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a Tea Tortrix Moth”
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Temperature-Dependent Birth, Death, and Development Rate Functions
As with most insects, the birth rate and stage-specific death and development rates of Adoxophyes honmai are
strongly temperature dependent. We parameterize this temperature dependence by using data from laboratory
experiments of Nabeta et al. (2005) and from insects in the Miyazaki Prefecture (Kodomari et al. 2003). Data
include observations of birth rate and development time for eggs, larvae, and pupae, as well as survivorship for
all stages at a range of temperatures. The pattern of adult survivorship (see fig. 1 of Nabeta et al. 2005) suggests
that adults divide into two substages based on age. The first contains young adults, who suffer relatively low
mortality, and the second contains older adults, who have much higher mortality rates. The age of transition
between the two substages is temperature dependent and correlates closely to the cessation of reproduction. Thus,
we subdivide the adult stage into reproductive and senescent stages. Since only nonsenescent adults reproduce
and the senescent mortality rate is much higher than the nonsenescent rate, we include only reproductive adults
in the model (table 1). The reproductive-stage duration was calculated as the time to 50% survival.

Development rates increase with increasing temperature in all stages (fig. A1). The empirical data suggest a
development-rate function of the logistic form,

a ih (t) p , (A1)i 1 � exp (�g (D(t) � h ))D D

where D(t) is the temperature (degrees Celsius) at time t, hD is the temperature at which the development-rate
function reaches half the asymptotic value, ai is a scaling coefficient, and gD controls the steepness of the
logistic function. We first estimate the parameters a, hD, and gD, which are common to all stages, by fitting
equation (A1) to total duration from egg to pupa, using a minimum least squares objective. Using the common
hD and gD, the ai for each stage was first estimated in equation (A1) and subsequently estimated by fitting the
stage-specific development rates using the same minimum least squares objective. The two larval stages are split
at the midpoint of the larval development period (aL), and both larval sizes are assumed to have the same
development rate, which is double that of the full larval stage to ensure that cohorts transition through the two
substages at the time for the full stage (i.e., ).a p a p 2aL L L1 2

Stage-specific mortality data are available in the form of through-stage survivorship at each temperature. We
convert these to daily mortality rates (dobs) by using the relationship, , where jobs is thed p � log (j )/tobs obs obs

observed survivorship and tobs is the observed mean development time. Daily mortality rates generally increase
with temperature (fig. A2). With the aim of simplifying the model, we fit a mortality function, using the same
generic base function as for the development rate, namely, , whered (t) p n g(t) g(t) p 1/(1 � exp (�g (D(t) �i i D

and ni is a stage-specific scalar. The mortality data are more variable than the development data, but theh )))D

mortality-rate function yields a reasonable fit to the data, with the exception of some mismatches in the larval
and pupal stages at high temperatures. Using the same base function for mortality as was found for the
development rates greatly simplifies analysis of the model (see below) and had little effect on the predicted
population dynamics. The per capita birth rates also show an increase with higher temperature (fig. A3).
Following the same rationale as for the mortality rate, we assume a functional form that is proportional to the
base function . Fit parameter values are shown in table 2.b(t) p cg(t)
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Figure A1: Stage-specific development rate (hi(t)) of female moths as a function of temperature. Data are from Tokyo (open
symbols) and Miyazaki Prefecture (filled symbols) for the egg (a), larval (b), pupal (c), and reproductive (nonsenescent) adult
(d) stages. The development-rate function is assumed to share the common scaling parameters hD and gD for all stages, but the
constants of proportionality ai are different for each stage. The solid lines show the fit function, and the dashed lines represent
the alternative fit function changing not only ai but also hD and gD. See table 2 for fit parameter values.

Figure A2: Stage-specific mortality rate (di(t)) of female moths as a function of temperature. Data are from Tokyo for the egg
(a), larval (b), pupal (c), and reproductive (nonsenescent) adult (d) stages. The mortality-rate function is assumed to have the
same base function (i.e., g(t)) as the developmental rate and a constant of proportionality ni that is different for each stage. The
dashed lines show the function as fitted not only with di but also with hD and gD. The solid lines show the function with hD and
gD fixed at the estimates from the development-rate data. See table 2 for fit parameter values.
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Figure A3: Per capita birth rate (b(t)) as a function of temperature. Data are from Tokyo. We assume a birth-rate function of
the form using the base function with a constant of proportionality c. The dashed lines show the function as fitted not only with
di but also with hD and gD. The solid lines show the function with hD and gD fixed at the estimates from the development-rate
data. See table 2 for fit parameter values.
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Model Development and Scale Transformation
Timescale Model

The modeling framework developed by Nisbet and Gurney (1983) provides a basis for model population
dynamics of stage-structured organisms with time-varying birth, death, and development rates (e.g., due to food
dynamics or seasonal temperature). In this appendix, we first lay out the overall architecture of the model on a
Julian timescale. Subsequently, we transform the equations to a physiologically based scale (hereafter referred to
as the phi scale), so that the time-varying delays become fixed delays to facilitate model analysis. The general
model was developed to examine the role of density dependence (three types), parasitism, temperature, and adult
senescence on population dynamics. Each variant can be arrived at as a special case of the general model.

