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The area-and-isolation paradigm, which has been the primary focus of metapopulation research, may not hold in some
animal metapopulations if within-patch preference is more important than patch area or connectivity. Recently,
regression analyses have been used to evaluate the effect of patch connectivity and various patch qualities including area.
However, their relative importance is not easy to determine, because patch qualities and connectivity are often spatially
autocorrelated. In this paper, we try to evaluate the relative importance of within-patch quality, patch connectivity and
spatial autocorrelation using variation partitioning methods from community ecology. We constructed three regression
models: within-patch quality, PCNM (principal coordinates of neighbor matrices) and patch connectivity based on a
one-season survey of a damselfly Copera annulata metapopulation. The contribution of within-patch quality was larger
than that of connectivity. There was no prominent effect of patch area. We conclude that the area-and-isolation paradigm
is not applicable to this C. annulata metapopulation. The spatial autocorrelation extracted by PCNM had the largest
contribution; it contained almost all of the variation of connectivity and overlapped with variation explained by within-
patch quality. Connectivity corresponded most closely to medium-scale spatial structure captured by PCNM (ca 640 m).
The mean effective dispersal scale was estimated to be 53 m. Within-patch quality, debris accumulation and vegetation
cover in the pond corresponded with the medium and small (ca 201 m) spatial scales from PCNM, though we could not
clearly explain the cause of this correspondence. We believe that our method will contribute to quick and effective
evaluation of spatial and non-spatial aspects of metapopulation.

The metapopulation theory is a standard and basic tool for
understanding population dynamics in fragmented habitats.
In the early metapopulation models, habitat patches were
assumed to be identical in quality and position (Levins
1970). Though these models greatly contributed to our
qualitative understanding of metapopulation dynamics,
they were highly conceptual and hardly rigorous for
empirical testing. This situation has improved over the
last 15 years through the formulation of more realistic
models that allow for quantitative prediction, facilitating
important applications in the study and management of
rare and endangered species (summarized by Hanski and
Ovaskainen 2003). Hanski-type models, many of which
inherited the basic structure of his first incidence function
model (IFM, Hanski 1994), were novel in that they used
patch occupancy as the state variable and patch area and
isolation as predictors, achieving spatially realistic yet simple
models. Researchers and conservation practitioners can
apply these models to their systems relatively easily because
patch area and position are easy parameters to collect

(Moilanen and Hanski 1998). These models have clarified
how metapopulation persistence depends on the balance
between colonization and extinction rates determined by
patch area and isolation. Their approach may be seen as an
area-and-isolation paradigm. This paradigm has proven
especially apt for butterflies: for example, Glanville fritillary
Melitaea cinxia in Finland (Hanski et al. 1996) and dingy
skipper Erynnis tages in North Wales (Gutiérrez 2005).

There are, however, numerous reports of patterns that
are not concordant with the area-and-isolation paradigm
(summarized by Harrison and Bruna 1999). Thomas et al.
(2001) reported that within-patch quality was more
important than patch size or isolation for three butterfly
metapopulations in the UK (Dennis and Eales 1997,
Hanski and Singer 2001). Krauss et al. (2005) reported
that patch size was indeed more important than local
covariates but of the same importance as isolation. There
are contrary studies reporting that incorporation of local
patch variables does not improve the predictive power of
area-and-isolation models (Moilanen and Hanski 1998).
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These contradictions may arise because environmental
requirements and dispersal ability vary from species to
species and these biological differences affect patch occu-
pancy in metapopulations. In specialist herbivores including
some butterfly species, the size of the host plant can be a
surrogate for patch capacity and the area-and-isolation
paradigm may hold to some degree (Dennis et al. 2003).
However, in carnivores and generalist herbivores whose
habitat patches are difficult to quantify, patch capacity
should be evaluated not only by area but also by other
factors within the patch. In addition, strong dispersers may
easily cover the whole region, in which case patch isolation
may not affect metapopulation structure (Harrison 1991).

Recently, applied ecologists are starting to evaluate the
effect of patch isolation (or conversely, patch connectivity)
and patch qualities in addition to area by various regression
analyses (Thomas et al. 2001, Fleishman et al. 2002). The
importance of patch connectivity or within-patch quality
can be evaluated by various goodness-of-fit measures, such
as coefficient of determination (R2). These approaches offer
greater insights into the processes structuring metapopula-
tions than do the process-oriented models based on area and
isolation. There has been, however, a problem in these
simple uni- or multivariate regression analyses; that is,
within-patch qualities are often spatially autocorrelated
across the landscape. Connectivity is also autocorrelated
by definition since it is calculated by a distance decay
function among habitats. Consequently, it is not easy to
determine the relative importance of within-patch qualities
and habitat isolation.

One way to mediate this problem is to use ‘variation
partitioning’, also known as ‘commonality analysis’, in
the regression analysis (Kerlinger and Pedhazur 1973).
Variation partitioning has been widely used in community
ecology (Borcard et al. 1992, Legendre and Legendre 1998,
Legendre et al. 2005), but less so in population ecology
(Heikkinen et al. 2005). Using this technique, we can
evaluate the contribution of patch connectivity, that
of within-patch quality and the overlap of these contribu-
tions.

