Seeking alternatives to probit 9 when developing treatments for wood packaging materials under ISPM No. 15

R. A. Haack1, A. Uzunovic2, K. Hoover3 and J. A. Cook2

1 USDA Forest Service, Northern Research Station, 1407 S. Harrison Road, East Lansing, MI 48823 (USA); e-mail: rhaack@fs.fed.us
2 FPInnovations, 2665 East Mall, Vancouver, BC V6T 1W5 (Canada); e-mails: Adnan.Uzunovic@fpinnovations.ca and Jean.Cook@fpinnovations.ca
3 Department of Entomology, The Pennsylvania State University, 501 ASI Building, University Park, PA 16802 (USA); e-mail: kxh25@psu.edu

ISPM No. 15 presents guidelines for treating wood packaging material used in international trade. There are currently two approved phytosanitary treatments: heat treatment and methyl bromide fumigation. New treatments are under development, and are needed given that methyl bromide is being phased out. Probit 9 efficacy (100% mortality of at least 93.613 test organisms) has been suggested as an evaluation criterion for new wood treatments, and is based on fruit fly research. We question requiring probit 9 efficacy for wood pests (insects, nematodes and fungi) and discuss challenges to meeting this requirement. Instead, we suggest a 3-step, laboratory-based alternative approach. Step 1 involves laboratory experiments (screening) to estimate the lethal dose for the most tolerant stage of each target pest. We consider each infested piece of wood as an experimental unit, not the individual pests, to avoid pseudoreplication. Step 2 requires replicated experiments (with no survivors) at the estimated lethal dose. We suggest a minimum sample size of 60 experimental units, which achieves 0.95 statistical reliability at the 95% confidence level. Step 3 entails studies under simulated operational conditions using wood samples similar in size to wood packaging material and infested to levels that reflect field conditions.

Introduction

Many species of insects, nematodes and fungi colonize living and recently dead trees throughout the world. When infested trees or logs are converted into wood packaging material such as crates, dunnage and pallets used in international trade, there is potential for pests to be moved inadvertently to new countries (Brockerhoff et al., 2006; Haack, 2006; McCullough et al., 2006; Zahid et al., 2008; Roques et al., 2009; Haack et al., 2010). In recognition of this high-risk pathway, in 2002 the world community adopted International Standards for Phytosanitary Measures (ISPM) No. 15, entitled ‘Guidelines for Regulating Wood Packaging Material in International Trade’ (IPPC, 2002). When ISPM No. 15 was originally written (IPPC, 2002), and when last revised (IPPC, 2009a), the only two approved phytosanitary treatments were heat treatment to a minimum temperature of 56°C for 30 min (56/30) throughout the entire profile of the wood, and methyl bromide fumigation following schedules prescribed in the standard (IPPC, 2009a).

The original 56/30 schedule was based on extensive laboratory studies in Canada that determined the time–temperature combination that was lethal to the pinewood nematode (Bursaphelenchus xylophilus; Smith, 1991, 1992). This work was funded by a government-industry consortium in Canada to facilitate trade of North American lumber to Europe. A series of preliminary experiments were conducted to examine heat tolerance in pinewood nematode relative to nematode strain, tree species and wood moisture content. Subsequent testing, using samples that represented the worst case conditions, was conducted with the goal of achieving 100% mortality at a reliability of 0.99994. The data were analysed using extrapolation and probit-like analysis (Finney, 1971). Years later, the 56/30 schedule was adopted as the standard for heat treatment under ISPM No. 15 for basically all wood pests associated with wood packaging material (IPPC, 2002, 2009a).

Currently, there is great interest in developing new technologies to treat wood packaging material for inclusion in ISPM No. 15, especially new fumigants, given that use of methyl bromide is being phased out worldwide. When developing new treatments it is important to know the level of mortality or effectiveness (see terminology below) that the new treatment must achieve to be considered for approval.

The Commission on Phytosanitary Measures serves as the governing body within the International Plant Protection Convention (IPPC), and is responsible for development and adoption of ISPMs. In addition, there are several committees, technical panels and expert working groups within the IPPC that assist in developing and revising ISPMs. The Technical Panel on Phytosanitary Treatments (TPPT) has the lead responsibility for evaluating submissions for ISPM treatments. With regard to ISPM No. 15, the TPPT requested in 2007 that the Technical Panel on Forest Quarantine (TPFQ) develop evaluation criteria, including a list of
target pests and the required level of efficacy that included consideration of probit 9 (TPFQ, 2008). The purpose of this paper is to discuss the history of probit 9 and the challenges of achieving it with respect to wood-infesting organisms, and to suggest an alternative approach to probit 9 when developing treatments for ISPM No. 15.