To incorporate the role of parasitism, the general model requires a description of both moth and parasitoid
populations. The tortrix moth population is broken up into five stages: egg (E), young larval (L1), old larval (L2),
pupal (P), and adult (A). Wasp populations are assumed to be structured into egg, larval, pupal, and adult stages.
However, since the egg, larval, and pupal stages follow the same development as Adoxophyes honmai (Takagi
1974; Yukinari 1976), it is necessary only to explicitly track the adult wasps (W) and parasitized A. honmai
stages (denoted by a superscript W).

In our study, we consider the egg parasitoid Ascogaster reticulata (Braconidae). A female wasp oviposits on
an egg of the host, A. honmai. A larval wasp gets into its host egg and grows inside the host body. At the end
of the old-larval stage, it escapes from the host tissue to pupate. For the detailed biology of A. reticulata, see
Kainoh and Tamaki (1982).
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The model architecture is

dE(t)
p R (t) � R (t) � (d (t) � p (t))E(t),b E E Wdt

dL (t)1 p R (t) � R (t) � d (t)L (t),E L L 11 1dt

dL (t)2 p R (t) � R (t) � d (t)L (t),L L L 21 2 2dt

dP(t)
p R (t) � R (t) � d (t)P(t),L P P2dt

dA(t)
p R (t) � R (t) � d (t)A(t), (B1)P A Adt

WdL (t)1 Wp p (t)E(t) � R (t) � d (t)L (t),W WW L L 11 1dt

WdL (t)2 Wp R (t) � R (t) � d (t)L (t),W W WL L L 21 2 2dt

WdP (t) Wp R (t) � R (t) � d (t)P (t),W W WL P P2dt

dW(t)
p R (t) � d (t)W(t),WP Wdt

where t signifies time-varying functions or states on a Julian-day scale, di(t) is the per capita mortality rate for
stage i, and Ri(t) is the recruitment out of stage i, where i can be the unparasitized moths ( ),i � E, L , L , P, A1 2

parasitized moths ( ), or adult wasps ( ). Parasitism occurs through the per capita parasitismW W Wi � L , L , P i � W1 2

rate pW(t), and Rb(t) represents recruitment into the egg stage from adult reproduction. Note that RA(t) represents
adult senescence. Since a constant sex ratio is assumed here, only the dynamics of female moths are modeled.

Following Nisbet and Gurney (1983), the recruitment rate into the egg stage is given by

R (t) p b(t)A(t), (B2)b

where b(t) is the per capita birth rate, and recruitment into all other stages is

h (t)iR (t) p R (t � t (t))S (t) , (B3)i�1 i i i h (t � t (t))i i

where ti(t) is the duration of stage i at time t, hi(t) is the development rate, and Si(t) is the through-stage
survivorship. Through-stage survivorship is calculated as

t

S (t) p exp � d (x)dx , (B4)i � i( )
t�t (t)i

and stage durations are calculated implicitly, using the development-rate constraint

t

1 p h (x)dx. (B5)� i

t�t (t)i

Equation (B5) can be used (implicitly) to determine the range in time from to t required for a cohort tot � t (t)i
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complete stage i. In numerical simulations, however, ti(t) is calculated by differentiating both sides for equation
(B5) and solving the resulting delay-differential equation (Nisbet and Gurney 1983)

dt(t) h (t)ip 1 � . (B6)
dt h (t � t (t))i i

The set of delay-differential equations given by equation (B1) is the general form of the model on a Julian-day
scale. Each model variant is arrived at by specifying a set of birth- (b(t)), death- (di(t)), and development- (hi(t))
rate functions, along with the corresponding parameters. Since the development rate is temperature dependent in
this system and temperature varies through time, stage durations will vary through time as well. These time-
varying delays can be determined through an integral constraint (eq. [B6]), but this limits the range of
mathematical tools available for analysis. Following the approach of McCauley et al. (2008), we transform the
model to a physiological scale that results in fixed rather than variable stage durations (except in the specific
models of stage-specific winter mortality rates).

Physiological (Phi)-Scale Model

When the development and mortality rates for all stages are proportional to a single time-varying factor (as
laboratory data generally suggest), a transformation to the cumulative development scale results in a model with
fixed rather than variable delays (McCauley et al. 2008). In our model, the development rate of the moth scales
with temperature as

a ih (t) p , (B7)i 1 � exp (�g (D(t) � h ))D D

where D(t) is the temperature at time t (see app. A for full details). The stages differ only in their scaling
coefficient ai. With equation (B7), the expressions used to calculate the stage durations (eq. [B5]) can rewritten
as

t

1
p g(x)dx, (B8)�

a i
t�t (t)i

where . The transformation begins by defining the new physiological scaleg(t) p 1/(1 � exp (�g (D(t) � h )))D D

(phi scale) as

t

f(t) p g(x)dx. (B9)�
0

For notational clarity, we define as the development rate on the phi scale. From equation (B9), wem(f) p g(t)
can write

t�t (t) t ti

1
f(t � t (t)) p g(x)dx p g(x)dx � g(x)dx p f(t) � , (B10)i � � �

a i
0 0 t�t (t)i

which reduces the time-varying delay to a fixed delay on the transformed scale. Survivorship equations are also
transformed to the phi scale by introducing ,g(x)/g(x)

t t

d (x)iS (t) p exp � d (x)dx p exp � g(x)dx . (B11)i � i �( ) ( )g(x)
t�t (t) t�t (t)i i
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From equation (B9), the term g(x)dx is df, which lets us write

f

d (y)iS (f) p exp � dy , (B12)i �( )m(y)
f�(1/a )i

where is the per capita mortality-rate function on the phi scale. To complete the transformation, wed (f) p d (t)i i

take the derivative of equation (B9) with respect to time, which yields

dt 1
p . (B13)

df m(f)