In this paper, we seek to evaluate the importance of
within-patch quality, spatial autocorrelation and connectiv-
ity in a damselfly metapopulation from a one-season survey
using variation partitioning. Connectivity was calculated
based on the assumption of a Hanski-type metapopulation.
Various patterns of spatial structure were extracted by a
semi-parametric method: principal coordinates of neighbor
matrices (PCNM) (Legendre et al. 2005, see also Statistical
analysis) separate from metapopulation measures of con-
nectivity. Though we expect connectivity and the PCNM
component to be similar and to fully overlap if dispersal and
metapopulation dynamics are the only sources of spatial
autocorrelation, the autocorrelation can also arise from the
effects of other biotic processes, such as trophic interactions
(Bjørnstad and Bascompte 2001), or spatially structured
environmental factors (Thomas 1991, Borcard et al. 1992).
Following variation partitioning among the within-patch
environment vs spatial vs connectivity models, we discuss
the relative importance of within-patch quality and con-
nectivity.

Material and methods

The study species

Copera annulata (Zygoptera: Platycnemididae) occurs in
central China, Korea and Japan. It is univoltine in most
parts of Japan and is typically observed in June through
August. As a damselfly species, early life stages from egg to
the final instar larva occur in water. After emergence, the
adult insect can fly among water bodies for mating and
oviposition. We chose C. annulata as a model species for
our study because of the ease of delineating its habitat
patches: namely, farm ponds. In addition, it has been
reported that C. annulata prefers small and shady pond
conditions (Sugimura et al. 1999) and, therefore, the pond
area cannot simply be assumed to represent patch capacity.

Field observation

The study area is located in the northeastern Kanto plain,
Ibaraki prefecture, Japan (10�10 km, 3688’N, 14088’E;
Fig. 1). The typical land use in the area is a mixture of
forests, fruit orchards, crop fields, rice paddy fields, golf
courses and residential areas. We perused the national basic
maps (1: 2500) and aerial photographs of the area from
1994 to 1999 (about 1: 10 000 scale, stored and managed
by the Japan map center; Bhttp://www.jmc.or.jp/�) to
locate potential habitats for C. annulata such as ponds and
water holes in marshy areas. Rivers and ditches were
excluded from our survey because they are largely unsuitable
(Sugimura et al. 1999). All potential habitats were explored
to determine whether they had water year-round. Artificial
ponds such as water reservoirs and swimming pools were
also excluded as unsuitable. Seventy-four ponds were
selected as potentially suitable habitats for C. annulata.

Each pond was surveyed at least once by four well-
trained observers on sunny days between 16 June and 22
July, 2004 from the period of early to peak adult
emergence. The margins of the pond were explored
exhaustively by four observers on foot to catch adult
individuals. In the first round of the survey of 74 ponds,
we found C. annulata adults only at ponds which had
aquatic and riparian vegetation. Therefore, additional
capturing trials were conducted only for those ponds; we
did not visit the other ponds again. As a result, 25 ponds
were visited only once, 35 ponds twice and the rest three
times. Though this visitation schedule could introduce a
bias in which suitable ponds would have a larger detection
probability, it maximized our ability to detect small
populations. To evaluate our imperfect survey, we used a
maximum likelihood estimation of the detection probability
implemented by the software Presence ver. 2.0 (MacKenzie
et al. 2002). We assumed the probability of the estimation
would not change during our survey or among ponds.

The individuals captured were counted and marked by
removing the right middle tibia with forceps. Those
without the right middle tibiae were not counted to avoid
double recording. The sample tibiae were kept in a deep
freezer for future genetic analysis. In damselflies, loss of this
tibia does not significantly shorten life span (Fincke and
Hadrys 2001). The mean number of individuals captured
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per observation in a pond was natural log-transformed after
adding 0.5 (Yamamura 1999). Linear trends in spatial
coordinates were further eliminated from the log-trans-
formed abundance, because PCNM cannot detect broader
spatial trends than those of the study area (Borcard and
Legendre 2002). The detrended abundance (hereafter
denoted as the ‘population size’ in this paper) was calculated
as the residuals of the regression on XY spatial coordinates.

Within-patch quality

For within-patch quality, i.e. the pond environmental
condition, six variables were selected in our study (variables
are numbered, hereafter). We recorded the following three
biotic factors in the ponds in August 2005: (1) predatory
fish score (‘fish’), (2) abundance of benthos fauna
(‘benthos’), and (3) cover area of aquatic and riparian
vegetation in each pond (‘vegetation’). For predatory fish,
the combined abundance of largemouth bass Micropterus
salmoides and bluegill sunfish Lepomis macrochirus was
surveyed by a D-frame net and/or a casting net at the
littoral area and was recorded in three categories (abundant,
existing, none). For benthos, chironomid larvae and naidid
worms (Oligochaeta) were collected using a plastic frame
(25�25 cm, 20 cm height) and a hand net (mesh size
about 300 mm, aperture 10�8.5 cm) from four sample
sites of each pond. Wet weights (g) were measured and
summed for the four samples from each pond. For
vegetation, the total coverage area (m2) of aquatic and
riparian vegetation in each pond, including emergent plants
(Typha latifolia, Acorus calamus, Phragmites australis, etc.)
and floating plants (Nelumbo nucifera, Nymphoides peltata,
etc.), was measured in the field. Adults utilize vegetation for
perching and oviposition (Sugimura et al. 1999).

