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Abstract

The basic reproductive ratio, R0, is a central quantity in the investigation and management of infectious
pathogens. The standard model for describing stochastic epidemics is the continuous time epidemic birth-
and-death process. The incidence data used to fit this model tend to be collected in discrete units (days,
weeks, etc.), which makes model fitting, and estimation of R0 difficult. Discrete time epidemic models better
match the time scale of data collection but make simplistic assumptions about the stochastic epidemic pro-
cess. By investigating the nature of the assumptions of a discrete time epidemic model, we derive a bias cor-
rected maximum likelihood estimate of R0 based on the chain binomial model. The resulting �removal�
estimators provide estimates of R0 and the initial susceptible population size from time series of infectious
case counts. We illustrate the performance of the estimators on both simulated data and real epidemics.
Lastly, we discuss methods to address data collected with observation error.
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1. Introduction

The basic reproductive ratio, R0, is a critical parameter in the dynamics of infectious diseases
[1,2]. This parameter is defined as the number of secondary cases resulting from a single infectious
individual in a population of susceptible individuals [3]. A pathogen with R0 greater than unity
will, on average, initiate an epidemic, whereas a pathogen with R0 < 1 will not [4]. Further, R0
is a determinant of the duration of a closed epidemic within a naı̈ve population and the total num-
ber of susceptible individuals that will be infected [3]. The proportion of the population that needs
to be removed (either through vaccination or culling) from the pool of susceptibles in order to
prevent or preempt an epidemic, is given by 1 � 1/R0 [3]. Estimating R0 is therefore important
towards management and intervention of epidemic pathogens.
Despite its central theoretical and practical importance, estimation of R0 has presented a chal-

lenge in epidemiology and disease ecology [2]. One obstacle is the difficulty of fitting the contin-
uous time epidemic birth-and-death model [3] to incidence data [5]; infections are necessarily
reported in discrete time units (days, weeks, months; [6]). Discrete time models with non-overlap-
ping infectious generations match the discrete nature of the data but introduce additional approx-
imations as they assume that infections and state transitions occur instantaneously and
independently [6,7].
An obstacle to many R0 estimators is the requirement of detailed knowledge of host demogra-

phy [1,8–10] and/or retrospective studies of epidemics that have run their course [11,12]. Further-
more, reliance on estimates from previous and completed outbreaks assumes that epidemiological
parameters remain constant in space and time (see [13] for a detailed illustration that counters
this assumption). The possibility of temporal changes in pathogen virulence, host population size,
and geometries of social and/or spatial transmission networks among hosts may result in devi-
ations from historic parameters. In the face of an emergent epidemic, one may wish for a com-
plementary method that can be implemented in real-time with minimal reliance on historical
estimates.
In this paper, we develop a �removal method� to estimate R0. Removal methods for population

estimation had an early history in wildlife and fisheries applications [14–16]. The method pre-
sented here bears conceptual similarities in that estimation is done on the basis of individuals re-
moved by infection. We derive a likelihood for the time series of removals due to infection and
calculate a correction for the bias introduced by the temporal (weekly, monthly, etc.) discretiza-
tion of mortality and morbidity reports. We evaluate the performance of the resultant maximum
likelihood estimator on simulated epidemic data and apply the method to data from some recent
epidemics. Finally, as underreporting is common in time series of disease incidence we discuss the
estimation of R0 in the presence of measurement error.
2. Methods

Our question is a simple one: how can we use time series of case reports, such as those from
weekly mortality and morbidity reports, to estimate R0. Before proposing a method, however,
we need to consider the relationship between temporally binned incidence reports and the under-
lying continuous time process.
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2.1. Discrete observation of a continuous epidemic process

Consider a simple epidemic birth-and-death model with initial transmission rate k = bS0 and
recovery rate c; here S0 represents the initial number of susceptibles. For such a process, the clas-
sic epidemic birth-and-death model assumes that the infectious period follows an exponential
distribution with a mean length of 1/c (though Keeling and Grenfell discuss more realistic distri-
butions [17]). The expected number of new infections generated from each infectious individual at
the onset of an epidemic (R0) is given by the integral R0 ¼

