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Abstract Explanations for the ubiquitous presence of
spatially synchronous population dynamics have as-
sumed that density-dependent processes governing the
dynamics of local populations are identical among dis-
junct populations, and low levels of dispersal or small
amounts of regionalized stochasticity (‘‘Moran effect’’)
can act to synchronize populations. In this study we
used historical spatially referenced data on gypsy moth
(Lymantria dispar) outbreaks to document that density-
dependent processes can vary substantially across geo-
graphical landscapes. This variation may be due in part
to geographical variation in habitat (e.g., variation in
forest composition). We then used a second-order log-
linear stochastic model to explore how inter-population
variation in density-dependent processes affects syn-
chronization via either synchronous stochastic forcing
or dispersal. We found that geographical variation in
direct density-dependence (first order) greatly diminishes
synchrony caused by stochasticity but only slightly
decreases synchronization via dispersal. Variation in
delayed density-dependence (second order) diluted syn-
chrony caused by regional stochasticity to a lesser extent
than first-order variation, but it did not have any

influence on synchrony caused by dispersal. In general,
synchronization caused by dispersal was primarily
dependent upon the instability of populations and only
weakly, if at all, affected by similarities in density-
dependence among populations. We conclude that
studies of synchrony should carefully consider both the
nature of the synchronizing agents and the pattern of
local density-dependent processes, including how these
vary geographically.
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Introduction

The field of population dynamics focuses on quantifying
and understanding variation in abundance through
space and time. Among these patterns, population cycles
and spatial synchrony have received considerable
attention (Royama 1992; Liebhold and Kamata 2000;
Turchin 2003). Population cycles refer to periodic
oscillations in abundance though there may be consid-
erable variation in both the strength and period of these
cycles (Berryman 1996; Kendall et al. 1998). Spatial
synchrony refers to changes in abundance that are
coincident among geographically disjunct populations
(Hanski and Woiwod 1993; Ranta et al. 1995; Bjørnstad
et al. 1999; Liebhold et al. 2004).

The apparent ubiquity of synchronous population
dynamics across a spectrum of animal taxa has recently
attracted considerable attention. While synchrony is
easily detected, the causes can be debatable. This is be-
cause similar patterns of synchrony can be caused either
by (1) dispersal of individuals between populations, (2)
movement of natural enemies (e.g., predators) among
populations or (3) correlation in exogenous stochastic
forces. The latter phenomenon, often termed ‘‘regional
stochasticity’’ or the ‘‘Moran effect’’ after the Australian
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statistician who was credited with first recognizing this
source of synchrony (Moran 1953), will result from cli-
matic fluctuations impacting (often in a subtle way) the
dynamics of populations; analyses of historical weather
time series demonstrate that virtually all weather vari-
ables are geographically synchronous. Furthermore, this
climatic correlation declines with distance in a manner
that often resembles the distance-dependent decline in
population synchrony of diverse taxa (Koenig 2002;
Liebhold et al. 2004).

Substantial theory on spatially synchronous dynam-
ics is centered on how oscillations driven by density-
dependent interactions can be spatially synchronized as
a result of dispersal or regionalized stochastic forcing
(Royama 1992; Ranta et al. 1995; Kendall et al. 2000;
Royama 2005). Moran (1953) used a stochastic second-
order autoregressive model to represent local population
dynamics and showed that any spatial correlation in
stochastic forcing would result in synchronization of the
dynamics of spatially disjunct populations. In detail,
Moran (1953) showed that whenever local dynamics are
linear (or ‘log-linear’) then the synchrony in dynamics
would equal the correlation in the stochastic forcing. A
key assumption in his analysis was that the density-
dependent processes affecting local population growth
are identical among the spatially disjunct populations.
Such an assumption is inherent in many of the recent
investigations of the synchronizing effects of regional-
ized stochasticity as well as dispersal (Ranta et al. 1995;
Kendall et al. 2000; Cazelles and Boudjema 2001).
However, paralleling the theoretical and empirical
inquiries into population synchrony, there are recent
studies documenting substantial geographical variation
in density-dependent processes (Saitoh et al. 1998; Wil-
liams and Liebhold 2000; Tkadlec and Stenseth 2001).
Geographic variation in density-dependence will usually
result in geographic variation in dynamics, particularly
with respect to intensity of outbreaks and periodicity
(Henttonen et al. 1992; Bjørnstad et al. 1998). These
differences in periodicity and dynamics may be expected
to affect the tendency of populations to ‘‘phase lock’’
(Rosenblum et al. 1996; Blasius and Stone 2000). As a
result, such geographical variability may dramatically
affect synchronization. Blasius et al. (1999), using a tri-
trophic model of multiple patches coupled via dispersal,
showed that even in the presence of geographical vari-
ation in model parameters, synchronization may still
occur but they did not explore the extent to which this
geographical variation impacted synchronization.