We also measured three physical conditions of the
ponds. (4) The thickness of the debris layer (‘debris’),

namely dead branches and leaves, was measured at three
points in the littoral area of each pond bottom and
averaged. Accumulated debris has been reported as a
suitable habitat for larvae (Sugimura et al. 1999). (5) The
area of the ponds (‘area’) was also considered. Area is of
primary importance in many metapopulation studies but
may negatively affect C. annulata because they appear to
prefer small shady ponds. (6) The percentage of the pond
perimeter with revetment (‘revetment’) was also extracted
using GIS (ArcView ver. 9.1) constructed specifically for
our study based on the national basic maps (1:2500).
Revetment was recorded because we suspected that artificial
alteration of the pond bank would reduce C. annulata
habitat.

Statistical analysis

Our data contain numerous cases with zero abundance (74
� 16�58 ponds). The recent advance in regression theory
may provide a more sophisticated tool to analyze our raw
heteroscedastic data such as logistic regression or negative
binomial regression than our classical regression of trans-
formed data. However, partial correlations, which are the
bases of variation partitioning, are in turn based on
variance-stable data (Gaussian) are not applicable to other
regressions (Nagelkerke 1991, Shieh 2001). All analyses
were performed using the function ‘glm’ in the statistical
environment R (R Development Core Team 2006).

Regression analysis of within-patch quality

We checked for normality of all within-patch factors
plotted against normal quantiles, and transformed them to
stabilize variation if necessary: percentage data (revetment)
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Figure 1. A summary map of the study area. The ponds surveyed are colored in black. The black and grey lines indicate rivers and the
contour lines of elevation, respectively. The map was projected onto the UTM (Universal Transverse Mercator) coordinates, Tokyo
UTM, Zone 54.
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were arcsine-square-root transformed, and others (benthos,
debris and area) were natural log-transformed after
adding 0.5.

Variable-selection procedures such as the stepwise regres-
sion have been criticized for introducing bias in parameter
estimations, inconsistencies among model selection algo-
rithms, and inappropriate reliance on a single best model
(Whittingham et al. 2006). Therefore, our study takes, at
least partly, the information-theoretic approach (Burnham
and Anderson 2002). We constructed linear regression
models of every possible combination of the six within-
patch factors (26 � 1�63 models) assuming no interaction
effect. Because our sample size was small (74 ponds), AICc
instead of AIC was calculated (Hurvich and Tsai 1989):

AICc�AIC�
2 � m � (m � 1)

n � m � 1

�n� log(ŝ2)�
2 � m � n

n � m � 1
(1)

where n is the number of samples (74 ponds), m is the
number of parameters to be estimated including the
intercept and variance of the regression model, and ŝ2 is
the estimated error variance. The model with the smallest
AICc (AICcmin) value may be best supported by data but
other models with small AICc values may also have support.
Therefore we calculated Akaike weights (wi) for all the
models instead to choose a single model (Burnham and
Anderson 2002):

wi�

exp

�
�

1

2
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�

X63

i�1
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�
�
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� (2)

where ^i�AICci � AICcmin. The relevance of a factor was
evaluated by summing all wi’s of the models including that
factor (the summed Akaike weight) (Burnham and Ander-
son 2002). We did not use model averaging for multi-model
inference, which is recommended by Burnham and Ander-
son (2002), because variation partitioning could not be
implemented among the compounded models produced by
model averaging.

Spatial autocorrelations extracted by PCNM

Principal coordinates of neighbor matrices (PCNM) is a
method to extract spatial structures at various scales
(Legendre and Anderson 1999, Borcard et al. 2004). The
method creates a set of spatial predictors (PCNM), which
are orthogonal to each other, from a geographic distance
matrix. The most prominent spatial autocorrelation can be
extracted by regressing population size on the PCNMs.
There are some derivatives from the original method and we
based our analysis on Dray et al. (2006) as follows: (1)
calculate a geographic distance matrix for all pairs of ponds
(D�[dij]). Pond positions were represented by their
centroids. Nine points were added to reduce the largest
distance between adjacent ponds. Providing these supple-
mentary points enhances the detection of small spatial
structures (Peres-Neto et al. 2006 in the supplementary

material). (2) calculate the connectivity matrix W based on
D:

W�[wij]�1�
�

dij

4 � th

�2

(3)

where th is the maximum distance of the minimum
spanning tree (Legendre and Legendre 1998). (3) calculate
the eigenvectors {ui: i�1, 2,...., 82 (the number of ponds�
nine supplementary points � 1)} of the centered connectiv-
ity matrix,

V�(I�
11T

n
)W(I�

11T

n
) (4)

where I is the identity matrix and 1 is a vector whose
elements are all ones. The eigenvectors of V are PCNM
themselves and represent various spatial scales. Those
corresponding to large eigenvalues represent the global
scale of the spatial trend; those with medium eigenvalues,
the regional scale; and those with small eigenvalues, the
local or fine spatial trends. The eigenvectors associated with
negative eigenvalues represent negative spatial autocorrela-
tion. In this study, only eigenvectors having positive
eigenvalues {PCNMi: i�1 (the largest), 2, . . . , 32 (the
smallest)} were used to model spatial autocorrelation, since
we were primarily interested in detection of positive spatial
autocorrelation. PCNM values were calculated using the R
library ‘spacemakeR’ developed by Dray et al. (2006). (4)
Select relevant spatial autocorrelation structures by linear
regression analyses of PCNMs. Here again, we took the
information-theoretic approach. Thirty-two PCNMs were
equally divided into four subsets of spatial categories,
that is, large (PCNM1, PCNM2, . . . , PCNM8), medium
(PCNM9, PCNM10, . . . , PCNM16), medium-small
(PCNM17, PCNM18, . . . , PCNM24) and small
(PCNM25, PCNM26, . . . , PCNM32). It was impossible
to execute regression analyses for all combinations of the 32
PCNMs, and we were interested in spatial categories, which
are biologically interpretable, rather than individual
PCNMs. Every combination of the four spatial categories
was regressed to population size. The Akaike weights were
calculated for all the regression models and summed across
each category. The inclusion or exclusion of each spatial
category was determined by this summed Akaike weight.