Defining as the birth-rate function on the phi scale, equation (B2) is rewritten asb(f) p b(t)

R (f) p b(f)A(f), (B14)b

and the recruitment rates in equation (B3) are

1 m(f)
R (f) p R f � S (f) . (B15)i�1 i i( )a m(f � (1/a ))i i

To simplify notation, we introduce cohort-based functions for the delay and survivorship,
i 1

f p f � , (B16)�i
axpE x

fx�1

i
d (y)xS (f) p exp � dy , (B17)�i �( )m(y)xpE

fx

where and fi is the fixed stage duration from the beginning of the egg stage to the end of stage i (f { f i �E�1

). Here, Si(f) is through-stage survivorship from the beginning of the egg stage born at delayed{E, L , L , P, A}1 2

physiological time (fi) to stage i at current physiological time (f). Using equation (B13) and substituting the
above cohort-based expressions, the transformed model equations are given by equation (3).

Literature Cited Only in the Online Appendixes

Kodomari, S., A. Tatara, Y. Kosugi, and T. Nishijima. 2003. Visual guide of the tea pests and pathogens: new
series. Chamber of Tea Association of Shizuoka Prefecture, Shizuoka. (In Japanese.)
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Appendix C from T. Yamanaka et al., ”Generation separation in simple

structured life-cycles: models and 48 years of field data on a tea tortrix moth”

Model variants

Each model variant is arrived at as a special case of the general model shown in the

methods (eq. (3)). The biological mechanisms contained in each model variant (table 3)

were chosen to explore various combinations of these processes, always ensuring that models

included at least one negatively density dependent mechanism. The following sections detail

the simplified model obtained after substituting the functions (table 1) that correspond to

each biological mechanisms (see Methods for details).

Model A: Symmetric larval density-dependence

dL1(ϕ)

dϕ
= cA(ϕE)SE(ϕ) − cA(ϕL1)SL1(ϕ) − (nL + nCL(ϕ)) L1(ϕ)

dL2(ϕ)

dϕ
= cA(ϕL1)SL1(ϕ) − cA(ϕL2)SL2(ϕ) − (nL + nCL(ϕ)) L2(ϕ)

dA(ϕ)

dϕ
= cA(ϕP )SP (ϕ) − nAA(ϕ)

SL1(ϕ) = exp

(
−

L1∑
i=E

ni

αi

− nC

∫ ϕ

ϕ̂L1:L1

L(ξ)dξ

)

SL2(ϕ) = exp

(
−

L2∑
i=E

ni

αi

− nC

∫ ϕ

ϕ̂L1:L2

L(ξ)dξ

)

SP (ϕ) = exp

(
−

P∑
i=E

ni

αi

− nC

∫ ϕ̂P :P

ϕ̂L1:P

L(ξ)dξ

)

where L(ϕ) = L1(ϕ) + L2(ϕ). ϕi and ϕ̂j:k were defined as follows and will be used in

the subsequent descriptions of model variants.
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ϕi = ϕ −
i∑

x=E

1

αx

ϕ̂j:k =

 ϕ −
∑k

x=j
1

αx
if j ≤ k

ϕ if j > k

Figure C1 shows the predicted dynamics as a function of the birth rate scalar and adult

mortality.

Model B: Symmetric larval density-dependence with senescence

dL1(ϕ)

dϕ
= cA(ϕE)SE(ϕ) − cA(ϕL1)SL1(ϕ) − (nL + nCL(ϕ)) L1(ϕ)

dL2(ϕ)

dϕ
= cA(ϕL1)SL1(ϕ) − cA(ϕL2)SL2(ϕ) − (nL + nCL(ϕ)) L2(ϕ)

dA(ϕ)

dϕ
= cA(ϕP )SP (ϕ) − cA(ϕA)SA(ϕ) − nAA(ϕ)

SL1(ϕ) = exp

(
−

L1∑
i=E

ni

αi

− nC

∫ ϕ

ϕ̂L1:L1

L(ξ)dξ

)

SL2(ϕ) = exp

(
−

L2∑
i=E

ni

αi

− nC

∫ ϕ

ϕ̂L1:L2

L(ξ)dξ

)

SP (ϕ) = exp

(
−

P∑
i=E

ni

αi

− nC

∫ ϕ̂P :P

ϕ̂L1:P

L(ξ)dξ

)

SA(ϕ) = exp

(
−

A∑
i=E

ni

αi

− nC

∫ ϕ̂P :A

ϕ̂L1:A

L(ξ)dξ

)

where L(ϕ) = L1(ϕ) + L2(ϕ). Figure C2 shows the predicted dynamics as a function of the

birth rate scalar.
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Model C: Symmetric larval density-dependence with Allee effect

dL1(ϕ)

dϕ
= c

(
1 − eνA(ϕE)