R1
0 ke�cs ds; i.e. the transmission rate

integrated over the probability of remaining infectious [2,4] (the area under the dashed curve in
Fig. 1).
The data from which we must estimate the characteristics of epidemics, however, are generally

observed in discrete time units (days, weeks, months, etc.). As a result, discrete time epidemic
models have been proposed (e.g. chain-binomial [18], TSIR [7]) which better match the timescale
on which data are gathered. A natural time step for these discrete models – assuming no latent
period – is the mean infectious period, 1/c. We note that all the results presented below are easily
generalized to models in which the time step is equal to the epidemic generation time (the sum of
the latent and infectious periods). When discretizing one implicitly assumes that �late� infections in
the interval (t + 1/c,1) caused by index cases are balanced by infections from subsequent chains
of infection in the interval (t, t + 1/c); i.e. the shaded regions in Fig. 1 are equal. By late infections
we mean any that would occur if an individual remained infectious beyond the generation break
at time t + 1/c; by secondary, tertiary, etc. infections we mean any subsequent new infections due
Fig. 1. Expected number of new infections under the epidemic birth-and-death model. Dashed line indicates rate of
infection due to a single infectious host for the standard epidemic birth-and-death model. Dark shading indicates
infections due to secondary (and higher) chains of infection within the mean infectious period, 1/c. Light shading
indicates the expected number of primary infections that occur after the mean infectious period.
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to early infections in the interval (t, t + 1/c). By balancing the late and secondary infections, we
can calculate biases from using discretized mortality and morbidity data.
Given a primary infection at time s, the probability of secondary (or greater) infection in the

interval (s, 1/c) is (1 � e�k(1/c�s)); that is, the complement of the null probability of a time invari-
ant infectious process over the interval (s, 1/c). The approximate total number of new infections
due to a single infectious individual in one infectious period is the expected number of primary
infections plus any secondary infections, given a primary infection, etc. that falls within the time
step (the area under the solid curve in Fig. 1):
I tþ1=c �
Z 1=c

0

½ke�cs þ ke�csð1� e�kð1=c�sÞÞ	ds.
Solving the integral gives,
I tþ1=c � k � 2
c
e�cs

����1=c
0

� 1

k � c
e�k=cðesðk�cÞÞ

����1=c
0

" #

� k
2

c
ð1� e�1Þ

� �
þ k

k � c
e�k=cð1� eðk�cÞ=cÞ. ð2:1Þ
The second term in the sum is small, relative to the first and goes to e�1 as k !1. Thus, the
expected number of new infections is approximately 2ð1�e�1Þk

c � e�1, rather than k
c as implicitly

assumed in many applications [2]. In this way, the number of infections that occur in the common
time step, 1/c, for discrete models underestimates the true number of infections by a factor of
about 2(1 � e�1) � e�1 relative to the epidemic birth-and-death model.

2.2. Chain binomial likelihood

The classic stochastic model for discrete time epidemics is the so-called chain binomial [18]. Let
St and It be the number of susceptible and infectious individuals at the end of time period t, and let
the time step, as above, be 1/c. Let b be the rate of contacts adequate to transfer infection between
any two members of the population in interval Dt. Then e�bI t is the probability that any given sus-
ceptible individual will have no contacts with infectious individuals during Dt. The complement is
then 1� e�bI t . From this, we can write the infectious time series as a chain of binomial random
variables,
I tþ1 � binomialðSt;1� e�bItÞ ð2:2Þ

and the balance equation for the number of susceptible individuals is given by
Stþ1 ¼ St � I tþ1.
Noting that St+1 can be re written as St ¼ S0 �
Pt

i¼1I i, where S0 is the size of the initial susceptible
population, we write the conditional probability of It+1 as
P ðI tþ1jI t; . . . ; I1; S0;bÞ ¼
S0 �

Pt
i¼1

I i

I tþ1

0@ 1Að1� e�bI tÞItþ1ðe�bI tÞ
S0�

Pt

i¼1
Ii�I tþ1

; ð2:3Þ
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which is a function of the time series of infected individuals to time t, b, and the initial susceptible
population size, S0. By the law of total probability we can write the likelihood for both b and S0
given the entire time series of infectives, I = [It, t = 0, . . . ,T], as
LðS0;bjIÞ ¼
YT
t¼1