Motivated by Peltonen et al.’s (2002) analysis of
spatial variation in gypsy moth dynamics, we investi-
gated how geographical variation in density-dependence
impacts spatial synchrony. First, we illustrate geo-
graphical variation in density-dependence using histori-
cal data on gypsy moth, Lymantria dispar, outbreaks in
North America. Next we use theoretical models to ex-
plore how variation in density-dependence will mould
the synchronizing effects of dispersal and regionalized
stochastic forcing.

A simple model

We used a stochastic second-order log-linear model to
represent population dynamics. Although the dynamics
of most populations are inherently nonlinear (Turchin
2003), log-linear models often accurately approximate
the stochastic dynamics of many populations (Rough-
garden 1975). The model is of the same family as the
model that Moran (1953) introduced to discuss syn-
chronization via regional stochasticity [and this class has
recently been used to study synchronization via dispersal
(e.g., Barbour 1990; Kendall et al. 2000)]. Within this
formulation, the dynamics of two populations whose
densities in year t are represented by Xt and Yt will be
given by:

Xt ¼ Xt�1e
a1 logðXt�1Þþa2 logðXt�2Þþex;t ;

Yt ¼ Yt�1e
b1 logðYt�1Þþb2 logðYt�2Þþey;t :

ð1Þ

where ex,t and ey,t are random normal deviates with
means of zero and standard deviations rX and rY,
respectively. For log-transformed values, these dynamics
translate to the paired second-order autoregressive
model:

xt ¼ a1 xt�1 þ a2 xt�2 þ ex;t;
yt ¼ b1 yt�1 þ b2 yt�2 þ ey;t;

ð2Þ

where x=ln(X), y=ln(Y), a1=a1+1, a2=a2, b1=b1+1
and b2=b2. The parameters a1 (or b1) and a2 (or b2)
represent the strength of direct (first-order) and delayed
(second-order) density-dependent effects on population
1 (or population 2). The first function in Eq. 2 can be
rearranged as:

Rx;t ¼ lnðXt=Xt�1Þ ¼ ðxt � xt�1Þ
¼ ða1 � 1Þxt�1 þ a2 xt�2 þ ex;t: ð3Þ

That is, the change in population 1’s density, Rx,t, is
linearly related to the log of population density in the
current (direct density-dependence) and previous (de-
layed density-dependence) generations. This second-
order model has been widely used as an approximation
of the oscillatory dynamics of a variety of taxa and is
known to embrace a diversity of behaviors ranging from
periodic oscillations to random walks, etc. (Royama
1992). Figure 1a maps the dynamics of the second-order
stochastic model under various parameter values
[parameters outside of the triangle result in divergent
dynamics (Royama 1992)]. Parameter values falling
within the upper portion of the triangle result in boun-
ded random-walk dynamics. Inside the arch within the
lower portion of the triangle, the dynamics will be
periodic (in the presence of stochastic excitation).

Geographical variation in gypsy moth dynamics

The gypsy moth, L. dispar, is a leaf-feeding insect, native
to most of temperate Europe and Asia but introduced in
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North America. Throughout much of its range, gypsy
moth populations exhibit episodic outbreaks; previous
analyses indicate a statistical tendency for either a 10- or
5-year periodicity (Johnson et al. 2005, 2006). Further-
more, outbreaks are partially synchronized throughout
North America (Williams and Liebhold 1995b; Peltonen
et al. 2002). We fit the second-order log-linear (autore-
gressive) model to 150 geographically disjunct gypsy
moth time series from the northeastern USA. The time
series spanned the period 1975–2002 and represented the
proportion of land area defoliated in 25·25 km cells.
The details of time-series construction from annual
aerial survey maps are given in Peltonen et al. (2002).
The 150 locations used here were the most frequently
defoliated areas of the northeastern USA during the
1975–2002 interval.

Figure 1b shows the estimated second-order model
parameter values mapped in parameter space. Both the
first- and second-order parameters exhibited consider-
able variation. Most parameter values fell within the
slow period oscillatory region of parameter space in
concordance with the overall 10-year periodicity of these
populations, but with significant spatial variation.