Goals of quarantine treatments and ISPM No. 15

The goal of quarantine treatments is to eliminate or minimize the risk of pests being spread through traded commodities, including wood packaging material (Landolt et al., 1984; Roth, 1989). Quarantine treatments are generally classified as chemical (e.g., fumigants) or physical (e.g., heat, cold and irradiation), and are used to sterilize or kill regulated pests that are on or in the commodity at the time of treatment (Follett & Neven, 2006). The goal of ISPM No. 15 is very similar. As first written in 2002, and again in the 2006 revision, the stated goal of ISPM No. 15 was to ‘practically eliminate the risk for most quarantine pests and significantly reduce the risk from a number of other pests that may be associated’ with wood packaging material (IPPC, 2002). In the 2009 revision of ISPM No. 15, the stated goal was changed slightly to ‘reduce significantly the risk of introduction and spread of most quarantine pests’ (IPPC, 2009a). It is important to keep this revised wording in mind and recognize that the goal of ISPM No. 15 is not zero risk, but rather significantly reduced risk.

Efficacy testing for ISPM No. 15 treatments

Guidelines for developing new or revised phytosanitary treatments are given in ISPM No. 28: ‘Phytosanitary Treatments for Regulated Pests’ (IPPC, 2009b). The guidelines presented in ISPM No. 28 are very general: the document simply states that efficacy data must be submitted by the treatment developer but does not specify the level of efficacy required for approval. However, in early 2010, a new draft appendix to ISPM No. 15 was released for country consultation that listed specific guidelines for researchers to follow when developing new treatments for possible inclusion in ISPM No. 15 (IPPC, 2010). One guideline in this draft document stated that probit 9 efficacy should be demonstrated for the target pests either by direct testing (i.e. treating at least 93,613 individuals with 100% mortality) or through extrapolation based on dose–response data.

History, benefits and criticisms of probit 9

The concept of probit was first published by Bliss (1934) as a means to express percent mortality data by dividing the range 0.01 to 99.99% into probability units or probits where 0 = 0.01% kill, 5 = 50% kill, and 10 = 99.99% kill. Probit analysis assumes to express percent mortality data by dividing the range 0.01 to 99.99% into probability units or probits where 0 = 0.01% mortality as the evaluation criterion or for selecting probit 9, except to state that his objective was to ‘assure no survival of (fruit fly) eggs or larvae in the products treated’. If one sets the probability of obtaining this efficacy level by chance alone at 5% (95% confidence level), at least 93,613 insects must be tested without any survivors to attain efficacy of probit 9 (Couey & Chew, 1986; Follett & Neven, 2006). Obtaining large numbers of fruit flies is achievable, given their short generation time and availability of efficient rearing methods.

Probit 9 has some advantages, but it has also been criticized. The principal advantages of probit 9 include the apparent high degree of quarantine security and the relative ease of convincing a trading partner to accept a treatment that achieves probit 9 efficacy (Follett & Neven, 2006). The main criticisms directed at treatments for which probit 9 efficacy is required are that (1) substantial numbers of live pests can still be shipped on treated commodities when trade volume or infestation levels are high, given that probit 9 can be viewed as either 99.9968% mortality or 0.0032% survival; (2) for products rarely infested, requiring probit 9 is often considered too severe and possibly difficult to demonstrate; (3) other models besides probit are available to analyse dose–response data (e.g. logit, log-log or Gompertz) and these often give a better fit to the data than the normal distribution; and (4) the focus on mortality as the sole criterion for evaluating quarantine security disregards risk-based factors along the pathway, such as the likelihood of infestation, natural survival, reproductive potential and establishment potential, as well as processing parameters such as packaging and shipping practices and distribution times (Landolt et al., 1984; Liquido et al., 1997; Follett & Neven, 2006; Robertson et al., 2007). Other approaches to evaluating pest risk have been proposed in recent decades as alternatives to probit 9, especially for horticultural products, which focus on reducing pest incidence below the threshold for establishment, such as the use of pest-free areas, system approaches, and maximum pest limits (Landolt et al., 1984; Baker et al., 1990; Liquido et al., 1997; Follett & Neven, 2006). Even though probit 9 is recognized as having weaknesses and alternatives have been presented to the phytosanitary community, no other method has gained wide acceptance and regulatory recognition to date (Follett & Neven, 2006).