P ðI tjI t�1; . . . ; I1; S0; bÞ; ð2:4Þ
with the initial condition that I0 = 1. Maximizing (2.4) over S0 and b provides a maximum like-
lihood estimator (MLE), bS 0 and b̂. Barring the biases discussed above, and noting that (2.2) gives
an approximate value for R0 of S0b for any reasonable values of b, we can calculate an approx-
imate removal MLE of R0 as bR0 ¼ bS 0b̂. This, however, will be biased because of discretization.
We bias correct according to
bRcorrected0 � bR02ð1� e�1Þ � e�1. ð2:5Þ
Standard estimates of the standard errors for S0 and b based on Fisher�s information are not
justified because the support of the chain binomial probability mass function depends on S0
[19]. Therefore, we propose that inference for the individual parameters, and R0 should be based
on profile likelihoods [20] which rely on likelihood ratio statistics and do not make the same
restriction on the support of the mass function [19]. To construct a profile likelihood for the com-
posite parameter R0, we re-parameterize the joint likelihood in terms of R0 and S0. For a fixed
value of R0, we maximize the likelihood for S0. The resulting maxima, for a range of R0 values,
gives a profile likelihood for R0 (Ben Bolker pers. comm.). We then construct confidence intervals
using the approximate v2 distribution of the likelihood ratio statistic (e.g. [19]).

2.3. Measurement error

A simplifying assumption of the method we presented is that the time series of infected individ-
uals is observed without error. A state space modeling approach [21,22], incorporating a binomial
observation model coupled with the chain binomial likelihood may provide a more rigorous
method in the presence of measurement error. Such an approach presents computational hurdles
that may be solved using a Markov chain Monte Carlo algorithm; we are currently pursuing this
line of enquiry (Ferrari, in preparation). Meanwhile, motivated by the historical development of
removal estimators, we propose that a less rigorous solution to the problem of measurement error.
The first removal estimator in ecology [14] proposed that abundance could be estimated by fitting a
regression line to the decline in the number of removed animals as a function of cumulative number
removed. A parallel argument can be made for estimation of R0 if we consider the expectation of
the chain binomial (2.2). Recall that E[It+1jIt,St,b] = St[1 � exp(�bIt)] � bStIt and St ¼ S0 �

P
I t.

Substituting the latter equation into the former we get E½I tþ1	 � bðS0 �
Pt

i¼1I iÞI t, which we can
rewrite as E½I tþ1	=I t ¼ bS0 � b

Pt
i¼1I i. Denoting the epidemic ratio It+1/It by Rt and recalling

that R0 = bS0, we obtain an approximate relationship
Rt ¼ R0 � b
Xt

i¼1
I i. ð2:6Þ
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Note that in this relation we substitute the observed case count for its expectation. From this heu-
ristic we suggest that R0 can be estimated by the linear regression of the epidemic ratios on the
cumulative removals due to infection. If reporting is incomplete (e.g. only fatalities are reported)
such that the observed cases, O, are a proportion of the true number of cases, Ot = pIt, then (2.6)
becomes
pOtþ1
pOt

¼ R0 � b
Xt

i¼1

1

p
Oi.
Ignoring the usually stochastic nature of under reporting, this is
Otþ1

Ot
¼ R0 �

1

p
b
Xt

i¼1
Oi.
Thus, even in the presence of underreporting R0 may be estimated using a regression method of
incidence ratios on cumulative incidence. Because the stochastic variance inherent in a chain bino-
mial infection process will change over the course of the epidemic, a weighted regression with
weights proportional to the number observed infectious cases is appropriate (Appendix A). Again,
the bias due to discretization may be corrected according to (2.5).
2.4. Evaluation and application