The spatial scale of each category was further measured
by a non-parametric correlogram function (NCF) devel-
oped by Bjørnstad and Falck (2001). Visual determination
is difficult when the data are taken from irregularly
allocated sites. The population size predicted by the
regression model of each spatial category was used to
evaluate the spatial scale of the category. The spline
correlogram of the predicted population size was then
calculated. The x-intercept of the correlograms was used as
our estimate of the scale. Confidence intervals of estimated
spatial scales were calculated by 1000-time bootstrapping of
the data. NCF was executed using the R library ‘ncf’
developed by Bjørnstad and Falck (2001).

Estimation and evaluation of connectivity

We defined the connectivity strength of pond i according to
the model of Hanski and Singer (2001):
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Si�
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i"j

Nj�exp

�
�

dij

a

�
(5)

where Nj represents the actual abundance in pond j (the
row average number of individuals before the transforma-
tion). The equation represents the total summation of the
product of population size in the emigration patch and an
exponential dispersal kernel from pond j to pond i. Each
product can be seen as the number of propagules reaching
pond i from pond j (Moilanen 1999). Though other fat-
tailed dispersal kernels are possible (Moilanen 2004), Eq. 5
was chosen because it is tractable and easy to interpret: a is
the mean generational dispersal distance. To estimate a we
used a modification of the profile likelihood method of
Havel et al. (2002); that is, the population size was regressed
for connectivity defined in Eq. 5 assuming a sequence of
values for the parameter a (increased at 1.0 m intervals),
and the value of a that gave the minimum residual sum of
squares (RSS) was selected. The minimum RSS corresponds
to the maximum likelihood estimate for Gaussian regression
models (Venables and Ripley 1998).

Variation partitioning for three components

So far, three regression models have been described: those for
(1) within-patch quality, (2) spatial autocorrelation by
PCNM and (3) connectivity. In addition to these three
models, we conducted regressions on all predictors simulta-
neously and all pairs. The R2 (coefficient of determinations)
was calculated and transformed by Ezekiel’s adjustment to
make them comparable among models having different
numbers of predictors (Peres-Neto et al. 2006),

R2
adj�1�

n � 1

n � p � 1
(1�R2) (6)

where n is the number of samples (74 ponds) and p is the
number of predictors excluding the y-intercept, and R2 is the
original coefficient of determination, i.e. the residual sum of
squares standardized by total variance of the data. Variation
partitioning was then conducted to determine the contribu-
tion of the pure components, the paired components, and the
full suite of explanatory variables using R2

adj (Økland 2003).
Although it was impossible to further decompose the

overlapping fraction into each factor by variation partition-
ing, a correlation matrix was calculated among the factors.
This helped to interpret the merged effects in the over-
lapped fractions, especially in conjunction with the spatial
autocorrelation. Overlapped fractions represent correlation
structures among factors (Legendre and Legendre 1998).
The fish score was not incorporated in the matrix because it
was an ordered score. The medium-small spatial category
was removed for the final PCNM model (Results) and was
also discarded for the calculations.

Results

Copera annulata was found in 16 out of the 74 ponds
surveyed. The largest number of C. annulata captured was
41; the smallest was one (at one pond). The detection
probability for the data of the ponds visited three times was

1.0 and that of the ponds visited twice (including those
visited three times, but for which only the first two data
were incorporated) was 0.904. This high probability, which
is partly due to the conspicuousness of C. annulata, verifies
the data for further analyses in spite of our imperfect survey
schedule. Only two ponds having one or two individuals
were absent in the first survey but present in the second
survey. Removing these two ponds did not affect the results
(not shown); therefore, we concluded that our approach was
robust for minor detection failures.

Regression result of within-patch quality

The regression model including within-patch quality
indicated that debris, vegetation and benthos had positive
effects while revetment, area and fish had negative effects on
the population size (Table 1, fish results are not shown but
their effect was observed by plotting against the population
size). Judging from the total Akaike weights in Table 1,
debris had the most prominent effect (0.975). Vegetation
was also of secondary relevance (0.597). Though the other
four were not relevant compared to debris and vegetation,
even fish (0.200) would be selected in 20 times out of 100
similar data sets if they had been virtually available. Since
there is no clear-cut criterion like the a-level to remove
factors in the information-theoretic approach and we
judged that they all had substantial effects, we did not
remove any of them. The adjusted R2 for the regression
model with six factors was 0.193.

Spatial structure estimated by PCNM

Our procedure decomposed spatial autocorrelation into
four spatial scales which were measured as 1696 m, 640 m,
392 m and 201 m by NCF, respectively (Table 2). The
large spatial category was highly relevant, as the summed
Akaike weight was 0.973. While the other three categories,
medium, medium-small and small, were less relevant than
the large, the medium-small scale was the most trivial (less
than 10 times less information-retaining than the other
two). Therefore, we removed the PCNMs of the medium-
small category. The final spatial autocorrelation including
large, medium and small spatial categories had an adjusted
R2 of 0.407.

Table 1. Regression analysis for within-patch factors and their
relevance estimated by their summed Akaike weights.