Geographic mapping of parameter values (Fig. 2) indi-
cated that values at nearby locations were similar [a
detailed statistical analysis of this autocorrelation is
presented in Peltonen et al. (2002)]. In Fig. 1b, the 150
time series are coded according to the dominant forest
type in which the populations were located. These forest
types were determined by overlaying time-series loca-
tions with a forest-type group map (Eyre 1980). Though
there was general overlap in the parameter values among
the various forest types, there were some clear trends.
For example, populations located in the white pine

Fig. 2a, b Map showing geographical variation in second-order
model parameters fit to time series of yearly area defoliated by the
gypsy moth in individual 25·25 km cells in the northeastern US.
a First-order parameter (a1) values. b Second-order parameter (a2)
values
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Fig. 1a, b Parameter space for the second-order linear model,
Eq. 2. a Population behavior in various regions of the parameter
space. Gray lines with arrows correspond to the range of parameters
explored in simulations. b Parameter values fit to time series of
yearly area defoliated by the gypsy moth in individual 25·25 km
cells in the northeastern USA, coded by the dominant forest type
classified in a map published by Eyre (1980)

133



group tended to have low second-order parameter values
and may consequently be expected to exhibit more
strongly periodic dynamics.

Synchrony and geographical variation

Given the geographic variation in density-dependence,
we ask what is the consequence of this variation on
synchronization of populations? The North American
gypsy moth has very limited dispersal capabilities (fe-
males are flightless). It is therefore natural to consider
regional stochasticity to be the crucial determinant of
spatial synchrony (Williams and Liebhold 1995b;
Peltonen et al. 2002). Given our time-series analyses, we
inquire into how geographical variation in density-
dependence affects synchronization through regionalized
stochasticity. For generality, we also investigate syn-
chronization through dispersal.

We simulated the dynamics of two linked populations
using Eq. 2. First we conducted a series of simulations in
which the first-order parameters, a1 and b1, were varied
from �0.9 to 1.1 in increments of 0.4 (second-order
parameters were held constant at a2=b2=�0.3). Then
second-order parameters were varied from �0.7 to 0.3 in
increments of 0.2 (first-order parameters were held
constant at a1=b1=0.6). These values encompass a
portion of the parameter space that represents both
periodic and random dynamics in the stochastic second-
order model (Fig. 1a) and encompass the range of
parameter values observed among North American
gypsy moth populations (Fig. 1b). For each parameter
combination, populations were initiated out-of-phase
and then simulated for 500 generations. The stochastic
term, et, was simulated as a random normal deviate with
mean=0, standard deviation r=0.5, and the correlation
between ex,t and ey,t fixed at 0.5. For such parameters,
Moran’s theorem provides the baseline correlation of 0.5
between populations with identical dynamics. We used
the final 100 generations of each simulation to calculate
periodograms (to quantify patterns of periodicity) and
measure synchrony, using the Pearson correlation coef-
ficient, between the two series. Each parameter combi-
nation was replicated 500 times, and results were
summarized as averages across these replicates.

As described above, simulations incorporated a Mo-
ran effect in that ex,t and ey,t were correlated (50%). In
order to simulate the effect of parameter variation when
synchronization occurred via dispersal, we replicated all
simulations with ex,t and ey,t uncorrelated, but with a
constant 10% transfer of individuals between popula-
tions each generation. Synchrony was always measured
directly following the dispersal step in simulations.

As according to theory (Fig. 1a), first-order param-
eter values (a1, b1) greatly influenced the period of
oscillations in the simulated series (online supplementary
Fig. 1). Oscillations had dominant frequencies of
around 0.45 (period�2) when a1=�0.9 and dominant
frequencies around 0.1 (period�10) when a1=0.7.

Obviously, when both populations were governed by
identical parameter values (i.e., a1=b1, the diagonal cells
in online supplementary Fig. 1) their spectra were
identical, and as parameters diverged, the two popula-
tions exhibited divergent spectra and different dominant
frequencies. Also, when first-order parameters were
identical, the synchrony of the two populations mirrored
Moran’s theorem (50%: the same level as correlation
between ex,t and ey,t) but when the parameters increas-
ingly differed, the level of synchrony eroded to zero
(Fig. 3).

The parameter map (Fig. 1a) shows how the second-
order parameter is inversely related to the strength of the
periodicity. The online supplementary material (Fig. 2)
illustrates this. The synchrony was greatest when sec-
ond-order parameters were identical (diagonal of Fig. 4)
and diminished as parameter values diverged. However,
this effect was not as strong as the effect of variation in
first-order parameters. Thus, it appears that the Moran
effect is more sensitive to variation in first-order
parameters than it is to variation in second-order
parameters.