Key terminology used in discussing treatments

The terminology used in the development and assessment of treatments can be vague and may be misinterpreted. The word ‘efficacy’, in particular, means different things to different people.
and is often confused with ‘effectiveness’, ‘confidence’ or ‘reliability’. Precise understanding of these terms is critical for clear stipulation of treatment criteria. Efficacy is used throughout ISPM No. 28, (IPPC, 2009b), and the draft appendices to ISPM No. 15 (IPPC, 2010). Efficacy is often defined as the ability (or capacity) to produce a desired effect. It is not a statistical term. Efficacy of probit 9 is not equivalent to 99.9968% confidence that the lethal dose is indeed what was determined experimentally; instead, it is the dose that produces mortality of 99.9968% in a population of, say, 100 000 individuals. More importantly, efficacy refers to results obtained under ideal treatment conditions, similar to rigorous clinical trials, whereas effectiveness refers to results obtained under real-world treatment conditions. Researchers generally first examine the efficacy of a treatment in controlled trials (see Steps 1 and 2 below) and then conduct studies to determine if the treatment is equally effective under operational conditions (see Step 3 below).

In contrast, confidence and reliability have statistical meanings. Typically, biologists set Type I error (α) at 0.05, which provides a 95% confidence interval around the mean (1.0–0.05 = 0.95 or 95%). This means that you can be 95% confident that the true mean lies within this interval (the mean ± a degree of error), while 5% of the time it does not. We use the term ‘statistical reliability’ as the probability that the same result will be obtained again and again with repetition. Thus reliability is a term that refers to the level of trust in the results, and is dependent on sample size and variability in the data. We suggest using reliability (or statistical reliability) rather than efficacy when referring to the ability to produce similar results over time (see Step 2). In addition, we consider each infested piece of wood as an experimental unit regardless of the number of pest organisms within (see Step 2).

### Diversity of wood-inhabiting organisms

When ISPM 15 was first approved in 2002, it was focused on several families of bark- and wood-inesting insects such as Buprestidae, Cerambycidae, Scolytidae and Siricidae, as well as the pinewood nematode (IPPC, 2002). In the 2010 draft appendix to ISPM No. 15 (IPPC, 2010), fungi were added to the list of organisms against which new treatments should be evaluated.

Worldwide, there are thousands of insect species that colonize and develop in the bark and wood of trees. The numbers of species found in several important insect families whose members commonly infest bark and wood are presented in Table 1. Some of these insects colonize live, apparently healthy trees, others colonize only stressed or recently dead trees, and others infest only dry or decomposing wood (Haack & Slansky, 1987; Hanks, 1999; Liettier et al., 2004). We did not find summary data for the number of wood-inhabiting fungi and nematodes known worldwide, but undoubtedly there are several thousand species (Callan & Carris, 2004; Ryss et al., 2005; Unterseher et al., 2008). Moreover, there are likely to be hundreds of species of wood-inhabiting organisms that are still undescribed worldwide. Nevertheless, only a small percentage of these organisms actually cause tree death, such as *Anoplophora glabripennis* (Asian longhorned beetle), *Agrilus planipennis* (emerald ash borer) and

<table>
<thead>
<tr>
<th><strong>Order</strong></th>
<th><strong>Family</strong></th>
<th><strong>World</strong></th>
<th><strong>N. America</strong></th>
<th><strong>Europe</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Coleoptera</td>
<td>Anobiidae</td>
<td>2 200</td>
<td>402</td>
<td>434</td>
</tr>
<tr>
<td>Bostrichidae</td>
<td>550</td>
<td>77</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Buprestidae</td>
<td>14 600</td>
<td>762</td>
<td>437</td>
<td></td>
</tr>
<tr>
<td>Cerambycidae</td>
<td>&gt;20 000</td>
<td>&gt;900</td>
<td>695</td>
<td></td>
</tr>
<tr>
<td>Platypodidae</td>
<td>1 463</td>
<td>7</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Scolytidae</td>
<td>5 812</td>
<td>581</td>
<td>376</td>
<td></td>
</tr>
<tr>
<td>Hymenoptera</td>
<td>Siricidae</td>
<td>100</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>Lepidoptera</td>
<td>Cossidae</td>
<td>682</td>
<td>45</td>
<td>23</td>
</tr>
<tr>
<td>Sesiaidae</td>
<td>1 325</td>
<td>123</td>
<td>115</td>
<td></td>
</tr>
</tbody>
</table>


†The number of European Anobiidae (434) includes 421 species that were classified as Anobiidae plus 13 species of Lycidae. The Lycidae are considered by many as a subfamily of the Anobiidae. The anobiid values given for the world and North America include the Lycinae.