Factor Estimated coefficients$ Summed Akaike weight§

y-intercept �0.018 �
Debris 0.461 0.975
Vegetation 0.261 0.597
Benthos 0.106 0.293
Revetment �0.030 0.279
Area �0.037 0.239
Fish � 0.200

$The coefficients were calculated for the full model. It was not
reported for the fish as this factor had an ordered score.
§A summed Akaike weight for each factor was calculated as the
summation of Akaike weights in all the models including the factor
(see Statistical Analysis for details).
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Effect of connectivity

The profile likelihood estimated a (i.e. the generational
mean dispersal distance) to be 53 m (Fig. 2a). Though this
value may seem small for damselflies, another mark-
recapture study in another area confirmed that this species
seldom migrates more than 100 m (Yamanaka unpubl.).
Such short-distance dispersal behavior has also been
reported for other damselfly species (McPeek 1989, Rou-
quette and Thompson 2007). The adjusted R2 for the
connectivity model based on a�53 m was 0.157.

The mean nearest-neighbor distance was 357m (944 m
SE) among 52 pairs of ponds and was greater than a�53 m.
However, because there were still enough nearest-neighbor
distances in closer ranges (seven pairs B100 m, 15 pairs
B200 m), we postulated that the pond configuration in our
study area was suitable for estimation of a valid a. If more
ponds had been clustered in a smaller region, the damselfly
could have move in a stepping-stone fashion and could have
dispersed much further. Consequently, connectivity might
be estimated as greater than 53 m or its effect might be
estimated as less important than 0.157. If ponds were
separated by much greater distances, C. annulata might not
have lived in this region.

Variation partitioning and interpretation of the
spatial structure

For simplicity, each adjusted R2 was renamed as R2
S (�

0.407, S represents spatial autocorrelation extracted by
PCNM), R2

E (�0.193, E represents within-patch quality)
and R2

C (�0.157, C represents connectivity), respectively.
The variation of all three combined models was calculated
as R2

S@C�0.435 and those of all pairs were R2
S@E�0.430,

R2
S@C�0.418 and R2

E@C�0.290. Following Økland
(2003), the pure contributions of the three regression
models were R2

S½(E@C)�0.144, R2
E½(S@C)�0.016 and

R2
C½(S@E)�0.005, respectively. The overlapping contribu-

tions were R2
SSC½E�0.092, R2

SSE½C�0.117 and R2
ESC½S�

0.006 and R2
PSESC�0.053. When small fractions (less

than 0.01) were neglected, the contributions could be
depicted as in Fig. 3. The contribution of spatial auto-
correlation extracted by PCNM was the largest, and it
contained almost all of the variation of connectivity and
also of within-patch quality. One-third of its contribution
overlapped with the contribution of connectivity. Another
one-third of its contribution overlapped with within-patch
quality (not overlapping with connectivity). The rest of its
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Figure 2. (a) The profile likelihood analysis of connectivity in relation to parameter a. (b) The relationships of connectivity with the
estimated a (�53 m) and C. annulata population size. Population sizes were natural log-transformed after adding 0.5. They were also
linearly detrended to remove the global trend, and there were some negative points jittering around loge(0.5)��0.693. The straight line
in (b) represents the regression line in our study (see text).

Table 2. Spatial autocorrelation extracted by PCNM and its
relevance for population size. PCNMs were decomposed into four
spatial scales, large, medium (Mid), medium-small (MidS) and
small.

Spatial categories Spatial scale (m)$ Summed Akaike
weight§

Large (PCNM1�PCNM8) 1696.4
(1076.9�2614.2)

0.973

Mid (PCNM9�PCNM16) 640.2
(423.6�1211.2)

0.116

MidS (PCNM17�PCNM24) 392.2
(0�877.4)

0.007

Small (PCNM25�PCNM32) 200.7
(0�592.4)

0.099

$The population size predicted by each regression model (large,
medium, medium-small and small) was used to evaluate its spatial
scale. The spatial scale was estimated as the x-intercept of the non-
parametric correlogram function (NCF) of the predicted abundance
of each spatial category. Confidence intervals (ranges in the
parentheses) of estimated spatial scales were calculated by 1000
times bootstrapping. See text and Bjørnstad and Falck (2001) for
details.
§A summed Akaike weight for every category was calculated as the
summation of the Akaike weights in all the models including the set
of PCNMs in it. Notice that regression analyses were not based on
the PCNM individually but on each spatial scale including eight
PCNMs, respectively.
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contribution was not explained by connectivity or within-
patch quality. The contribution of connectivity was
substantial but fully embodied within spatial autocorrela-
tion as we had expected. Because PCNM expresses various
spatial scales of autocorrelation, the one created by the
connectivity effect should be totally enveloped within the
PCNM spatial scales if the method works properly. Within-
patch quality also largely overlapped with spatial autocor-
relation, which represents that a large portion of the
environmental variation is spatially structured.

To gain further insights on the overlapping variations in
Fig. 3, correlations among factors were calculated in Table
3. None of the correlations was high; this represents the fact
that there were no strong complementary relationships
among factors. Connectivity had the largest correlation with
the medium spatial category (Table 3). Though there was
no strong relationship between spatial autocorrelation and
within-patch quality, debris was slightly correlated with the
medium (0.23) and small scales (0.25) and vegetation with
the small scale (0.23). Debris and vegetation were some-
what correlated but both were negatively correlated to
revetment. This result is easy to interpret in a biological
sense. The more vegetation exists, the more debris

accumulates. If revetment is installed in a pond, vegetation
will be destroyed and consequently debris will be reduced.

