimera and Amaral 2004). However,
we believe that statistical fitting of simple models—here for the coupling between
urban centers—may provide additional insights. For instance, gravity models from
transportation theory (Erlander and Stewart 1990; Cliff et al. 1993; Xia et al. 2004)
may provide a fruitful area for future research.
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