)
A(ϕE)SE(ϕ) − c

(
1 − eνA(ϕL1

)
)
A(ϕL1)SL1(ϕ) − (nL + nCL(ϕ)) L1(ϕ)

dL2(ϕ)

dϕ
= c

(
1 − eνA(ϕL1

)
)
A(ϕL1)SL1(ϕ) − c

(
1 − eνA(ϕL2

)
)
A(ϕL2)SL2(ϕ) − (nL + nCL(ϕ)) L2(ϕ)

dA(ϕ)

dϕ
= c

(
1 − eνA(ϕP )

)
A(ϕP )SP (ϕ) − nAA(ϕ)

SL1(ϕ) = exp

(
−

L1∑
i=E

ni

αi

− nC

∫ ϕ

ϕ̂L1:L1

L(ξ)dξ

)

SL2(ϕ) = exp

(
−

L2∑
i=E

ni

αi

− nC

∫ ϕ

ϕ̂L1:L2

L(ξ)dξ

)

SP (ϕ) = exp

(
−

P∑
i=E

ni

αi

− nC

∫ ϕ̂P :P

ϕ̂L1:P

L(ξ)dξ

)

where L(ϕ) = L1(ϕ) + L2(ϕ). Figure C3 shows the predicted dynamics as a function of the

birth rate scalar and strength of Allee effect.
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Model D: Symmetric larval density-dependence with parasitism

dE(ϕ)

dϕ
= cA(ϕ) − cA(ϕE)SE(ϕ) −

(
nE + k ln

(
1 − u

k
W (ϕ)

))
E(ϕ)

dL1(ϕ)

dϕ
= cA(ϕE)SE(ϕ) − cA(ϕL1)SL1(ϕ) − (nL + nCL(ϕ)) L1(ϕ)

dL2(ϕ)

dϕ
= cA(ϕL1)SL1(ϕ) − cA(ϕL2)SL2(ϕ) − (nL + nCL(ϕ)) L2(ϕ)

dA(ϕ)

dϕ
= cA(ϕP )SP (ϕ) − nAA(ϕ)

dW (ϕ)

dϕ
= k ln

(
1 − u

k
W (ϕP )

)
E(ϕP )SP W − nW W (ϕ)

SE(ϕ) = exp

(
−nE

αE

− k

∫ ϕ

ϕ̂E:E

ln
(
1 − u

k
W (ϕ)

)
dξ

)
SL1(ϕ) = exp

(
−

L1∑
i=E

ni

αi

− k

∫ ϕ̂L1:L1

ϕ̂E:L1

ln
(
1 − u

k
W (ϕ)

)
dξ − nC

∫ ϕ

ϕ̂L1:L1

L(ξ)dξ

)

SL2(ϕ) = exp

(
−

L2∑
i=E

ni

αi

− k

∫ ϕ̂L1:L2

ϕ̂E:L2

ln
(
1 − u

k
W (ϕ)

)
dξ − nC

∫ ϕ̂L2:L2

ϕ̂L1:L2

L(ξ)dξ

)

SP (ϕ) = exp

(
−

P∑
i=E

ni

αi

− k

∫ ϕ̂L1:P

ϕ̂E:P

ln
(
1 − u

k
W (ϕ)

)
dξ − nC

∫ ϕ̂L2:P

ϕ̂L1:P

L(ξ)dξ

)

SP W (ϕ) = exp

(
−

P∑
i=L1

ni

αi

− nC

∫ ϕ̂L2:P

ϕ̂L1:P

L(ξ)dξ

)

where L(ϕ) = L1(ϕ) + L2(ϕ). Figure C4 shows the predicted dynamics as a function of the

birth rate scalar, search efficiency and interference among wasps.
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Model E: Asymmetrical larval density-dependence

dL1(ϕ)

dϕ
= cA(ϕE)SE(ϕ) − cA(ϕL1)SL1(ϕ) − (nL + nC(L1(ϕ) + ψL2(ϕ))) L1(ϕ)

dL2(ϕ)

dϕ
= cA(ϕL1)SL1(ϕ) − cA(ϕL2)SL2(ϕ) − (nL + nC(L1(ϕ)/ψ + L2(ϕ))) L2(ϕ)

dA(ϕ)

dϕ
= cA(ϕP )SP (ϕ) − nAA(ϕ)

SL1(ϕ) = exp

(
−

L1∑
i=E

ni

αi

− nC

∫ ϕ

ϕ̂L1:L1

(L1(ξ) + ψL2(ξ))dξ

)

SL2(ϕ) = exp

(
−

L2∑
i=E

ni

αi

− nC

∫ ϕ̂L2:L2

ϕ̂L1:L2

(L1(ξ) + ψL2(ξ))dξ − nC

∫ ϕ

ϕ̂L2:L2

(L1(ξ)/ψ + L2(ξ))dξ

)

SP (ϕ) = exp

(
−

P∑
i=E

ni

αi

− nC

∫ ϕ̂L2:P

ϕ̂L1:P

(L1(ξ) + ψL2(ξ))dξ − nC

∫ ϕ̂P :P

ϕ̂L2:P

(L1(ξ)/ψ + L2(ξ))dξ

)