Discussion

From a one-season survey of the damselfly Copera annulata,
we successfully evaluated the relative importance of within-
patch quality, connectivity (as quantify using standard
metapopulation methods) and various spatial structures
(quantified using PCNM) (Fig. 3). The contribution of
within-patch quality was larger than that of connectivity.
Moreover, the area of the ponds was much less important
than debris and vegetation. From this result, we conclude
that the classic area-and-isolation paradigm from metapo-
pulation theory will not hold for the C. annulata
metapopulation. Though the contribution of connectivity
was the smallest among three regression models, it was still
substantial (0.157). Therefore, we cannot ignore the
importance of pond configuration when studying the
distribution of this species.

There is a caveat for interpreting the modest importance
of connectivity; that is, we only considered the Euclidean
distances among ponds. Recent studies have revealed that
the effective distance, which is calculated from the cost
surface of the land-use mosaic between patches, can be a
better measure of distance than the Euclidean distance
(summarized by Taylor et al. 2006). A greater part of the
variation of spatial autocorrelation might have been attrib-
uted to connectivity if the connectivity had been calculated
based on effective rather than Euclidian distance. To do so
was, however, impossible in our study because its calculation
requires behavioral data or mark-and-recapture experiments.

Though spatial autocorrelation extracted by PCNM was
found to have the largest contribution in explaining local
abundance, this fact tells us little about the underlying
metapopulation processes since PCNM is too flexible to
pick up spatial structures at various scales. Therefore, the
correlations among factors were calculated to determine
which spatial scale each factor had. We found that
connectivity had the most correspondence with the medium
spatial scale. We postulated that the dispersal behavior of
53 m on average connects neighboring patches and that
these patches make clusters at the scale of the medium spatial
category (640 m). Though we could not detect a clear

Table 3. Correlation matrix among all the factors, connectivity (C), within-patch quality (debris, vegetation, benthos, revetment and area) and
spatial scale (large, mid and small).

C$ Debris Vegetation Benthos Revetment Area Large§ Mid§ Small§

C 1.0 0.22 0.11 0.07 �0.12 �0.02 0.18 0.42 0.19
Debris � 1.0 0.48 0.19 �0.44 �0.05 0.16 0.23 0.25
Vegetation � � 1.0 0.09 �0.45 �0.11 0.18 0.14 0.23
Benthos � � � 1.0 �0.19 �0.19 0.17 0.14 �0.03
Revetment � � � � 1.0 0.29 �0.27 0.0 �0.13
Area � � � � � 1.0 �0.09 �0.05 0.06
Large � � � � � � 1.0 0.02 �0.01
Mid � � � � � � � 1.0 0.01
Small � � � � � � � � 1.0

$Connectivity was calculated for every pond using Eq. 5 with the estimated a (�53 m).
§The spatial autocorrelation effects were the predicted population abundances by the categorized regression models, like those in Table 2.
The numbers in bold are the top five largest absolute correlation values. Fish is an ordered score and was excluded from the analysis.

S

EC

0.14

0.020.09 0.120.06

0.57

Figure 3. Schematic diagram of the contributions. S, the spatial
autocorrelation extracted by PCNM; C, the connectivity effect; E,
the environmental effects (debris and vegetation). The numbers in
the figure represent the relative contributions of the fractions to
the total variation (�1.0).
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relationship between the within-habitat quality and the
scales of autocorrelation, debris and vegetation seemed to
have some correspondence with the medium and the small
scales. If there is a regional trend for pond management and
utilization, and we suspected such was the case in our study,
the environment in the ponds (i.e. debris and vegetation)
might have some spatial trends.

The overlapping area between connectivity and within-
patch quality is rather difficult to explain. Connectivity
should technically be segregated from environmental factors
because it is based on the mechanistic assumption of a
Hanski-type metapopulation (IFM). In some steam-fish
metapopulations, the position in the stream gradient has a
great influence on the local population incidence (Gotelli
and Taylor 1999), and connectivity calculated by Eq. 5
might represent some spatially autocorrelated environmen-
tal condition rather than the dispersal-induced spatial
structure. The environmental conditions were, however,
assumed to have a different spatial effect than that of
connectivity in our two-dimensional study area where
damselflies can fly without structural limitations to their
pathways though the overlapping fraction between con-
nectivity and within-habitat quality (0.06 in Table 3) may
reflect how they share some similar scales of autocorrelation.

Our method provides a tool to elucidate processes
structuring a metapopulation from a one-season survey. It
will be beneficial especially for species whose biology has
not been well studied and also especially in cases in which
patch area cannot be used as an indicator of patch capacity
because our method uses a multi-regression model to
evaluate within-patch quality and we can incorporate any
suspected factors. Though it might also be possible to
incorporate patch qualities into the more process-oriented
approaches (e.g. SPOMs, Moilanen and Hanski 1998,
Ozgul et al. 2006), such models require much deeper
knowledge of how the factors affect the processes. In
addition, even a simple IFM requires many years’ accumu-
lation of the population census for robust estimates of the
parameters (Moilanen 1999) and for valid future predic-
tions (Thomas et al. 2002). However, it should be noted
that mechanistic metapopulation models may provide us
more information about the biological consequences of the
metapopulation and are much more robust for future
predictions than our approach because our method evalu-
ates the ‘relative’ effect of factors. Our approach will not
provide absolute biological estimations but can evaluate
their relative importance. Particularly if all patches were
equally good quality or conversely equally poor quality, the
relative effect of within-patch quality would be reduced.
Our approach constructs the most parsimonious regression
models in a specific location and can be used to evaluate the
current conditions of a specific species in a focal area. A new
population census and environmental data collection would
be required for the same species in a different situation.

