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Abstract. Many defoliating forest lepidopterans cause predictable periodic deforestation.
Several of these species exhibit geographical variation in both the strength of periodic behavior
and the frequency of cycles. The mathematical models used to describe the population
dynamics of such species commonly predict that gradual variation in the underlying ecological
mechanisms may lead to punctuated (subharmonic) variation in outbreak cycles through
period-doubling cascades. Gypsy moth, Lymantria dispar, in its recently established range in
the northeastern United States may represent an unusually clear natural manifestation of this
phenomenon. In this study we introduce a new statistical spatial-smoothing method for
estimating outbreak periodicity from space–time defoliation data collected with spatial error.
The method statistically confirms the existence of subharmonic variation in cyclicity among
different forest types. Some xeric forest types exhibit a statistical 4–5 year period in outbreak
dynamics, some mesic forest types a 9–10 year period, and some intermediate forest types a
dominant 9–10 year period with a 4–5 year subdominant superharmonic. We then use a
theoretical model involving gypsy moth, pathogens, and predators to investigate the possible
role of geographical variation in generalist predator populations as the cause of this variation
in dynamics. The model predicts that the period of gypsy moth oscillations should be
positively associated with predator carrying capacity and that variation in the carrying
capacity provides a parsimonious explanation of previous reports of geographical variation in
gypsy moth periodicity. Furthermore, a two-patch spatial extension of the model shows that,
in the presence of spatial coupling, subharmonic attractors can coexist whereas nonharmonic
attractors (i.e., where the cycle lengths are not integer multiples of one another) cannot.

Key words: Allee effect; gypsy moth; Lymantria dispar; nonparametric spatial covariance function;
Northeastern United States; space–time defoliation data; spatiotemporal dynamics; virus–insect interactions.

INTRODUCTION

The dramatic fluctuations of certain foliage-feeding

forest insects have long attracted the attention of

ecologists (Varley et al. 1973). Though most forest

insects remain at innocuous levels, a few populations

episodically reach extreme densities over large areas,

causing massive defoliation of their host trees. One

characteristic of these outbreaks that has attracted

particular attention is the periodic nature of the

oscillations (Baltensweiler et al. 1977, Myers 1988,

Kendall et al. 1998, Liebhold and Kamata 2000, Esper

et al. 2007). While both the regularity and period of

oscillation varies from species to species, there is also

ample evidence of geographic variation in dynamics

among populations of any given species. In Fennoscan-

dia, for example, northern populations of the autumnal

moth, Epirrita autumnata, display periodic oscillations

that cause widespread defoliation of host trees while

more southerly populations show little evidence of

periodicity (Ruohomaki et al. 1997, Klemola et al.

2002). In North America, populations of the jack pine

budworm, Choristoneura pinus, located in dry sites

exhibit oscillations with a period of 5–6 years but

populations in mesic sites are characterized by outbreak

periods of around 10 years (Volney and McCullough

1994). Finally, populations of the gypsy moth, Lyman-

tria dispar (L.) (see Plate 1), oscillate with a dominant

period of 9–11 years in most locations, yet some forest

types see more frequent outbreaks (Miller et al. 1989,

Williams and Liebhold 1995, Johnson et al. 2005,

2006a). These two latter cases may represent intriguing

examples of how gradual variation in underlying

ecological mechanisms may lead to punctuated (sub-

harmonic) changes in cycle periods—a phenomenon

frequently predicted by mathematical models but

relatively rarely seen in field populations.

Though geographical variation in natural-enemy

communities has been advanced as a cause of geograph-

ic variation in dynamics in certain cyclic species

including rodents (e.g., Hansson and Henttonen 1985,
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Bjørnstad et al. 1995) and moths (Klemola et al. 2002),

the theoretical plausibility of this explanation remains

unresolved for most systems (but see Turchin and

Hanski [1997] for a rare example involving Scandinavian

rodents). In this study we use gypsy moth, Lymantria

dispar, outbreaks in North America as a model system

for studying the cause of geographical variation in

forest-insect population cycles. This species periodically

causes extensive defoliation over thousands of hectares

of temperate forests. In a previous analysis of extensive

spatiotemporal data from North America, Johnson et al.

(2006a) showed that gypsy moth oscillations in several

xeric forest types appeared to be on 4–5 year cycles

whereas populations in mesic forest types exhibited a

dominant 9–10 year period. Spectra also indicated the

presence of subdominant 4–5 year superharmonics in

some of the intermediate forest types. In order to

confirm this variation in periodicity and the existence of

superharmonic oscillatory behavior, we develop a new

statistical method for estimating outbreak periodicity

from space–time defoliation data collected with spatial

error; spurious superharmonics can potentially arise

when data are aggregated across landscapes in which

two harmonic outbreak cycles coexist in anti-phase of

one another. We use this method to confirm that the

existence of the superharmonic oscillations is not a

statistical artifact of aggregating data from such

spatially anti-synchronous populations. We then analyze

a nonspatial and a two-patch model for gypsy moth

population dynamics to elucidate the community

ecological origins of the geographic variation and spatial

mechanisms that may account for the coexisting

subharmonics.