‡The beetle families Platypodidae and Scolytidae are currently recognized by many as subfamilies of the weevil family Curculionidae, but most plant health regulatory organizations worldwide still treat them as distinct families.

*Bursaphelenchus xylophilus* (pinewood nematode) (Ryss et al., 2005; Haack, 2006; Haack et al., 2010). Given such diversity, it is clear that only a small fraction of all wood pests can be screened and tested when developing new treatments for ISPM No. 15.

### Life-history attributes of wood-inesting pests relevant to probit 9

Among the numerous factors that influence the overall risk of pest movement in trade, life history characteristics can provide guidance for selecting the appropriate level of treatment efficacy. The efficacy level needed for a given pest can be estimated through assessment of biological characteristics that affect the likelihood that an organism will be introduced and become established, including fecundity, longevity, voltinism, parthenogenesis (if relevant), prevalence in wood, dispersal ability, vector relationships (if relevant), host range, founder population dynamics, sporulation characteristics of fungi (asexual and sexual reproduction), resting stages and sublethal effects. Assessment of these characteristics should provide insight into the acceptable number of organisms that can survive a treatment and still provide acceptable phytosanitary security.

As mentioned above, probit 9 was originally proposed as a statistical approach to evaluate treatments for fruit flies. However, in contrast to fruit flies, which are relatively easy to mass-rear, bark- and wood-inesting insects present many challenges, making it impractical to achieve sample sizes of nearly 100 000. For
example, naturally infested host material must be used for many borers, which requires considerable effort to locate and cut infested trees, and then transport the infested logs to the laboratory for processing and testing. In addition, natural borer infestation rates can vary widely from year to year, from tree to tree, and even within a single tree. Based on our rearing experience with well infested logs, it would be common for a log that measures about 1 m long and 10 cm in diameter to contain about 100–250 individual bark beetles such as the pine shoot beetle (Tomicus piniperda), 20–30 buprestis such as the emerald ash borer, or 5–10 cerambycids such as the Asian longhorned beetle. Therefore to obtain 93 613 individuals for probit 9 testing with logs of similar size (1 m × 10 cm) and infestation levels, a researcher would need 374–936 bark beetle-infested logs, 3120–4681 buprestis-infested logs, or 9361–18 723 cerambycid-infested logs. Another challenge to working with many borers is their long generation time. In contrast to fruit flies, which can often complete one generation per month, most bark beetles require 2–3 months per generation, while others require a year or more. Similarly, many buprestis and cerambycids (such as the emerald ash borer and Asian longhorned beetle) can complete one generation per year, while other species usually require 2–3 years or more per generation (Haack & Slansky, 1987; Haack, 2006). Because most testing is conducted when the target insects are larvae, it is necessary to store the test logs in specialized rearing containers for several months to ensure adequate time for adult emergence. Clearly, few facilities could treat and store the number of test logs necessary to achieve probit 9 testing, and even fewer if the target organism must be tested within a quarantine facility.

*Bursaphelenchus xylophilus* (pinewood nematode) is the nematode of principal concern to forestry worldwide (Ryss et al., 2005). This organism is relatively easy to culture in the laboratory in large numbers and therefore obtaining 100 000 organisms is achievable.

On the other hand, wood-colonizing fungi are more difficult to work with because they are not easily defined, discrete organisms like a single insect or nematode. Because fungi grow within the wood matrix, each individual wood block would need to be counted as an individual, thus to meet probit 9, a researcher would need to test at least 93 613 individual pieces of wood that have been colonized by the target fungus. Another option would be to treat single fungal spores as discrete individuals, which would allow a researcher easily to meet probit 9, but we question the validity of evaluating the survival of spores rather than other fungal structures as a measure of treatment success or failure.