We evaluated the performance of the removal MLE on both simulated and real epidemics. We
simulated epidemics using a stochastic epidemic birth-and-death model assuming exponentially
distributed infectious periods [3,18]. For R0 between 1.5 and 6 we simulated 5000 epidemics in
populations of 1000 individuals. We assumed the pathogen to have a mean infectious period of
7-days. For each simulation we estimated R0 at successive time steps to assess the value of the esti-
mator at the completion of the epidemic and as a �real-time� method. We additionally simulated
observed time series with binomial reporting (probability of reporting = 1.0, 0.9, 0.7, and 0.5) and
estimated R0 using our approximate regression method.
We applied the removal estimator and the approximate regression method to data from four

historical epidemics: the foot-and-mouth outbreak in Britain [23], swine fever in the Netherlands
[24], and Ebola in Democratic Republic of Congo [25] and Uganda [26]. These data were chosen
because all are directly transmitted, acute infections in relatively naı̈ve populations that result in
long term immunity or death. Further, each epidemic progressed quickly with respect to the host
life history, so the birth and death dynamics of the host can be assumed inconsequential, which is
consistent with the simple life history assumed in the model. The foot-and-mouth and swine fever
data are weekly reports of the number of newly infected herds; R0 thus reflects the inter-farm
transmission rate. The Ebola data are weekly reports of the onset of symptoms. We also estimated
R0 for the recently emerged SARS epidemic in Hong Kong and Singapore (March 17–June 1,
2003) [27]. These data were daily reports of the onset of symptoms. The infectious periods for each
pathogen were taken from literature reports and the case counts aggregated accordingly (Table 1).
We compared the estimates with published values.



Table 1
Comparison of estimates of R0 using the removal MLE with estimates from published literature for several diseases

Disease Location Year Infectious
perioda

Removal MLE
(95% CI)

Regression
estimate

Estimates from
literature

Ebola DRCb 1995 14 days 3.65 (3.05 � 4.33) 3.07 1.8 (SD = 0.06)c

Ugandab 2000 14 days 1.79 (1.52 � 2.30) 2.13 –

SARS Hong Kongb 2003 5 days 2.27 (0.81 � 2.33) 1.50 2.2–3.6d; 2.2–3.7e

Singaporeb 2003 5 days 1.23 (0.95 � 1.49) 1.43 2.2–3.6d

Swine fever Netherlandsb 1997–1998 7 days 1.16 (0.83 � 1.54) 0.93 1.33f; 1.02–1.30g

FMD Britainb 2000–2001 21 days 3.57 (3.04 � 3.93) 4.04 �3.9h, 3.3i

Confidence intervals were calculated from the profile likelihood as described in the text. Literature estimates are given
as point estimates or 95% confidence limits.
a Assumed.
b See references in text for data sources.
c [29].
d [28].
e [30].
f [24].
g [10].
h [31, Fig. 2c].
i [32].
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3. Results

The bias corrected estimator is virtually unbiased for R0 (Fig. 2). Further, it is unbiased for the
size of the initial susceptible population (Fig. 2). When applied in real-time the removal MLE pro-
duced reasonable estimates of R0 within �4 infectious generations (Fig. 3). The estimation error
was significantly improved over these 4 time steps, with marginal reduction thereafter (Fig. 3).
Inspection of the likelihood profiles for b and S0 show that these parameters are negatively cor-
related (Fig. 4). Nominal 95% profile confidence intervals for R0 had true coverage rates of 67–
80%. In application to data from real epidemics the removal MLE produced estimates of R0 in
consistent with those from the published literature (Table 1).
The approximate regression estimator for simulated data with measurement error had a slight

negative bias (Fig. 5). Despite the small bias the mean value of the estimator was not appreciably
affected, even under significant measurement error. In the presence of measurement error, esti-
mates tended to be more variable than under perfect reporting. Estimates of R0 from the regres-
sion method were generally similar to the MLE (Table 1).
4. Discussion

Discrete time models such as the chain binomial are appealing because they can match the time-
scale on which data are gathered. However, they necessarily oversimplify the inherent biology. It



Fig. 2. Performance of the removal MLE�s for simulated epidemics as a function of true R0; (a) point estimates for R0,
(b) point estimates for S0. Each box plot in (a) and (b) represents a summary of estimates from 5000 simulations. The
central bar indicates the median estimate, the box represents inter-quartile range, and the dashed lines indicate the most
extreme observation that is no more than 1.5 times the inter-quartile range from the box. The solid line indicates the
true value of each parameter.