Interestingly, the impact of geographical variation in
density-dependence on synchronization was quite dif-
ferent for dispersal-driven systems. As for environmen-
tal correlation, differences in first-order parameters led
to spectra with divergent periods (online supplementary
Fig. 3) and diminished synchrony (Fig. 5). However,
this decrease in synchrony was much less than in pop-
ulations synchronized via regional stochasticity (Fig. 3).

Fig. 3 Surface depicting synchrony (correlation) between time
series of populations a and b simulated with various values of the
first-order parameter in a second-order linear stochastic model
(Eq. 2) under regional stochasticity. (Standard deviation of et,
r=0.5, correlation between ex,t and ey,t was 50%; second-order
parameters a2=b2=�0.8)
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Comparing dispersal and regional stochasticity, the
effect of variability in second-order parameters was even
more divergent. Variability in second-order parameters
had no discernable effect on synchronization via

dispersal (Fig. 6) even though it did dilute synchrony
among populations subjected to the Moran effect
(Fig. 4). The finding that populations with different
second-order parameters were as synchronous as popu-
lations with identical second-order parameters is sur-
prising given that this causes conspicuous divergence of
the spectra (online supplementary Fig. 4).

While it is evident from Fig. 6 that differing second-
order parameters did not cause two populations linked
via dispersal to be less synchronous than when they had
identical parameters, the figure does show that syn-
chrony was greatest when both populations had either
low or high second-order parameter values. This trend is
also seen in extreme values of the first-order parameters
(Fig. 5), but it is never evident in populations synchro-
nized via regional stochasticity (Figs. 3, 4).

Discussion

Synchronization of disjunct populations through dis-
persal is well documented. So also is the ‘‘Moran effect,’’
in which populations governed by identical density-
dependent mechanisms will tend to synchronize when
influenced by regionalized stochastic effects. However, in
the real world, geographically disjunct populations are
often regulated by ‘‘non-identical’’ patterns of density-
dependent feedbacks: spatial heterogeneity is pervasive
in natural environments, and this can often lead to
geographic variation in intrinsic dynamics (Bjørnstad
et al. 1995, 1998; Tkadlec and Stenseth 2001). The effect

Fig. 6 Surface depicting synchrony (correlation) between time
series of populations a and b simulated with various values of the
second-order parameter in a second-order linear stochastic model
(Eq. 2) with 10% dispersal between populations. (Standard
deviation of et, r=0.5, correlation between ex,t and ey,t was 0%;
first-order parameters a1=b1=0.2)

Fig. 4 Surface depicting synchrony (correlation) between time
series of populations a and b simulated with various values of the
second-order parameter in a second-order linear stochastic model
(Eq. 2) under regional stochasticity. (Standard deviation of et,
r=0.5, correlation between ex,t and ey,t was 50%; first-order
parameters a1=b1=0.2)

Fig. 5 Surface depicting synchrony (correlation) between time
series of populations a and b simulated with various values of the
first-order parameter in a second-order linear stochastic model
(Eq. 2) with 10% dispersal between populations. (Standard
deviation of et, r=0.5, correlation between ex,t and ey,t was 0%;
second-order parameters a2=b2=�0.8)
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on synchrony of such spatial variation is an area that
clearly deserves more attention.

The gypsy moth populations discussed here exhibit
marked geographical variation in dynamics. The varia-
tion is spatially autocorrelated (Peltonen et al. 2002) and
associated—at least to some extent—with forest vege-
tation (Fig. 1b), testifying that observed variability is
not simply the result of sampling error, but the result of
habitat characteristics affecting interactions between the
gypsy moth, its hosts, and/or natural enemies. A more
extensive analysis of how gypsy moth dynamics are af-
fected by habitat variation is discussed by Johnson
(2006).

Using computational models we found that differ-
ences in density-dependent feedbacks among popula-
tions led to lower levels of synchrony than expected
under Moran’s theorem (Figs. 3, 4). Moreover, syn-
chronization through the Moran effect appears to be
more sensitive to variation in direct density-dependence
(first-order parameters) than to variation in delayed
density-dependence (second-order parameters). The
first-order parameter is a determinant of the period of
oscillations (as long as parameters are in the cyclic part
of the parameter space), while the second-order
parameter determines the strength of periodicity
(Fig. 1a); thus, the finding that variability in first-order
parameters more strongly dilutes synchronization than
does variability in second-order parameters indicates
that variability in oscillation period more strongly im-
pacts synchronization than does variability in periodic-
ity strength.