The greater frequency of gypsy moth outbreaks in dry

vs. moist North American oak forests appears to be a

persistent phenomenon that has been observed over

many years of research (Bess et al. 1947, Houston and

Valentine 1977). Varying pressure by generalist preda-

tors among forest stands has been proposed as a

plausible explanation for the differences (Smith 1985,

Liebhold et al. 2005). In current theoretical parlance, the

putative mechanism is that where generalist predators

are abundant, they have the capability to induce a weak

Allee effect in gypsy moth populations. That is,

population growth rates are greatly depressed by

predation at low densities so as to slow population

growth during periods of increase, but not enough to

induce population collapse (which would represent a

strong Allee effect; Wang and Kot 2001). While small-

mammal predation on gypsy moth pupae has been

shown to play an important role in gypsy moth

demographics (Bess et al. 1947, Elkinton et al. 1996,

Jones et al. 1998, Liebhold et al. 2000, Dwyer et al.

2004), it is unclear how this influences the periodicity of

gypsy moth outbreaks. We use a mathematical model to

quantify this relationship. In particular, we investigate

(1) whether the transition from 5- to 10-year cycles can

be explained by variation in generalist predator abun-

dance, and (2) whether the superharmonics seen in the

data can be explained by the interaction between the
gypsy moth and its various natural enemies. We use a

model derived from Dwyer et al. (2004) to demonstrate
that while the intrinsic outbreak dynamics are caused by

specialist pathogen–host interactions, the dominant
period of oscillation is directly related to the general-
ist-predator carrying capacity, thereby explaining the

previously hypothesized association. Furthermore, we
show that at high predator levels a weak Allee effect is

induced and subdominant 5–6 year superharmonics
emerge in the model. Moreover, a two-patch version of

our model shows that in the presence of spatial coupling,
superharmonic attractors can coexist whereas nonhar-

monic attractors (i.e., where the cycle lengths are not
integer multiples of one another) cannot.

METHODS AND MODELS

Estimating outbreak periodicity from space–time data
with spatial error

State governments have been monitoring defoliating
outbreaks of gypsy moth via aerial surveys since the

early 1960s or before, and systematic archiving of
historical maps began in 1975. During annual aerial

surveys, observers sketch the extent of defoliation from
the air on paper or digital maps (Ciesla 2000) that are

then compiled as a series of polygons in a geographical
information system (GIS) (Liebhold et al. 1997). Our

analyses were conducted using 232 km grids of 0/1 data
indicating the presence of defoliation in each grid cell

derived from the 1975–2005 annual GIS layers. Visible
defoliation is a useful but imperfect proxy for abun-

dance (Bjørnstad et al. 2002). Moreover, aerial surveil-
lance is inherently associated with some level of spatial

error (Ciesla 2000). Finally, the underlying spatiotem-
poral dynamics of these populations are somewhat
spatially stochastic (due to geographical variation in

environmental conditions), so important spatiotemporal
patterns may only be borne out across broader spatial

domains.
The autocorrelation function and the associated

periodogram (e.g., Priestley 1981) are the most com-
monly used statistical methods for estimating cycle

periods in outbreak data (Kendall et al. 1998, Berryman
2002). Previously, we applied these methods to meso-

scale and forest-type aggregated time series of gypsy
moth defoliation (Johnson et al. 2006a). The conclusion

was that outbreaks in mesic forest-type groups such as
oak–hickory and maple–beech–birch tend to recur every

9–10 years whereas outbreaks in more xeric forest types
return every 4–5 years. These results are consistent with

the previous scientific literature (Bess et al. 1947,
Houston and Valentine 1977) that reports more frequent

gypsy moth outbreaks in dry oak-dominated stands.
Conclusions regarding superharmonic cycles (i.e., cycles
with, for example, a half-period duration) based on

analyses of spatially aggregated data may, however, be
spurious if the spatial aggregation encompasses areas of
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uncorrelated outbreak cycles (see, for example, Grenfell

et al. 2001, Ferrari et al. 2008).

The ‘‘safe’’ way to avoid spurious harmonics is to

analyze the defoliation time series at their finest

available resolution. We have attempted this, but our

efforts were thwarted by spatial errors and/or the

inherent local stochasticities (O. N. Bjørnstad and

A. M. Liebhold, unpublished results), because while at

the meso-scale outbreaks tended to follow the broad

harmonic scheme, the outbreak records for any given

grid cell can be hit-or-miss. Here we take a ‘‘spatial-

smoothing’’ approach to resolving this, building on the

time-lagged spatial-correlation approach developed in

Bjørnstad et al. (2002) and Seabloom et al. (2005).

Consider the panel of spatially indexed time series zi,t
where i represents spatial location and t represents time.