Fig. 3. �Real time� estimates of R0 using the removal MLE for simulation with true R0 = 5. Each box plot represents a
summary of 5000 simulations and is constructed as in Fig. 1.
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is therefore important to consider the utility of using such discrete time models for conducting
inference on continuous time processes [6]. Using a discrete time epidemic model with infectious
generations that approximate the epidemic birth-and-death model results in bias because it
ignores rapid secondary chains of transmission and late primary infections from individuals that
remain infectious longer than the average infectious period. By analyzing the nature of these
sources of bias we derived a correction that allows implementation of a chain binomial likelihood
to derive estimates of R0 and the initial susceptible population size from data on case counts. The



Fig. 4. Likelihoods for b, S0, and R0. (a) Likelihood contours for b and S0 for one simulated epidemic with S0 = 1000
and b = 0.004. The heavy grey contours the 95% confidence region based on the likelihood ratio test. The X indicates
the true parameters and the dot indicates the MLE�s. (b) The profile likelihood for R0 for the same simulated epidemic.
The horizontal line gives the critical value of the likelihood ratio test and the vertical lines give the corresponding lower
and upper 95% confidence limits.

Fig. 5. Performance of the regression estimator for simulated epidemics with binomial observation probability of 1.0,
0.9, 0.7, and 0.5. Each box plot represents a summary of 5000 simulations and is constructed as in Fig. 1. The solid line
indicates the true value of R0.
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benefit of the method is that it is computationally simple (an R-library for calculation is available
from the authors upon request), require minimal data and assumptions of historical mixing rates,
and can provide continual upgrading of the estimates of both R0 and the estimated initial suscep-
tible population size during the course of an outbreak.
The bias correction can be interpreted in two ways. First, it may be seen as correcting the time

step in the discrete model to balance the underestimation of transmission due to late infection and
the overestimation due to higher order transmission (the shaded regions in Fig. 1). In practice,
however, the correction simply adjusts the transmission rate within the conventional time step
of 1/c. It is interesting to note that binning the observations according to a time step of length
2(1 � e�1)/c also corrects the negative bias in the removal estimator, but results in a positive bias
of approximately e�1 as predicted from (2.1); we have confirmed through with simulations, but
have not presented results here.
The corrected R0 estimator is not strictly unbiased; however, the magnitude of the bias is so

small (<0.5) as to be of little practical relevance. The removal MLE is remarkably consistent when
applied to simulated data (Fig. 2), but full statistical inference should be conducted with caution.
The confidence limits do reflect the uncertainty in R0, given the observed number of epidemic gen-
erations. However, coverage rates perform below the nominal rate and confidence limits do not
reflect the additional uncertainty due to the random duration of epidemics.
The explicit form of the bias correction is specific to the assumption that the infectious period is

exponentially distributed. Keeling and Grenfell [17] have proposed that a model with gamma dis-
tributed infectious periods may better reproduce epidemic dynamics. Discretization of a model
with gamma distributed infectious periods will still result in biases due to the assumption of gen-
eration separation. An analogous bias correction may be constructed for the gamma distributed
model following arguments similar to those proposed here.
The removal estimator is sensitive to the time period in which the data are binned. As the infec-

tious period for a given pathogen may change from historical values, it will be important to verify
the length of the infectious period from clinical records for novel epidemics. In such cases where
the infectious period is unknown, it may be wise to first use estimators based on the exponential
approximation to the initial rate of increase of infectious cases (e.g. [28]). However, as the epi-
demic is limited by the number of susceptible hosts, the exponential approximation performs
poorly when applied to the full epidemic trajectory.
In general, our estimates of R0 from observed data are consistent with reported values. The esti-

mates for SARS were on the low end of reported confidence limits for Hong Kong, and consid-
erably lower for Singapore. In light of the negative bias due to binomial reporting error in Fig. 5,
it seems possible that the results for the SARS outbreak were affected by the imperfect reporting.
In contrast, the Swine fever and FMD estimates, for which the case count data have lower errors,
were very close to previously reported estimates.
The many methods available to estimate R0 are a testament to its central importance in epide-

miology. Through the development of the removal estimator we have addressed two recurrent is-
sues in the problem of estimating R0: uncertainty in the true susceptible population size, and the
bias introduced by fitting an inherently continuous time process with discretely sampled data. The
latter is an issue in applications well beyond epidemiology [6]. By considering the expectation of
the continuous time epidemic process over discrete intervals, we can make use of a discrete time
observational model to conduct inference on R0.