Like the IFM models, our method does not require extra
experiments to infer dispersal ability (a) such as mark-and-
recapture. Every applied ecologist who has undertaken
mark-and recapture in the field recognizes that it is an
arduous task and that it sometimes takes several years.
There is, however, one caveat. Our method (as well as the
IFM models) is based on a strong hidden assumption of the
stationarity of metapopulation processes (Moilanen 1999);

that is, a long-term colonization effect is estimated from a
snapshot of spatial pattern data. However, ter Braak et al.
(1997) conducted a power analysis of the regression model
of metapopulations using simulated data and concluded
that the coefficient of connectivity can be estimated
relatively well from snapshot surveys. Therefore, our
dispersal estimate may in practice correctly reflect the
underlying biology despite these theoretical concerns.

The variation here attributed to connectivity and
dispersal may conceivably be due to underlying spatial
structures other than metapopulation processes. However,
the particular model of spatial decay (exponential, in this
case, though for example Gaussian or Bessel functions would
also be appropriate; Bjørnstad and Bolker 2000) is derived
from fundamental models for animal movement (Levin et al.
2003). This variation may therefore be parsimoniously
attributed to movement processes. Subsequent to the
statistical calculations it is of course necessary to check that
the estimated range of connectivity represents a plausible
scale given the mobility of the species in the study (as is the
case for our analysis of C. annulata). We believe that
partitioning out the ‘connectivity’ portion of the pattern
separate from the broader spatial structures is useful because
it provides a meeting ground for the geostatistical and the
metapopulation branches of spatial ecology.

Since our method can only be applied to a specific
landscape and a specific species, it may seem less attractive
in basic ecology and is phenomenological at a glance.
However, every metapopulation is formed by an integrated
effect of the behavior of the specific species and the
characteristics of the focal landscape configuration (Calabr-
ese and Fagan 2004, Fagan and Calabrese 2006). We hope
our method can contribute to quick and effective evaluation
for a specific metapopulation system before more specia-
lized mechanistic simulations are conducted.

Acknowledgements � We appreciate the suggestions of the tough
editor for forging both the logic and methodology of our study.
We are grateful to Segovia Golf Club in Chiyoda, Chiyoda
Country Club, Niihari Golf Club and owners of the surveyed farm
ponds in Niihari, Chiyoda, Sitsuku and Yasato district for their
kind support in conducting the odonate census. We thank Eelke
Jongejans and Lidewij Keser, the botanists in PSU and TY’s best
friends in Long Meadow Lane, who kindly gave us useful
comments on an early draft. This study was founded by a project
titled ‘Shizen-kyousei (Developing Technology for Coexisting
with Nature within Agro-forest and Aquatic Watershed Land-
scapes)’ of the Japanese Ministry of Agriculture, Forestry and
Fisheries of Japan (TY, KT, NI and DSS) and the US Dept of
Agriculture National Research Initiative Grants no. 2002-35302-
12656 and 2006-35302-17419 (ONB).

References

Bjørnstad, O. N. and Bolker, B. 2000. Canonical functions for
dispersal-induced synchrony. � Proc. R. Soc. Lond. B 267:
1787�1794.

Bjørnstad, O. N. and Bascompte, J. 2001. Synchrony and second-
order spatial correlation in host�parasitoid systems. � J. Anim.
Ecol. 70: 924�933.

Bjørnstad, O. N. and Falck, W. 2001. Nonparametric spatial
covariance functions: estimation and testing. � Environ. Ecol.
Stat. 8: 53�70.

74



Borcard, D. and Legendre, P. 2002. All-scale spatial analysis of
ecological data by means of principal coordinates of neighbour
matrices. � Ecol. Modell. 153: 51�68.

Borcard, D. et al. 1992. Partialling out the spatial component of
ecological variation. � Ecology 73: 1045�1055.

Borcard, D. et al. 2004. Dissecting the spatial structure of
ecological data at multiple scales. � Ecology 85: 1826�1832.

Burnham, K. P. and Anderson, D. R. 2002. Model selection and
multimodel inference: a practical information-theoretic ap-
proach. � Springer Science�Business Media, LLC.

Calabrese, J. M. and Fagan, W. F. 2004. A comparison-shopper’s
guide to connectivity metrics. � Front. Ecol. Environ. 2: 529�
536.

Dennis, R. L. H. and Eales, H. T. 1997. Patch occupancy in
Coenonympha tullia (Muller, 1764) (Lepidoptera: Satyrinae):
habitat quality matters as much as patch size and isolation. � J.
Insect Conserv. 1: 167�176.

Dennis, R. L. H. et al. 2003. Towards a functional resource-based
concept for habitat: a butterfly biology viewpoint. � Oikos
102: 417�426.

Dray, S. et al. 2006. Spatial modelling: a comprehensive frame-
work for principal coordinate analysis of neighbour matrices
(PCNM). � Ecol. Modell. 196: 483�493.

Fagan, W. F. and Calabrese, J. M. 2006. Quantifying connectiv-
ity: balancing metric performance with data requirements. �
In: Crooks, K. R. and Sanjayan, M. (eds), Connectivity
conservation. Cambridge Univ. Press, pp. 297�317.