In the absence of spatial error the lag-l autocorrelation

at location i is, according to standard time series theory

(e.g., Priestley 1981),

XT�l

t¼0

zi;t � zi

� �
zi;t�l � zi

� �
=r2

i ð1Þ

where zi represents the mean of the time series and ri

represents the standard deviations. Spatial errors,

however, will bias our estimates toward 0. We therefore

consider the more general family of lag-l spatial

correlation between the observation in year t at location

i and year tþ l at location j as a function of their spatial

distance dij. The time-lagged nonparametric spatial

cross-correlation function can be estimated as

C̃ðd; lÞ ¼

Xn

i¼1

Xn

j¼1

SðdijÞwij;l

Xn

i¼1

Xn

j¼1

SðdijÞ
ð2Þ

where S( ) is an equivalent kernel smoother (we use a

smoothing spline, according to previously published

methods: Bjørnstad and Falck 2001), and wij,l is the

time-lagged cross-correlation between two time series of

abundance, zi , at location i and, zj , at location j (either at

similar or different locations) lagged by l years relative

to each other (either in the same year, l¼ 0, or in lagged
years). This cross-correlation is given by

wij;l ¼
�

zi � zi

�
3
�

zj;l � zj

�>�
rirj

where underscored symbols represent vectors (time

series), ‘‘3’’ denotes matrix multiplication, and ‘‘>’’
denotes matrix transposition. The estimated time-lagged

cross-correlation will depend on both spatial distance

and temporal lag (Fig. 1).

The sequence of time-lagged ‘‘y-intercepts,’’ C̃(0, l ),
represents our ‘‘spatial-smoothing’’ estimate of the

temporal autocorrelation function (ACF; visualized,

for example, in Fig. 1A, B). Our spatial-smoothing

estimator will be biased toward 0 for two distinct

reasons. Firstly, the spatial error will translate into

significant observational errors and observational errors

on any times series will bias its estimated autocorrelation

function toward 0. Secondly, our outbreak data

approximates the true underlying gypsy moth abun-

dance using a binary switch. Epperson (1995) discusses

the consequence of studying such binary data in the

context of spatial population genetics and show that the

overall shape of the underlying spatial correlogram is

preserved but all estimated correlations are strongly

biased toward 0 (see also simulations in Bjørnstad and

Falck [2001]). In the face of the combined effects of both

of these sources of error, we use the bootstrap to

ascertain statistical significance of our spatial-smoothing

estimator. To erect 95% bootstrap confidence intervals

we resample time series among locations with replace-

ment (Bjørnstad and Falck 2001). For each forest type,

we used 500 bootstrap replicates for each y-intercept

estimator of the ACF in the sequence of time-lagged

nonparametric spatial covariance functions (Bjørnstad

et al. 2002, Seabloom et al. 2005). We considered time

lags out to 12 years (covering the dominant periodicities

reported for the gypsy moth (Johnson et al. 2005).

A natural-enemy model

We propose an initially nonspatial but subsequently

two-patch model to explore the transition in dynamics

and distinct superharmonics observed in this system.

The gypsy moth is a univoltine species that overwin-

ters in the egg stage. Larvae hatch in the spring and

emerge as short-lived adults following a brief pupal

period. Females lay 50–1000 eggs in a single conspicu-

ous egg mass. Two distinct groups of natural enemies

are thought to induce critical density-dependent mor-

tality during the life cycle: (1) epizootics of specialist

pathogens (both virual and fungal) kill larvae, particu-

larly at high densities (Doane 1970, Campbell 1975,

Dwyer and Elkinton 1993); and (2) generalist predators

(particularly small mammals) eat pupae (Campbell and

Sloan 1977, Smith 1985, Elkinton et al. 1996, Jones et al.

1998). Other natural enemies, such as specialist and

generalist parasitoids, also attack the gypsy moth.

However, Dwyer et al. (2004) showed that a model that

incorporated pathogens and predators could account for

the key features of the population cycles observed in

field gypsy moth populations. To dissect the effects of

generalist predators on gypsy moth oscillations, we build

on the model developed by Dwyer et al. (2004). For our

purpose we modify the model in three main ways: (1) the

natural enemies are assumed to operate in a sequential

fashion to better reflect how the virus affects larvae and

the predators affect pupae, (2) we include an explicit

model for the predator population, and (3) we assume a

Type II functional response for the predator.

The logic of the model is as follows. Each female is on

average assumed to produce k offspring. Of these, a

density-dependent fraction of the larvae, I(Nt, Zt), will

succumb to disease, where Nt and Zt represents the
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number of uninfected and infected individuals, respec-

tively. As derived by Dwyer et al. (2000, 2004), this

fraction can be calculated according to the implicit

equation for the expected final epidemic size:

IðNt; ZtÞ ¼ 1� 1þ m̄
lk

h
NtIðNt; ZtÞ þ qZt

i� ��k

ð3Þ

where l is the rate at which cadavers lose infectiousness,

q is the susceptibility of hatchlings relative to later-stage

larvae, m̄ is the average transmission rate, and k is the

inverse squared coefficient-of-variation of transmission

rate. The assumptions here are that the epizootic is rapid

relative to the annual life cycle of the host so that the

epidemic will run it course during the duration of the

FIG. 1. Correlation functions derived by application of space–time correlation with spatial error to historical (1975–2002)
binary gypsy moth defoliation data. (A) Examples of the time-lagged spatial cross-correlation functions for the oak–pine forest for
time lags 1 and 2. The two open circles with error bars in panels (A) and (B) illustrate (for time lags 1 and 2) how the ‘‘spatially
smoothed’’ temporal autocorrelation functions are constructed from the time-lagged spatial cross-correlation functions. (B–D)
‘‘Spatially smoothed’’ temporal autocorrelation functions in forests ranging from dry (B; oak–pine) to wet (D; maple–beech–birch).
The autocorrelation functions show that the former cycle with a 4–5 year period but the latter with a 9–10 year period (see also
Johnson et al. 2006a). Intermediate forest types (C; oak–hickory) have a dominant 9–10 year cycle and a subdominant 4-year
superharmonic.

January 2010 109SUBHARMONICS IN THE GYPSY MOTH CYCLE



larval period, and that there is gamma distributed

heterogeneity in susceptibility among hosts (Dwyer et al.

2000). The number of infectious larval cadavers in year t

þ 1 is then

Ztþ1 ¼ f kNtIðNt; ZtÞ ð4Þ

where f is the pathogen overwinter survival, and the

number of hosts that survive the larval epizootics to

reach the pupal stage is

Ñt ¼ kNt

h
1� IðNt; ZtÞ

i
: ð5Þ

Predation by generalist rodent predators, such as deer

mice (Peromyscus spp.), on pupae can be a large source

of mortality particularly in low-density populations

(Campbell and Sloan 1977, Smith 1985). However, these

predator populations are generally not, in turn, affected

by gypsy moth densities. They tend instead to depend on

other food resources such as acorns, berries, and other

invertebrates (Elkinton et al. 1996, Jones et al. 1998).

The fluctuations in predator populations can induce

considerable variation among years and among sites in

rates of predation (Yahner and Smith 1991, Elkinton et

al. 1996, Jones et al. 1998, Liebhold et al. 2000,

Goodwin et al. 2005). Here, we model temporal

variation in predator populations according to a,

possibly stochastic, Ricker model (though other models

may be equally plausible):

Ptþ1 ¼ expðrtÞPtexp 1� Pt

K

	 

ð6Þ

where the instantaneous rate of increase, rt, represents a

constant or a sequence of independent identically

distributed normal random deviates (with mean r and

standard deviation r̃; we generally set the former to 2

and the latter to 0 or 0.3), and K represents the predator

carrying capacity. Because dynamical consequences of

predation is the focus of this study we have chosen to

include stochasticity in this component of the model

only, though other parts of the system are obviously also

likely to be affected by temporal variability (Dwyer et al.

2004). Note that even though Peromyscus spp. have

multiple generations per year, we think of P as

representing their abundance at the time that gypsy

moth pupae are present in the field (usually in late June–

early July).

We assume a type II functional response of these

predators (Elkinton et al. 2004, Schauber et al. 2004).

The instantaneous rate of predation in any given year is

then Ptac/(cþ Ñt), and the per capita probability of not

succumbing to predation (in the absence of aggregation,

interference, etc.; Murdoch et al. 2003) is exp[�PtacDt/
(c þ Ñt)], where Dt is the duration of the pupal stage

(;10 days), and a and c are constants determining the

maximum attack rate and the half-saturation point of

the predators. By writing c ¼ b(2 þ
ffiffiffi
3
p

), the maximum

predation rate of our type II model (¼1 � exp[�aP/2])
and the half saturation occur for the same host density

(Ñ¼ [2þ
ffiffiffi
3
p

]b) as in Dwyer et al.’s (2004) type III model

(see Appendix). For high predator abundance (K¼ 10),

a value of a ¼ 0.98 gives a predation probability

comparable to the empirical observations of Elkinton

et al. (2004) of maximum daily predation probability of

0.4.

Our full model for the adult gypsy moth dynamics is

then

Ntþ1 ¼ Ñtexp �
ab 2þ

ffiffiffi
3
p� �

Pt

2 Ñt þ b 2þ
ffiffiffi
3
p� �� 

( )
ð7Þ

where Ñt is as given by Eq. 5. Note that Ntþ1 also

represents the number of egg masses laid by the adults in

year t and is proportional to the number of eggs that

hatch in year tþ 1.

Predation on low-density populations that operates

via a type II functional response is capable of

introducing weak or strong Allee effects in prey

populations (Courchamp et al. 1999, Gascoigne and

Lipcius 2004). Because Allee effects can have profound

influences on dynamics—and are thought to be impor-

tant in gypsy moth dynamics (Johnson et al. 2006b,

Tobin et al. 2007)—we quantified Allee effects arising

from this interaction between gypsy moths and preda-

tors using the realized per capita growth rate Rt ¼
Ntþ1/Nt. To study synergism or interference with the

pathogen, we quantify emergent Allee effects in the

absence of the pathogen (Ñt ¼ kNt) and in the presence

of large epizootics (90% prevalence for which Ñt ¼
0.10kNt).