Figure C5 shows the predicted dynamics as a function of the birth rate scalar and strength

of competition asymmetry.
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Model F: Asymmetrical larval density-dependence with senescence

dL1(ϕ)

dϕ
= cA(ϕE)SE(ϕ) − cA(ϕL1)SL1(ϕ) − (nL + nC(L1(ϕ) + ψL2(ϕ))) L1(ϕ)

dL2(ϕ)

dϕ
= cA(ϕL1)SL1(ϕ) − cA(ϕL2)SL2(ϕ) − (nL + nC(L1(ϕ)/ψ + L2(ϕ))) L2(ϕ)

dA(ϕ)

dϕ
= cA(ϕP )SP (ϕ) − cA(ϕA)SA(ϕ) − nAA(ϕ)

SL1(ϕ) = exp

(
−

L1∑
i=E

ni

αi

− nC

∫ ϕ

ϕ̂L1:L1

(L1(ξ) + ψL2(ξ))dξ

)

SL2(ϕ) = exp

(
−

L2∑
i=E

ni

αi

− nC

∫ ϕ̂L2:L2

ϕ̂L1:L2

(L1(ξ) + ψL2(ξ))dξ − nC

∫ ϕ

ϕ̂L2:L2

(L1(ξ)/ψ + L2(ξ))dξ

)

SP (ϕ) = exp

(
−

P∑
i=E

ni

αi

− nC

∫ ϕ̂L2:P

ϕ̂L1:P

(L1(ξ) + ψL2(ξ))dξ − nC

∫ ϕ̂P :P

ϕ̂L2:P

(L1(ξ)/ψ + L2(ξ))dξ

)

SA(ϕ) = exp

(
−

A∑
i=E

ni

αi

− nC

∫ ϕ̂L2:A

ϕ̂L1:A

(L1(ξ) + ψL2(ξ))dξ − nC

∫ ϕ̂P :A

ϕ̂L2:A

(L1(ξ)/ψ + L2(ξ))dξ

)

Figure C6 shows the predicted dynamics as a function of the birth rate scalar and strength

of competition asymmetry.
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Model G: Asymmetrical larval density-dependence with Allee effect

dL1(ϕ)

dϕ
= c

(
1 − eνA(ϕE)

)
A(ϕE)SE(ϕ) − c

(
1 − eνA(ϕL1

)
)
A(ϕL1)SL1(ϕ)

− (nL + nC(L1(ϕ) + ψL2(ϕ))) L1(ϕ)

dL2(ϕ)

dϕ
= c

(
1 − eνA(ϕL1

)
)
A(ϕL1)SL1(ϕ) − c

(
1 − eνA(ϕL2

)
)
A(ϕL2)SL2(ϕ)

− (nL + nC(L1(ϕ)/ψ + L2(ϕ))) L2(ϕ)

dA(ϕ)

dϕ
= c

(
1 − eνA(ϕP )

)
A(ϕP )SP (ϕ) − nAA(ϕ)

SL1(ϕ) = exp

(
−

L1∑
i=E

ni

αi

− nC

∫ ϕ

ϕ̂L1:L1

(L1(ξ) + ψL2(ξ))dξ

)

SL2(ϕ) = exp

(
−

L2∑
i=E

ni

αi

− nC

∫ ϕ̂L2:L2

ϕ̂L1:L2

(L1(ξ) + ψL2(ξ))dξ − nC

∫ ϕ

ϕ̂L2:L2

(L1(ξ)/ψ + L2(ξ))dξ

)

SP (ϕ) = exp

(
−

P∑
i=E

ni

αi

− nC

∫ ϕ̂L2:P

ϕ̂L1:P

(L1(ξ) + ψL2(ξ))dξ − nC

∫ ϕ̂P :P

ϕ̂L2:P

(L1(ξ)/ψ + L2(ξ))dξ

)

Figure C7 shows the predicted dynamics as a function of the birth rate scalar and strength

of competition asymmetry.
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Model H: Asymmetrical larval density-dependence with parasitism

dE(ϕ)

dϕ
= cA(ϕ) − cA(ϕE)SE(ϕ) −

(
nE + k ln

(
1 − u

k
W (ϕ)

))
E(ϕ)

dL1(ϕ)

dϕ
= cA(ϕE)SE(ϕ) − cA(ϕL1)SL1(ϕ) − (nL + nC(L1(ϕ) + ψL2(ϕ))) L1(ϕ)

dL2(ϕ)

dϕ
= cA(ϕL1)SL1(ϕ) − cA(ϕL2)SL2(ϕ) − (nL + nC(L1(ϕ) + ψL2(ϕ))) L2(ϕ)

dA(ϕ)

dϕ
= cA(ϕP )SP (ϕ) − nAA(ϕ)

dW (ϕ)

dϕ
= k ln

(
1 − u

k
W (ϕP )

)
E(ϕP )SP W − nW W (ϕ)

SE(ϕ) = exp

(
−nE

αE

− k

∫ ϕ

ϕ̂E:E

ln
(
1 − u

k
W (ϕ)

)
dξ

)
SL1(ϕ) = exp

(
−

L1∑
i=E

ni

αi

− k

∫ ϕ̂L1:L1

ϕ̂E:L1

ln
(
1 − u

k
W (ϕ)

)
dξ

−nC

∫ ϕ

ϕ̂L1:L1

L1(ξ) + ψL2(ξ)dξ

)

SL2(ϕ) = exp

(
−

L2∑
i=E

ni

αi

− k

∫ ϕ̂L1:L2

ϕ̂E:L2

ln
(
1 − u

k
W (ϕ)