**Extrapolation**

The draft appendix for ISPM No. 15 (IPPC, 2010) recognized that it would often be difficult to obtain 93 613 organisms for testing and therefore allowed use of extrapolation to estimate the dose required to achieve probit 9 efficacy. Although this allowance greatly reduces the burden on treatment developers, it could have negative consequences. For example, when modeling or extrapolating from dose–mortality response data, the dose estimated through extrapolation overestimates what would have been the experimentally derived dose (Smith, 1991; Hoover et al., 2010). Overestimating the lethal dose will result in overtreatment, which could result in increased manufacturing costs, increased environmental impacts (e.g. larger carbon footprint), and possible damage to the wood itself with some treatments (e.g. heat).

**An alternative approach to probit 9 for ISPM No. 15**

We present a three-step process for consideration as an alternative to probit 9 when developing treatments for ISPM No. 15. Briefly, Step 1 involves small-scale laboratory experiments that allow estimation of the lethal dose to the target pest, focusing on the most tolerant life stage. Step 2 involves replicated experiments at the estimated lethal dose to provide statistical confidence and establish reliability. For Step 3, a scaled-up confirmatory study would be conducted that involves testing wood of a size that is representative of wood packaging material and demonstrates that the treatment can be effectively applied operationally.

**Step 1. Estimating the lethal dose of the most tolerant life stage**

One of the first steps in treatment development is to estimate the treatment dose for the target pest at which all or nearly all organisms die (i.e. the lethal dose). The draft appendix to ISPM No. 15 states that the sample size for determining the lethal dose could be 5–10 experimental units per dose (IPPC, 2010). However, this sample size may not be sufficient, depending on the degree of variability observed. Robertson et al. (2007) published an entire book on this topic and have developed software that analyzes dose–response data using probit or logit regression (LeOra Software 2007). When selecting target species for Step 1, researchers need to consult ISPM No. 15 and its appendices to learn which pest species or pest groups are currently of high quarantine importance, and if guidelines are provided as to how many species should be tested from each major pest group (insects, nematodes and fungi). The researcher also needs to know which life stages of the target pest are present in traded commodities, and then to focus on the life stage most tolerant to the proposed treatment (IPPC, 2009b). Such information may be available in the literature, or it may require preliminary testing. We also suggest testing the smallest wood samples that are practical for the target pest being studied to ensure the dose is delivered uniformly throughout the experimental unit. In large-dimension experimental units, such as infested logs, it may be difficult to precisely deliver the dose uniformly, therefore confounding the results if there are survivors.

**Step 2. Replicated experiments at the estimated lethal dose**

In Step 2, we propose that the treatment developer should test sufficient experimental units at the estimated lethal dose (without survivors) for each target pest to obtain a reliability of 0.95 at the 95% confidence level, and if possible should also test one or two doses above and below the estimated lethal dose. The actual

sample size required is a matter for the international community to discuss. It is well documented that, as sample size increases, the size of confidence interval decreases and reliability increases. Table 2 shows the relationship between sample size and statistical reliability when expressed in terms of 95% confidence (Beyer, 1968). For example, if only 5 samples are tested and there are no survivors, the reliability of these data, expressed with 95% confidence, is 0.549, meaning that there is a 54.9% probability that the dose will be lethal. However, with 60 samples, the reliability increases to 0.951; similarly, with 100 and 299 samples, the reliability increases to 0.970 and 0.990, respectively (Table 2). Considering the many challenges of working with wood-infesting organisms, we suggest that sample sizes in the range of 60–100 be considered, given that they equate roughly to 0.95 and 0.97 reliability. Clearly, a reliability of 1.0 is impossible as this would require a sample size that approaches infinity.

A sample size of 93 613 equates to a reliability of 0.999968 (Table 2), which would require testing 93 613 samples with no survivors. This is the same value as the specified treatment efficacy in probit 9 (Couey & Chew, 1986; Follett & McQuate, 2001). However, we argue that treatment efficacy should not be confused with statistical reliability, and researchers and regulators should strive for a reasonable level of reliability of the data (i.e. obtaining highly similar results with repeated testing). A sample size of 93 613 is obviously an overwhelming task, and if required could impede development of new treatments.

The 2010 draft appendix to ISPM No. 15 (IPPC, 2010) allows treating 93 613 individuals in a single piece of wood as satisfying the probit 9 requirement when there are no survivors. However, in our opinion, if all 93 613 individuals are in a single piece of wood, then the true sample size is 1 (n = 1) which equates to a reliability of 0.05 (Table 2). We consider counting each individual pest in a single wood sample as a form of pseudoreplication. In statistics, pseudoreplication refers to taking multiple measurements on the same sample unit and treating each measurement as independent, when in fact they are probably interdependent. We suggest that the responses of all organisms within a single block of wood would be interdependent because nearly all would receive a similar dose. Therefore a single test block of wood should be considered as the experimental unit, no matter how many test organisms it contains. In practice, researchers never really know how many organisms are inside field-collected wood.