We then examine the effects of predator carrying

capacity on the periodicity of gypsy moth outbreaks. We

present results based on 500 replicate simulations for

each value of K, ranging from 0.1 to 9 by 0.1 increments

(simulated over 200 years, using the last 100 iterations to

quantify periodicity). We use periodograms to identify

the strongest oscillatory periods of each simulated gypsy

moth time series. For each predator carrying capacity,

we calculate the average standardized spectra over the

500 simulations. We also investigate the purely deter-

ministic model in which predator abundance is held

constant.

In order to analyze the impact of predators on the

gypsy moth–pathogen interaction and the resulting

dynamics, we plot gypsy moth phase portraits from

the deterministic model with relatively high and low

predator carrying capacities. We use the last 30 points of

a 50-iteration of the deterministic model.

A two-patch model provides a simple, spatially

explicit extension of the model described above.

Populations were simulated in two distinct patches that

were spatially coupled through density-independent

movement of virus-infected larvae at some rate, d (see,

for example, P. Fujita and G. Dwyer 2005, unpublished

manuscript). This mechanism of coupling provides a

simple way to represent a more complex coupling of

several natural-enemy populations (e.g., spatial move-
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ment of parasitoids; see Gould et al. 1990). The

important question here is what dynamics may arise

when the two spatially coupled patches differ in

generalist-predator abundance and in particular the

possible emergence of coexisting subharmonics.

All calculations were performed in R (R Development

Core Team 2006). We used the following values for the

parameters (taken from Dwyer et al. 2004): m̄¼ 0.9, l¼
0.32, k ¼ 1.06, q ¼ 0.8, k ¼ 74.6, a ¼ 0.98, b ¼ 0.05, f ¼
21.33, and r ¼ 2. The time-lagged nonparametric cross-

correlation functions were calculated using the Sncf

function in the ncf package.

RESULTS

Estimating outbreak periodicity from space–time data

with spatial error

The defoliation data set encompass 552 km2 of oak–

pine, 26 796 km2 of oak–hickory and 11 648 km2 of

maple–beach–birch forest-type groups that experienced

at least one defoliation event between 1975 and 2005.

Our analysis of time series from 2 3 2 km2 raster cells,

therefore, encompasses respectively 199, 10 036, and

6916 time series of 31 years of length. Fig. 1 depicts the

spatial-smoothing estimates of the autocorrelation

function (ACF) for three forest-type groups ranging

from the more xeric (oak–pine) through the more mesic

(maple–beech–birch). The estimated time-lagged cross-

correlation clearly depends on both spatial distance and

temporal lag (Fig. 1A). Generally the correlations decay

both with spatial distance and temporal lag. But the

temporal dependence, in particular, is non-monotonic

and cyclic because of the regularity of outbreaks.

Outbreaks in the oak–pine forest type have significant

positive autocorrelation at time lag 4 and lag 10 (Fig.

1B), outbreaks in the maple–beech–birch forest type

have significant positive autocorrelation at lags 8

through 10 (Fig. 1D), and outbreaks in the oak–hickory

forest type have significant positive autocorrelation at

lags 9 and 10 and marginally significant autocorrelation

at lag 4 (Fig. 1C). The analysis therefore clearly

demonstrates that the superharmonic in the oak–pine

and oak–hickory sites is a real phenomenon and not an

artifact of averaging across coexisting attractors, though

the ;5-year cycle, where present, is usually a less

dominant feature than the more common ;10-year

cycle.

A natural-enemy model

The model predicts that gypsy moth population

increases are followed by an increase in the proportion

of virus-infected hosts with a time lag (Fig. 2). This

results in overcompensation in disease mortality so that

gypsy moth populations crash to very low densities

following population peaks. Mortality caused by path-

ogens remains near 100% during the 2–3 years following

the gypsy moth outbreak, and then declines to a low or

intermediate level during the troughs. When gypsy moth

abundance is low, significant mortality caused by

predators is superimposed on this basic mechanism.

Per capita predation rates are greatest when gypsy moth

populations are low, and this slows the increase in gypsy

moth populations back to outbreak levels. Predation

rates are furthermore predicted to be more periodic than

the predator dynamics because levels of predation

depend on both predator abundance and gypsy moth

abundance via the type II functional response. Thus, the

basic oscillatory pattern resulting from the interaction

between gypsy moth and pathogens induces an oscilla-

tory behavior in the predation rate.

Examination of gypsy moth population growth at low

population densities shows that predators generally

generate a weak Allee effect (Fig. 3A). When we

considered high mortality rates (90%) due to pathogens

(which can happen just after the population collapse),

FIG. 2. An example of fluctuations of gypsy moth abundance (in arbitrary units) predicted by the stochastic model with
associated mortality rates due to predators and pathogens when predator carrying capacity K¼ 5, and predator growth rate is log-
normal with r (the mean instantaneous rate of increase)¼ 2 and r̃¼ 0.3).
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the overall growth rate of gypsy moth declines below 1

at relatively high predator abundance (7–20), indicating

that a strong Allee effect can result from the interaction

between the natural enemies (Fig. 3B). A predator

population level of 10 or 20 is very high for our

theoretical model, though stochasticity sometimes tem-

porarily causes such levels when the predator carrying

capacity exceeds 7. When predator populations fluctuate

at low densities, gypsy moth growth rate is not affected

substantially (Fig. 3). In this case, gypsy moth popula-

tions increase more rapidly following population crash-

es, and the period of the outbreak cycle is significantly

shortened (;6 years for the parameter values used here)

and dominated by the virus–moth interaction (Fig. 4).