Given the all-pervasive spatial autocorrelation in
habitats and community compositions (Legendre 1993),
nearby populations will tend to have similar density-
dependent processes (Peltonen et al. 2002) (Fig. 2). As a
consequence, we may expect greater heterogeneity-in-
duced erosion of the Moran effect among more distantly
located populations. Moreover, since climatic correla-
tion tends to decline with distance (Koenig 2002),
Moran’s theorem alone predicts synchrony to decay
with distance even in the absence of variation in density-
dependence. The critical message here is that variation in
density-dependence among populations should cause
synchrony to decline more rapidly with distance than
would be expected from environmental correlation
alone, and that the details of this divergence depend
critically on whether the geographic variation is in the
direct or delayed feedbacks. This prediction was con-
firmed in simulations incorporating variation in density-
dependence using linear models fit to gypsy moth data
(Peltonen et al. 2002). Our present simulations refine this
prediction.

Aanes et al. (2003) studied time series of three geo-
graphically disjunct Svalbard reindeer populations and
concluded that populations were synchronized via re-
gional stochasticity; synchrony was diminished by geo-
graphic variation in density-dependent dynamics,
though they did not explicitly test for this. Ripa and Ives
(2003), as part of a larger study of trophic interactions

and synchronization via regional stochasticity, devel-
oped equations that predict synchrony between two
populations under a Moran effect, corrected for the ef-
fect of variable first-order dynamics. They found that
variability generally diluted synchronization; our simu-
lations illustrate their conclusion and extend these rela-
tionships to the second-order model.

The simulations reported here indicate that there are
both similarities and important differences in the way
variation in density-dependence affects synchronization
via regionalized stochasticity versus dispersal. When
direct density-dependence (as measured by first-order
parameters of the linear model) varies between popu-
lations, differences in the period of oscillations dilute
synchronization due to stochasticity, and to a lesser
extent, synchronization due to dispersal (Figs. 3, 5).
However, in the case of delayed density-dependence
(measured by second-order parameters), variability can
cause a slight decrease in synchronization due to re-
gional stochasticity (Fig. 4), but variation does not
appear to influence synchronization via dispersal
(Fig. 6).

Ripa (2000) explored how parameters of the second-
order linear model affected synchronization induced by
dispersal and found that that synchrony increased with
increasing instability. Ripa (2000) also demonstrated
that instability increases in the parameter space shown in
Fig. 1a as one moves from the center of the triangle
toward the margins. It follows from Ripa’s (2000) find-
ings that population instability can be expected to in-
crease at extreme values of the parameter space that we
explored (defined by the gray, arrowed lines in Fig. 1a).
We confirmed this conclusion by calculating the domi-
nant eigenvalues for each set of parameters as described
by Royama (1992). Instability increases with the domi-
nant eigenvalues (Yodzis 1989) and the higher dominant
eigenvalues are at the extreme values of a1 and a2 (online
supplementary Fig. 5). These relationships, thus, explain
our finding that synchrony increased with extreme val-
ues of either a1 or a2 in populations linked via dispersal
(Figs. 5, 6).

The simulations presented here were all based on log-
linear population models. However, most real popula-
tions are probably inherently nonlinear (Turchin 2003;
Royama 2005). Lande et al. (1999) used a stochastic
nonlinear model to show that synchrony was propor-
tional to the ratio of dispersal rate to the strength of
density-dependence, though they only considered direct
density-dependent effects. Ranta et al. (1997) compared
synchronization caused by regional stochasticity under a
first-order stochastic Ricker model with a similar sec-
ond-order model, and they found that the second-order
model generally produced greater levels of synchrony
though they did not explore a large range of parameter
values. Subsequently Ripa (2000) used linearized
stochastic models to arrive at the opposite conclusion:
the order of density-dependence had little effect on
synchronization. Engen et al. (2002) used a logistic
model to show that variation in carrying capacity
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generally diluted synchrony caused by either regional
stochasticity or by dispersal.

Royama (2005) recently conducted an extensive
analysis of the effect of regional stochasticity on syn-
chronization in another type of non-linear model.
Royama’s model was based upon the standard second-
order linear model but introduced nonlinearity via a
constraint on the net reproductive rate. He found that
populations governed by parameter combinations that
produce population convergence to equilibrium values
tended to exhibit levels of synchrony close to those
predicted by Moran (1953) for linear models. However
when his nonlinear model produced oscillating popula-
tions, synchrony was greatly diminished or non-existent.
While Royama (2005) did not specifically address vari-
ation in density dynamics among populations, he did
consider variation among populations in the magnitude
of the regionally stochastic effect; such variation can
greatly dilute synchronization.