24 M.J. Ferrari et al. / Mathematical Biosciences 198 (2005) 14–26
Acknowledgments

We would like to thank Ben Bolker for his help with the profile likelihoods and three anony-
mous reviewers for constructive comments and bringing to our attention an algebraic error that
greatly improved the performance of the estimator. This research was supported in part by the
John E. Fogarty Center of the National Institutes of Health (ONB).
Appendix A. Regression weights

By examining the random process that generates the epidemic it is possible to derive a relation-
ship between the weights and the independent variable. We will consider the continuous SI model
because it allows an appeal to results for general Poisson processes. From the delta method, a
first-order approximation to the variance of Rt conditional on It, . . . , I1 is:
Var½Rt	 ¼ Var
I tþ1
I t

� �
� Var½I tþ1	

E½I t	2
þ E½I tþ1	2

E½I t	4
Var½I t	. ðA:1Þ
Note that because of the exponential distribution of waiting times to infection and death, the ex-
pected number of infected individuals in interval t, given the course of the epidemic prior to time t,
ItjIt�1, . . . , I1 is approximately a Poisson random variable. Because there may be multiple infec-
tions and/or deaths over the interval, we write the Poisson parameter as bStI t ¼ kt, where the
bar indicates the average number of susceptible and infectious individuals over the interval.
Inserting kt into (A.1), we get
Var½Rt	 �
ktþ1

k2t
þ

k2tþ1
k4t

kt �
ktþ1

kt

1

kt

� �
þ ktþ1

kt

� �2 1

kt

� �
. ðA:2Þ
Noting that kt+1/kt is the first-order Taylor series approximation to E[Rt], (A.2) should behave
qualitatively similar to
E½Rt	 þ E½Rt	2

E½I t	
. ðA:3Þ
Thus, from (A.3) the variance in Rt conditional on the cumulative number of cases should be pro-
portional to a polynomial of the expected value and the inverse of the number of cases in interval
t. If we note that the E[It] should be large relative to E[Rt], we see that the behavior of (A.3) should
be dominated by the denominator. Thus, weights proportional to the number of cases in each
observation interval should help stabilize the variance in the residuals.
References

[1] K. Dietz, The estimation of the basic reproduction number for infectious diseases, Stat. Meth. Med. Res. 2 (1993)
23.

[2] J.A.P. Heesterbeek, A brief history of R-0 and a recipe for its calculation, Acta Biotheor. 50 (2002) 189.
[3] R.M. Anderson, R.M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University, Oxford,

1991.
[4] W.O. Kermack, A.G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. Roy. Soc.

Lond. A 115 (1927) 700.



M.J. Ferrari et al. / Mathematical Biosciences 198 (2005) 14–26 25
[5] G.J. Gibson, E. Renshaw, Estimating parameters in stochastic compartmental models using Markov chain
methods, IMA J. Math. Appl. Med. 15 (1998) 19.

[6] K. Glass, Y. Xia, B.T. Grenfell, Interpreting time-series analyses for continuous-time biological models-measles as
a case study, J. Theor. Biol. 223 (2003) 19.

[7] O.N. Bjørnstad, B.F. Finkenstadt, B.T. Grenfell, Dynamics of measles epidemics: estimating scaling of
transmission rates using a time series SIR model, Ecol. Monogr. 72 (2002) 169.

[8] M. Begon, S.M. Hazel, D. Baxby, K. Bown, R. Cavanagh, J. Chantrey, T. Jones, M. Bennett, Transmission
dynamics of a zoonotic pathogen within and between wildlife host species, P. Roy. Soc. Lond. B Bio. 266 (1999)
1939.
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