)
dξ − nC

∫ ϕ̂L2:L2

ϕ̂L1:L2

L1(ξ) + ψL2(ξ)dξ

−nC

∫ ϕ

ϕ̂L2:L2

L1(ξ)/ψ + L2(ξ)dξ

)

SP (ϕ) = exp

(
−

P∑
i=E

ni

αi

− k

∫ ϕ̂L1:P

ϕ̂E:P

ln
(
1 − u

k
W (ϕ)

)
dξ − nC

∫ ϕ̂L2:P

ϕ̂L1:P

L1(ξ) + ψL2(ξ)dξ

−nC

∫ ϕ̂P :P

ϕ̂L2:P

L1(ξ)/ψ + L2(ξ)dξ

)

SP W (ϕ) = exp

(
−

P∑
i=L1

ni

αi

− nC

∫ ϕ̂L2:P

ϕ̂L1:P

L1(ξ) + ψL2(ξ)dξ − nC

∫ ϕ̂P :P

ϕ̂L2:P

L1(ξ)/ψ + L2(ξ)dξ

)

Figure C8 shows the predicted dynamics as a function of the birth rate scalar, search

efficiency and interference among wasps.



– 9 –

Model I: Parasitism

dE(ϕ)

dϕ
= cA(ϕ) − cA(ϕE)SE(ϕ) −

(
nE + k ln

(
1 − u

k
W (ϕ)

))
E(ϕ)

dA(ϕ)

dϕ
= cA(ϕP )SP (ϕ) − nAA(ϕ)

dW (ϕ)

dϕ
= k ln

(
1 − u

k
W (ϕP )

)
E(ϕP )SP W − nW W (ϕ)

SE(ϕ) = exp

(
−nE

αE

− k

∫ ϕ

ϕ̂E:E

ln
(
1 − u

k
W (ϕ)

)
dξ

)
SP (ϕ) = exp

(
−

P∑
i=E

ni

αi

− k

∫ ϕ̂L1:P

ϕ̂E:P

ln
(
1 − u

k
W (ϕ)

)
dξ

)

SP W (ϕ) = exp

(
−

P∑
i=L1

ni

αi

)

Figure C9 shows the predicted dynamics as a function of the birth rate scalar, search

efficiency and interference among wasps.
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Model J: Symmetric larval density-dependence with winter mortality

dE(ϕ)

dϕ
= cA(ϕ) − cA(ϕE)SE(ϕ) −

(
nE + nq1

e−nq2m(ϕ)

m(ϕ)

)
E(ϕ)

dL1(ϕ)

dϕ
= cA(ϕE)SE(ϕ) − cA(ϕL1)SL1(ϕ) − (nL + nCL(ϕ)) L1(ϕ)

dL2(ϕ)

dϕ
= cA(ϕL1)SL1(ϕ) − cA(ϕL2)SL2(ϕ) − (nL + nCL(ϕ)) L2(ϕ)

dP (ϕ)

dϕ
= cA(ϕL2)SL2(ϕ) − cA(ϕP )SP (ϕ) −

(
nP + nq1

e−nq2m(ϕ)

m(ϕ)

)
P (ϕ)

dA(ϕ)

dϕ
= cA(ϕP )SP (ϕ) −

(
nA + nq1

e−nq2m(ϕ)

m(ϕ)

)
A(ϕ)

SE(ϕ) = exp

(
−nE

αE

− nq1

∫ ϕ

ϕ̂E:E

e−nq2m(ξ)

m(ξ)
dξ

)
SL1(ϕ) = exp

(
−

L1∑
i=E

ni

αi

− nq1

∫ ϕ̂L1:L1

ϕ̂E:L1

e−nq2m(ξ)

m(ξ)
dξ − nC

∫ ϕ

ϕ̂L1:L1

L(ξ)dξ

)

SL2(ϕ) = exp

(
−

L2∑
i=E

ni

αi

− nq1

∫ ϕ̂L1:L2

ϕ̂E:L2

e−nq2m(ξ)

m(ξ)
dξ − nC

∫ ϕ

ϕ̂L1:L2

L(ξ)dξ

)

SP (ϕ) = exp

(
−

P∑
i=E

ni

αi

− nq1

∫ ϕ̂L1:P

ϕ̂E:P

e−nq2m(ξ)

m(ξ)
dξ − nC

∫ ϕ̂P :P

ϕ̂L1:P

L(ξ)dξ − nq1

∫ ϕ

ϕ̂P :P

e−nq2m(ξ)

m(ξ)
dξ

)

where L(ϕ) = L1(ϕ) + L2(ϕ). Figure C10 shows the predicted dynamics as a function with

a realistic temperature driver.
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Model K: Symmetrical larval competition with senescence and winter mortality

dE(ϕ)

dϕ
= cA(ϕ) − cA(ϕE)SE(ϕ) −

(
nE + nq1

e−nq2m(ϕ)

m(ϕ)

)
E(ϕ)

dL1(ϕ)

dϕ
= cA(ϕE)SE(ϕ) − cA(ϕL1)SL1(ϕ) − (nL + nCL(ϕ)) L1(ϕ)

dL2(ϕ)

dϕ
= cA(ϕL1)SL1(ϕ) − cA(ϕL2)SL2(ϕ) − (nL + nCL(ϕ)) L2(ϕ)

dP (ϕ)

dϕ
= cA(ϕL2)SL2(ϕ) − cA(ϕP )SP (ϕ) −

(
nP + nq1

e−nq2m(ϕ)

m(ϕ)