Spectral analysis of simulated time series shows that

the dominant period of gypsy moth populations should

increase with increasing predator carrying capacity.

Plots of the standardized power of the periods show

that the dominant period increases smoothly from 6 to

.10 years with increasing predator carrying capacity,

though the strength of periodicity progressively decreas-

es at high predator densities (Fig. 4A, B). There is some

evidence of a subdominant superharmonic that increases

from 3 years up to ;5 years with increasing predator

carrying capacity (Fig. 4A, B). This pattern is more

pronounced in the deterministic simulations (Fig. 4B).

At high predator densities (carrying capacity . 9) the

predator can drive the gypsy moth extinct. Phase

portraits show how the predators amplify oscillations:

when predator carrying capacity is low, gypsy moth

populations orbit in a relatively compact part of the

phase plane (Fig. 5B) but at high predator carrying

capacities, populations orbit in a much broader (low-

frequency) orbit (Fig. 5A).

One facet of the model’s behavior crudely matches the

empirical findings: the cycle length is predicted to

increase from ;6 years to around 10–12 years as a

function of generalist predator pressure (Smith 1985,

Liebhold et al. 2005, Johnson et al. 2006a). However the

nonspatial model also exhibits a behavior that is

contrary to available empirical evidence. The nonspatial

model predicts the period of gypsy moth outbreaks to

increase continuously as a function of predation

pressure. This is at odds with our empirical analysis,

which revealed the coexistence of a low- and a high-

harmonic cycle across the landscape but no intermediate

frequencies (Fig. 1; see also Johnson et al. 2006a). In a

preliminary attempt to explain this discrepancy, we

studied the model’s behavior with a spatially coupled

two-patch extension with heterogeneity in predator

carrying capacity. In the first set of analyses we studied

the periodic behavior of the system assuming a range of

values for the dispersal rate (d ) when we assumed that

one patch (patch 1) had a high predator carrying

FIG. 3. Effects of predator abundance on low-density populations of gypsy moth, when (A) no host is infected with virus, and
when (B) 90% of larvae are infected with virus. The solid black line refers to K (carrying capacity)¼ 20, the solid gray line refers to
K¼ 10, the dashed black line refers to K¼ 7, and the dashed gray line refers to K¼ 2. The horizontal gray line indicates a realized
per capita growth rate of 1 (the Allee threshold).
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capacity (K1 ¼ 6) and the other patch (patch 2) had a

low predator carrying capacity (K2 ¼ 1). In the absence

of spatial coupling, these two patches would cycle

independently with 8- and 6-year periodicity, respective-

ly, as illustrated by the power spectra depicted in Fig.

6A, C. The upper middle panel (Fig. 6B) shows how the

power spectrum of the ‘‘slower’’ patch (K1 ¼ 6) evolves

as dispersal increases between the patches. With

increasing dispersal (at d around 0.05) the slower cycle

(K1 ¼ 6) gets first entrained on the faster cycle (the

dominant period is 6 years like that of patch 2, rather

than the inherent 8-year cycle in the absence of

coupling), then as coupling increases further (at d

around 0.10) a 12-year subharmonic period appears

(Fig. 6B). The periodicity of the low-predation patch

(patch 2) remains qualitatively unaffected. We show

examples of simulated time series in the Appendix (Fig.

A3).

In the second set of analyses we study how the

difference in predator carrying capacity affects the

periodic behavior of the coupled system. We assume

dispersal rate to be high (d ¼ 0.12) and the predator

carrying capacity in patch 2 to be low and constant at K2

¼ 1. We then vary the predator carrying capacity in

patch 1 between 1 (i.e., no heterogeneity) and 6 (strong

heterogeneity). With no heterogeneity the power spectra

of the patches are identical with a dominant 6-year cycle

(Fig. 6D). As the heterogeneity increases (2 , K1 , 5)

we can see that the entrainment of the slower cycle on

the faster cycle is robust (Fig. 6E). In the absence of

coupling the period would be predicted to shift

gradually from 6 years to 8 years under this scenario

(Fig. 4). The appearance of the subharmonic depends

strongly on the degree of patch differences. Only when

the predator carrying capacities are widely different (K1

. 5) does the subharmonic appear (Fig. 6F). While a

comprehensive analysis of the two-patch model is

outside the scope of this paper, these preliminary

analyses serves as a proof-of-concept that in the

presence of spatial coupling, superharmonic attractors

can coexist whereas nonharmonic attractors cannot,

thus offering a landscape-level mechanism of discrete

jumps in periodicity while the nonspatial theoretical

model predicts a smooth transition.