Fincke, O. M. and Hadrys, H. 2001. Unpredictable offspring
survivorship in the damselfly, Megaloprepus coerulatus, shapes
parental behavior, constrains sexual selection, and challenges
traditional fitness estimates. � Evolution 55: 762�772.

Fleishman, E. et al. 2002. Assessing the roles of patch quality, area,
and isolation in predicting metapopulation dynamics. �
Conserv. Biol. 16: 706�716.

Gotelli, N. J. and Taylor, C. M. 1999. Testing metapopulation
models with stream-fish assemblages. � Evol. Ecol. Res. 1:
835�845.

Gutiérrez, D. 2005. Effectiveness of existing reserves in the long-
term protection of a regionally rare butterfly. � Conserv. Biol.
19: 1586�1597.

Hanski, I. 1994. A practical model of metapopulation dynamics. �
J. Anim. Ecol. 63: 151�162.

Hanski, I. and Singer, M. C. 2001. Extinction�colonization
dynamics and host-plant choice in butterfly metapopulations.
� Am. Nat. 158: 341�353.

Hanski, I. and Ovaskainen, O. 2003. Metapopulation theory for
fragmented landscapes. � Theor. Popul. Biol. 64: 119�127.

Hanski, I. et al. 1996. The quantitative incidence function model
and persistence of an endangered butterfly metapopulation. �
Conserv. Biol. 10: 578�590.

Harrison, S. 1991. Local extinction in a metapopulation context:
an empirical evaluation. � Biol. J. Linn. Soc. 42: 73�88.

Harrison, S. and Bruna, E. 1999. Habitat fragmentation and large-
scale conservation: what do we know for sure? � Ecography 22:
225�232.

Havel, J. E. et al. 2002. Estimating dispersal from patterns of
spread: spatial and local control of lake invasions. � Ecology
83: 3306�3318.

Heikkinen, R. K. et al. 2005. New insights into butterfly-
environment relationships using partitioning methods. �
Proc. R. Soc. Lond. B 272: 2203�2210.

Hurvich, C. M. and Tsai, C. L. 1989. Regression and time-series
model selection in small samples. � Biometrika 76: 297�307.

Kerlinger, F. N. and Pedhazur, E. J. 1973. Multiple regression in
behavioral research. � Rinehart and Winston.

Krauss, J. et al. 2005. Relative importance of resource quantity,
isolation and habitat quality for landscape distribution of a
monophagous butterfly. � Ecography 28: 465�474.

Legendre, P. and Legendre, L. 1998. Numerical ecology. �
Elsevier.

Legendre, P. and Anderson, M. J. 1999. Distance-based redun-
dancy analysis: testing multispecies responses in multifactorial
ecological experiments. � Ecol. Monogr. 69: 1�24.

Legendre, P. et al. 2005. Analyzing beta diversity: partitioning the
spatial variation of community composition data. � Ecol.
Monogr. 75: 435�450.

Levin, S. A. et al. 2003. The ecology and evolution of seed
dispersal: a theoretical perspective. � Annu. Rev. Ecol. Evol.
Syst. 34: 575�604.

Levins, R. 1970. Extinction. � Lect. Notes Math. 2: 75�107.
MacKenzie, D. I. et al. 2002. Estimating site occupancy rates

when detection probabilities are less than one. � Ecology 83:
2248�2255.

McPeek, M. A. 1989. Differential dispersal tendencies among
Enallagma damselflies (Odonata) inhabiting different habitats.
� Oikos 56: 187�195.

Moilanen, A. 1999. Patch occupancy models of metapopulation
dynamics: efficient parameter estimation using implicit statis-
tical inference. � Ecology 80: 1031�1043.

Moilanen, A. 2004. SPOMSIM: software for stochastic patch
occupancy models of metapopulation dynamics. � Ecol.
Modell. 179: 533�550.

Moilanen, A. and Hanski, I. 1998. Metapopulation dynamics:
effects of habitat quality and landscape structure. � Ecology
79: 2503�2515.

Nagelkerke, N. J. D. 1991. A note on a general definition of the
coefficient of determination. � Biometrika 78: 691�692.

Økland, R. H. 2003. Partitioning the variation in a plot-by-species
data matrix that is related to n sets of explanatory variables. � J.
Veg. Sci. 14: 693�700.

Ozgul, A. et al. 2006. Effects of patch quality and network
structure on patch occupancy dynamics of a yellow-bellied
marmot metapopulation. � J. Anim. Ecol. 75: 191�202.

Peres-Neto, P. R. et al. 2006. Variation partitioning of species data
matrices: estimation and comparison of fractions. � Ecology
87: 2614�2625.

Rouquette, J. R. and Thompson, D. J. 2007. Patterns of
movement and dispersal in an endangered damselfly and the
consequences for its management. � J. Appl. Ecol. 44: 692�
701.

Shieh, G. 2001. The inequality between the coefficient of
determination and the sum of squared simple correlation
coefficients. � Am. Stat. 55: 121�124.

Sugimura, M. et al. 1999. Dragonflies of the Japanese archipelago
in color. � Hokkaido Univ. Press.

Taylor, P. D. et al. 2006. Landscape connectivity: a return to the
basic. � In: Crooks, K. R. and Sanjayan, M. (eds), Con-
nectivity conservation. Cambridge Univ. Press, pp. 29�43.

ter Braak, C. F. F. et al. 1997. The incident function approach to
modeling of metapopulation dynamics. � In: Bascompte, J.
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