)
P (ϕ)

dA(ϕ)

dϕ
= cA(ϕP )SP (ϕ) − cA(ϕA)SA(ϕ) −

(
nA + nq1

e−nq2m(ϕ)

m(ϕ)

)
A(ϕ)

SE(ϕ) = exp

(
−nE

αE

− nq1

∫ ϕ

ϕ̂E:E

e−nq2m(ξ)

m(ξ)
dξ

)
SL1(ϕ) = exp

(
−

L1∑
i=E

ni

αi

− nq1

∫ ϕ̂L1:L1

ϕ̂E:L1

e−nq2m(ξ)

m(ξ)
dξ − nC

∫ ϕ

ϕ̂L1:L1

L(ξ)dξ

)

SL2(ϕ) = exp

(
−

L2∑
i=E

ni

αi

− nq1

∫ ϕ̂L1:L2

ϕ̂E:L2

e−nq2m(ξ)

m(ξ)
dξ − nC

∫ ϕ

ϕ̂L1:L2

L(ξ)dξ

)

SP (ϕ) = exp

(
−

P∑
i=E

ni

αi

− nq1

∫ ϕ̂L1:P

ϕ̂E:P

e−nq2m(ξ)

m(ξ)
dξ − nC

∫ ϕ̂P :P

ϕ̂L1:P

L(ξ)dξ − nq1

∫ ϕ

ϕ̂P :P

e−nq2m(ξ)

m(ξ)
dξ

)

SA(ϕ) = exp

(
−

A∑
i=E

ni

αi

− nq1

∫ ϕ̂L1:A

ϕ̂E:A

e−nq2m(ξ)

m(ξ)
dξ − nC

∫ ϕ̂P :A

ϕ̂L1:A

L(ξ)dξ − nq1

∫ ϕ

ϕ̂P :A

e−nq2m(ξ)

m(ξ)
dξ

)

where L(ϕ) = L1(ϕ) + L2(ϕ). Figure C11 shows the predicted dynamics as a function with

a realistic temperature driver.



– 12 –

Model L: Symmetrical larval competition with Allee effect and winter mortality

dE(ϕ)

dϕ
= c

(
1 − eνA(ϕ)

)
A(ϕ) − c

(
1 − eνA(ϕE)

)
A(ϕE)SE(ϕ) −

(
nE + nq1

e−nq2m(ϕ)

m(ϕ)

)
E(ϕ)

dL1(ϕ)

dϕ
= c

(
1 − eνA(ϕE)

)
A(ϕE)SE(ϕ) − c

(
1 − eνA(ϕL1

)
)
A(ϕL1)SL1(ϕ) − (nL + nCL(ϕ)) L1(ϕ)

dL2(ϕ)

dϕ
= c

(
1 − eνA(ϕL1

)
)
A(ϕL1)SL1(ϕ) − c

(
1 − eνA(ϕL2

)
)
A(ϕL2)SL2(ϕ) − (nL + nCL(ϕ)) L2(ϕ)

dP (ϕ)

dϕ
= c

(
1 − eνA(ϕL2

)
)
A(ϕL2)SL2(ϕ) − c

(
1 − eνA(ϕP )

)
A(ϕP )SP (ϕ) −

(
nP + nq1

e−nq2m(ϕ)

m(ϕ)

)
P (ϕ)

dA(ϕ)

dϕ
= c

(
1 − eνA(ϕP )

)
A(ϕP )SP (ϕ) −

(
nA + nq1

e−nq2m(ϕ)

m(ϕ)

)
A(ϕ)

SE(ϕ) = exp

(
−nE

αE

− nq1

∫ ϕ

ϕ̂E:E

e−nq2m(ξ)

m(ξ)
dξ

)
SL1(ϕ) = exp

(
−

L1∑
i=E

ni

αi

− nq1

∫ ϕ̂L1:L1

ϕ̂E:L1

e−nq2m(ξ)

m(ξ)
dξ − nC

∫ ϕ

ϕ̂L1:L1

L(ξ)dξ

)

SL2(ϕ) = exp

(
−

L2∑
i=E

ni

αi

− nq1

∫ ϕ̂L1:L2

ϕ̂E:L2

e−nq2m(ξ)

m(ξ)
dξ − nC

∫ ϕ

ϕ̂L1:L2

L(ξ)dξ

)

SP (ϕ) = exp

(
−

P∑
i=E

ni

αi

− nq1

∫ ϕ̂L1:P

ϕ̂E:P

e−nq2m(ξ)

m(ξ)
dξ − nC

∫ ϕ̂P :P

ϕ̂L1:P

L(ξ)dξ − nq1

∫ ϕ

ϕ̂P :P

e−nq2m(ξ)

m(ξ)
dξ

)

where L(ϕ) = L1(ϕ) + L2(ϕ). Figure C12 shows the predicted dynamics as a function with

a realistic temperature driver.
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Fig. C1.— Illustrative model dynamics for Model A. Left hand panel shows adult (red)

and larval (green) dynamics, middle panel is the bifurcation plot showing the maximum

and minimum of adult abundance as a function of a model parameter, and right panel is a

color map of the the corresponding periodiogram. The vertical gray line in the middle panel

indicates parameter location for the simulation in the left panel, and parameters other than

those given are in table 2. Horizontal lines on the periodiogram are the reference lines from

fig. 2. Each row illustrates the change in dynamics as a function of a model parameter.
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Model B
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Fig. C2.— Illustrative model dynamics for Model B. See fig. C1 for legend details.