DISCUSSION

Periodic oscillations in forest-insect populations have

long attracted considerable attention and a variety of

mechanisms have been proposed to explain them (Myers

1988, Berryman 1996, Kendall et al. 1999, Liebhold and

Kamata 2000). These mechanisms include host–patho-

gen interactions, host–parasitoid interactions, maternal

effects, and induced host defenses. Though each of these

mechanisms appears to be capable of generating

FIG. 4. Effects of predator carrying capacity on the standardized power spectra of the gypsy moth model. (A) Stochastic model
and average of 500 simulations (r¼ 2, r̃¼ 0.3). (B) Deterministic model assuming constant predator abundance. We iterated the
model for 200 generations and quantified the periodicity based on the last 100 generations.
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population cycles, the definitive causes of periodic

oscillations have remained elusive in most species.

Furthermore, there is growing evidence that population

cycles are not necessarily caused by interactions with a

single species or a single guild of species; instead, it

appears that many such cycles are the result of complex

trophic interactions (Royama 1997, Turchin et al. 2003).

Geographic variation in the strength of the trophic

interactions can in turn result in geographic variation in

population dynamics (e.g., Bjørnstad et al. 1998).

Periodic oscillations in abundance have been widely

observed in the dynamics of many different types of

animal populations including foliage-feeding insects

such as the gypsy moth. Our analyses of time–space

correlations (Fig. 1A, B) confirm that in addition to the

existence of simple periodic oscillations of period 9–10

years, some populations also exhibit superharmonic

oscillations with periods of 4–5 years, as previously

discussed in Johnson et al. (2006a). Furthermore, the

strength of the superharmonic varies among different

forest types.

There are few precedents in the literature for our

observations of superharmonic oscillations in animal

populations. In a manner somewhat reminiscent of the

behavior of gypsy moth populations, Volney and

McCullough (1994) found that populations of the jack

pine budworm, Choristoneura pinus, located in dry sites,

exhibit oscillations with a period of 5–6 years but

populations in mesic sites are characterized by outbreak

periods of ;10 years. However they did not report on

populations that exhibited both periods. There are many

examples of period-doubling bifurcations predicted by

various nonlinear population models (e.g., Kot 1989,

Stone 1993) but the superharmonic oscillations (Fig.

1A, B) seen in the gypsy moth appear to be the best

empirical evidence for this phenomenon to date.

However, none of the models previously found to

exhibit period doubling would seem to apply directly

to the gypsy moth and therefore they do not adequately

explain the mechanisms responsible for its superhar-

monic oscillatory behavior.

Host–pathogen interactions have been implicated as

causes of population cycles in many forest-insect

species, such as the larch budmoth (Anderson and

May 1980), western tent caterpillar (Myers 2000), and

the Douglas-fir tussock moth (Shepherd et al. 1988) as

well as the gypsy moth (Elkinton and Liebhold 1990,

Dwyer and Elkinton 1993, Dwyer et al. 2004). However,

despite the fact that pathogens, such as viruses,

sometimes cause massive epizootics when hosts reach

high densities, these interactions alone often do not

satisfactorily explain oscillatory patterns seen in hosts

(Turchin et al. 2003). Unfortunately, there have been

relatively few investigations of how insect pathogens

interact with other mortality agents (Hochberg 1989).

Generalist predators have long been recognized to play

critical roles in the dynamics of forest insect populations

though there is scant evidence that they, alone, are

capable of generating population cycles. We report here

on a model that describes both the interaction between

FIG. 5. Phase portraits representing pathogen density vs. host density (log10-transformed), with predators set to a constant (r̃¼
0). K is the predator carrying capacity. We iterated the model for 50 generations and plot only the last 30 points. We used the same
initial values as in Dwyer et al. (2004: Fig. 3b).
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the gypsy moth and its viral pathogen as well as the

interaction between this insect and generalist-predator

populations. This model exhibits periodic oscillations as

a result of the overcompensatory numerical response of

the virus. At high host levels, the virus causes extensive

mortality that causes outbreak populations to crash to

very low levels. Following this crash, populations slowly

increase to outbreak levels again (Fig. 2). Simulations

indicate that there is a direct link between declines in

predation rate and increases in gypsy moth populations

(Fig. 2). Predation serves to slow the return of gypsy

moth populations to outbreak levels. As a result, the

gypsy moth oscillation period is positively related to

predator carrying capacity (Fig. 4). In the absence of

predators, populations are predicted to exhibit weak

oscillations with periods of 5–6 years (Fig. 4). However,

as the predator carrying capacity increases (and the

realized gypsy moth growth rates correspondingly

decrease), the dominant period of oscillations progres-

sively increases.