In addition to the linear model described above, we
conducted limited simulations using a stochastic non-
linear Ricker-like second-order model. Simulations
indicated that both first-order and second-order param-
eters influenced both oscillation period and the strength
of periodicity so it was less obvious how to separate the
effect of each. Also, we found the associations between
degree of periodicity and degree of synchronization were
opposite for first- and second-order parameters. Con-
sidering these results, as well as similar studies described
from the literature (op. cit.), it would appear that there
remains considerable uncertainty about how differing
types of density-dependence affect synchronization in
nonlinear systems (Grenfell et al. 1998; Bjørnstad 2000).
Different approaches to modeling nonlinear population
behavior seem to produce contradictory results; the
ultimate resolution to this question may necessitate
empirical or experimental approaches.

Any comparison of first-order effects with second-
order effects is only relevant if we can ascribe these ef-
fects to specific types of biotic interactions. The types of
interactions that can cause first-order effects include
competition, generalist enemies, resource depletion, etc.
The types of interactions leading to second-order effects
are perhaps more difficult to identify because they in-
clude both specific interactions with a clear time lag
(e.g., the numerical response of a specialist predator,
maternal effects), as well as a variety of interactions that
are more complex (Royama 1992; Williams and
Liebhold 1995a) Thus, while it is easy to document
geographical variability in first- and second-order den-
sity-dependence from time series, deducing the reasons
for this variation requires detailed observation or field
experimentation.

In conclusion, the results here demonstrate that
geographical variation in density-dependence should be
considered when attempting to explain observed
patterns of spatial synchrony in field populations.
Clearly, synchrony is influenced by the degree of corre-
lation in stochastic effects and by geographical patterns

of dispersal. But perhaps more interestingly, the type of
density-dependent effects, especially the extent to which
they produce periodic behavior, and the manner in
which these effects vary geographically, will also influ-
ence patterns.

Acknowledgements We thank E. Luzader for technical assistance.
Esa Ranta and Jörgen Ripa provided very useful comments on an
earlier version of this paper for which we are grateful. This work
was supported by United States Department of Agriculture
National Research Initiative Grant #2002-35302-12656.

References

Aanes R, Sæther BE, Solberg EJ, Aanes S, Strand O, Øritsland NA
(2003) Synchrony in Svalbard reindeer population dynamics.
Can J Zool 81:103–110

Barbour DA (1990) Synchronous fluctuations in spatially separated
populations of cyclic forest insects. In: Watt AD, Leather SR,
Hunter MD, Kidd NAC (eds) Population dynamics of forest
insects. Intercept, Andover, pp 339–346

Berryman AA (1996) What causes population cycles of forest
Lepidoptera? Trends Ecol Evol 11:28–32

Bjørnstad ON (2000) Cycles and synchrony: two historical
‘experiments’ and one experience. J Anim Ecol 69:869–873

Bjørnstad ON, Falck W, Stenseth NC (1995) A geographic gradi-
ent in small rodent density fluctuations: a statistical modelling
approach. Proc R Soc Lond B Biol Sci 262:127–133

Bjørnstad ON, Stenseth NC, Saitoh T, Lingjære OC (1998) Map-
ping the regional transitions to cyclicity in Clethrionomys
rufocanus: spectral densities and functional data analysis. Res
Popul Ecol 40:77–84

Bjørnstad ON, Ims RA, Lambin X (1999) Spatial population
dynamics: analysing patterns and processes of population
synchrony. Trends Ecol Evol 14:427–431

Blasius B, Stone L (2000) Chaos and phase synchronization in
ecological systems. Int J Bifurcat Chaos 11:2361–2380

Blasius B, Huppert A, Stone L (1999) Complex dynamics and
phase synchronization in spatially extended ecological systems.
Nature 399:354–359

Cazelles B, Boudjema G (2001) The Moran effect and phase
synchronization in complex spatial community dynamics. Am
Nat 157:670–675

Engen S, Lande R, Sæther BE (2002) Migration and spatiotem-
poral variation in population dynamics in a heterogeneous
environment. Ecology 83:570–579

Eyre FH (1980) Forest cover types of the United States and Can-
ada. Society of American Foresters, Washington

Grenfell BT, Wilson K, Finkenstädt BF, Coulson TN, Murray S,
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