– 15 –

Model C
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Fig. C3.— Illustrative model dynamics for Model C. See fig. C1 for legend details.



– 16 –

0 500 1,000 1,500
Time (φ)

Lo
g(

A
du

lts
or

 L
ar

va
e) D1

500 1,000 1,500
Time (φ)

Lo
g(

A
du

lts
or

 L
ar

va
e) D4

500 1,000 1,500
Time (φ)

Lo
g(

A
du

lts
or

 L
ar

va
e)

D7

10 20 30
Interference effect among wasps (k)

Lo
g(

A
du

lts
)

0.33 0.67 1.0
Searching efficiency (u)

Lo
g(

A
du

lts
)

P
er

io
d(

φ)
0

10
0

20
0

0 10 20 30
Birth rate on φ scale (β)

D3

D5

D8

P
er

io
d(

φ)
0

10
0

20
0

0 10 20 30
Interference effect among wasps(k)

D6

P
er

io
d(

φ)
0

10
0

20
0

0 0.33 0.67 1.0
Searching efficiency (u)

D9

10
-3

10
10

5

0 10 20 30
Birth rate on φ scale (β)

Lo
g(

A
du

lts
) D2

10
-3

10
10

6

0

10
-3

10
10

5

0

10
-3

10
10

5

0

10
-4

10
5

A
A

10
2

10

0

10
-4

10
5

10
2

10

Model D

k = 5.0 and u = 0.01

k = 20.0 and u = 0.01

k = 5.0 and u = 0.3

Fig. C4.— Illustrative model dynamics for Model D. See fig. C1 for legend details.
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Fig. C5.— Illustrative model dynamics for Model E. See fig. C1 for legend details.
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Fig. C6.— Illustrative model dynamics for Model F. See fig. C1 for legend details.
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Fig. C7.— Illustrative model dynamics for Model G. See fig. C1 for legend details.
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Model H
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Fig. C8.— Illustrative model dynamics for Model H. See fig. C1 for legend details.
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Fig. C9.— Illustrative model dynamics for Model I. See fig. C1 for legend details.
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Fig. C10.— Illustrative model dynamics for Model J. See fig. C1 for legend details.
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Fig. C11.— Illustrative model dynamics for Model K. See fig. C1 for legend details.
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Appendix D from T. Yamanaka et al., ”Generation separation in simple

structured life-cycles: models and 48 years of field data on a tea tortrix moth”

Model robustness to variation in stage development rates

To assess the robustness of single-generation cycles in the fixed-delay model (online

appendix B) to realistic variation in stage development rates, we develop a variant of the

model with distributed stage durations. To construct the model, we assume that the delays

in each stage are Gamma-distributed with an integer shape parameter, which is equivalent

to dividing each stage into n substages, each with exponentially distributed substage

duration. Following from online appendix B, the dynamics of each stage can be rewritten as

dCi,1(ϕ)

dϕ
= nαi−1Ci−1,n(ϕ)− nαiCi,1(ϕ)−

δi(ϕ)

m(ϕ)
Ci,1(ϕ) (D1)

dCi,j(ϕ)

dϕ
= nαi (Ci,j−1(ϕ)− Ci,j(ϕ))−

δi(ϕ)

m(ϕ)
Ci,j(ϕ) (D2)

where Ci,j is the density of individuals in substage j of stage i. If i = 1, then

nαi−1Ci−1,n(ϕ) is the birth rate β(ϕ)/m(ϕ). Nabeta et al. (2005) report the standard

error (SE) and sample size x for the egg, larvae and pupae stage durations. We convert

these numbers to estimates of standard deviations on the time-scale using σ = SE
√
x.

The egg stage had a higher variance (σ2
E = 3.2) than the larvae (σ2

L = 1.0) or pupae stage

(σ2
P = 0.6). However, the influence of development rate variation on single-generation

cycles in the model was not symmetric. We found that variance in the larvae, pupae and

adult development rates had a large impact on the presence of limit cycles, but variance

in the egg stage had no influence, so the remaining analyses are based on the variance in

the larvae and pupae stages only. To compare the observed variation with the variation

in the distributed delay model, we transformed the observed variance from the time-scale

to the phi-scale using σ2(ϕ) = σ2(t)(g(t)2) , and calculate the scale (κ) and shape (θ)

parameters of a Gamma distribution using the expected larval stage duration using the data
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of 20 ◦C from online appendix A and the variance (κ = 0.055, θ = 247.3). The empirical

distribution of stage durations corresponds to the distribution of stage durations predicted

by the distributed delay model with roughly 200 substages (fig. D1), which has the same

single-generation cycles as the fixed-delay model.
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Fig. D1.— Influence of development rate variation on single-generation cycles. The left

panels show population dynamics of larvae (green lines) and adult (red lines) of the model

with adult senescence and without winter hardiness (corresponding to fig. 3). Right panels

show the variation in the growth duration of the larval stage. Results are shown for n =25, 50,

100, and 200 (blue lines). Observed variation in stage durations (dotted lines) corresponds

to a distributed delay model with 200 substages per stage, which has the same dynamics as

the fixed-delay model.
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