Our results suggest an explanation for the geograph-

ical variation in gypsy moth populations that are

observed in the field (Fig. 1). Populations of the gypsy

moth’s small-mammal predators are known to be more

abundant at mesic than at xeric sites (Smith 1985,

Yahner and Smith 1991, Liebhold et al. 2005). Gypsy

moth outbreaks are furthermore known to be more

frequent at dry oak-dominated sites (Bess et al. 1947,

Houston and Valentine 1977). Our model indicates that

the higher abundance of generalist predators in the

mesic sites serves to prolong the build up of gypsy moths

following the outbreak crash, thereby explaining the

lower outbreak frequency at these sites. Previous theory

predicts that the type II functional response of generalist

predators to gypsy moth densities might create an Allee

effect (Gascoigne and Lipcius 2004) and indeed our

model confirms this (Fig. 3). Interestingly, as predator

FIG. 6. Predicted dynamics of the two-patch model with varying dispersal (upper panels) and heterogeneity in predator
carrying capacity (lower panels). In panels (A)–(C) the predator carrying capacities (K) are assumed constant at (A) K¼6 (patch 1)
and (B) K¼1 (patch 2), and movement rates are assumed to vary. Panels (A) and (C) show the predicted power spectra for the two
patches in the absence of coupling; panel (B) shows the predicted power spectra for patch 1 (the high-predation patch) as dispersal
rates increase. In panels (D)–(F) the predator carrying capacity in patch 2 is assumed constant at K¼ 1 and dispersal constant at
0.12 while the carrying capacity in patch 1 is varied. Panels (D) and (F) show the predicted power spectra for K ¼ 6 and K ¼ 1,
respectively; panel (E) shows the predicted power spectra for patch 1 as the predator carrying capacity is varied. The power is
calculated using the standard periodogram applied to each simulated time series.
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populations increase, the Allee effect shifts from being

weak to strong (Fig. 3B). Predation together with mate-

finding failure may be at the heart of the significant Allee

effect evidenced in the gypsy moth invasion of the

United States (Johnson et al. 2006b, Tobin et al. 2007).

While simulations presented here demonstrate that

variability in generalist predator densities can explain

the observed geographical variation in the periodicity of

gypsy moth populations, we cannot completely exclude

other trophic interactions that may contribute to this

variation. For example, it is possible that geographical

variation in climate or host-tree species composition

affects the dynamics of the gypsy moth–pathogen

interactions. Another possibility is that geographical

variation in the abundance of parasitoids (caused by

variation in the abundance of alternative hosts) is

responsible for the observed variability in gypsy moth

dynamics. Despite the existence of a multitude of

possible alternative explanations for the observed

geographical variation in dynamics, we feel that the

hypothesis explored here is the most likely given the

considerable empirical evidence for both the central role

played by small mammals in gypsy moth dynamics and

evidence of geographical variation in generalist predator

abundance and impact on gypsy moth survival (Smith

1985, Yahner and Smith 1991, Elkinton et al. 1996,

Jones et al. 1998, Liebhold et al. 2005).

The finding that gypsy moth dynamics vary among

different areas in relation to the carrying capacity of

generalist predators suggests a pattern somewhat similar

to that proposed for the transition in dynamics of

certain cyclic Fennoscandian herbivores. Populations of

the autumnal moth, Epirrita autumnata, and voles of the

genera Microtus and Clethrionomys exhibit stronger and

more cyclic outbreaks in Northern latitudes, whereas

southern populations exhibit lower-amplitude oscilla-

tions or nonperiodic behavior. Klemola et al. (2002)

attempted to explain this gradient by the increased

dominance of generalist predators at lower latitudes.

Generalist predators do not generate delayed density

dependence because there is no numerical feedback and

therefore an abundance of generalist predators (a low

PLATE 1. Seven gypsy moth females laying eggs on a tree trunk in Sunset Park in State College on 7 July during the 2007
outbreak in Pennsylvania, USA. Photo credit: O. N. Bjørnstad.
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density of specialist predators) tends to stabilize prey

population. In our case, cycles are mainly produced by

an interaction with a specialist pathogen (instead of a

specialist predator as in Klemola et al. [2002]), but the

overall effect of generalist predators moderating the

fluctuations of prey populations seems to be similar.

Our nonspatial model predicts that the outbreak

period should increase as a continuous function of

predator carrying capacity. This gradual shift in

oscillation period is somewhat similar to that observed

along latitudinal gradients of Fennoscandian herbivores

discussed above. However, in the case of naturally

occurring gypsy moth populations, oscillations are

dominated by either a 4–5 year period or a 9–10 year

period or both, but intermediate periods are not

observed. The ultimate conclusion regarding the lack

of continuity in oscillation periods among different

habitats will need further study. However, our two-

patch model provides a ‘‘proof of concept’’ for spatial

coupling among heterogeneous patches as a possible

explanation. In the model, spatial coupling between

heterogeneous patches only permits coexistence of cycles

with the same period or harmonics thereof. Populations

in forests with low predator abundance (viz. oak–pine)

are predicted to outbreak with twice the frequency of

forests with high predator abundance (viz. maple–

beach–birch). Encouragingly, the spatial model can also

account for double peaked spectra with a dominant

cycle and a subdominant subharmonic, such as that

observed in the oak–hickory forest type.
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