**Step 3. Confirmatory study under simulated operational conditions**

In Step 3, we propose that a confirmatory study be conducted under simulated operational conditions in which the treated wood samples are similar in size to typical wood packaging material. Recalling that reliability increases with sample size (Table 2), we suggest that the confirmatory studies be conducted with a sample size linked to the perceived phytosanitary risk of the target pest. For example, 300 samples (0.99 reliability; Table 2) could be requested for high-risk pests such as pinewood nematode and Asian longhorned beetle, which can infest and kill healthy trees, but 60 samples (0.95 reliability) may be adequate for quarantine pests that usually infest stressed trees, like many bark beetles. The wood samples should be prepared from naturally infested trees, or, if necessary, pest organisms could be introduced into each wood sample to ensure sufficient numbers are present. If there are survivors in these confirmatory studies, then it is possible that the treatment was not delivered uniformly throughout the commodity and thus not all pests were exposed to the lethal dose, or perhaps some of the pests treated in Step 3 had greater tolerance to the treatment than the pests used in Steps 1 and 2. If the number of survivors is not high, the treatment developer could still submit their data for consideration, or repeat the study at a higher dose.

**Conclusion**

The current guidelines for treating wood packaging material under ISPM No. 15 have apparently reduced the numbers of wood pests present in international trade (Haack & Petrice, 2009). However, the current schedules for heat treatment and methyl bromide fumigation (IPPC, 2009a) were subjected to less stringent testing than what is proposed now under the 2010 draft Appendix (Smith, 1991, 1992; IPPC, 2010). We encourage development of new phytosanitary treatments for inclusion in ISPM No. 15. However, we caution against requiring probit 9 efficacy for approval because it places a burden on treatment developers, is not biologically justifiable for most wood pests, and currently allows for pseudoreplication rather than focusing on statistical reliability. Moreover, requiring probit 9 for wood pests could inhibit new treatment development, ensuring continued dependence on less well tested treatments now approved under ISPM 15. As an alternative, we suggest a 3-step process for treatment development that has high statistical reliability. We recognize that the studies proposed in Steps 1–3 will take place in laboratories, therefore any phytosanitary treatments developed using these protocols and later approved for inclusion in ISPM No. 15 should be modified as needed based on subsequent real-world experience.

**Table 2 Relationship between sample size and statistical reliability expressed as 95% confidence**

<table>
<thead>
<tr>
<th>Sample size</th>
<th>Reliability*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.050000</td>
</tr>
<tr>
<td>5</td>
<td>0.549280</td>
</tr>
<tr>
<td>10</td>
<td>0.741134</td>
</tr>
<tr>
<td>20</td>
<td>0.860892</td>
</tr>
<tr>
<td>30</td>
<td>0.904966</td>
</tr>
<tr>
<td>40</td>
<td>0.927842</td>
</tr>
<tr>
<td>50</td>
<td>0.941845</td>
</tr>
<tr>
<td>60</td>
<td>0.951297</td>
</tr>
<tr>
<td>100</td>
<td>0.970487</td>
</tr>
<tr>
<td>299</td>
<td>0.990031</td>
</tr>
<tr>
<td>2995</td>
<td>0.999000</td>
</tr>
<tr>
<td>93 613</td>
<td>0.999968</td>
</tr>
</tbody>
</table>

*Values based on the formula \( n = \log (1-C)/\log (r) \) where \( n \) is the number of individuals tested (sample size); \( C \) is the confidence level (set between 0 and 1; we used 0.95); and \( r \) is the level of reliability (set between 0 and 1; Beyer, 1968).
Acknowledgements

The authors thank E.A. Allen, K.O. Britton, L.M. Humble, P.I. Morris, T.R. Petrice and J.S. Stanovick for comments on an earlier version of this manuscript, and the members of the International Forest Quarantine Research Group (IFQRG) for many stimulating conversations on the topic of this paper. K.H. thanks USDA, Methyl Bromide Transitions Grant Program for funding (Grant No. 2009-51102-05652) and A.U. thanks National Resources Canada (Canadian Forest Service) for guidance and financial support.

Chercher des alternatives au probit 9 lors du développement de traitements pour le bois d'emballage dans le cadre de la NIMP No. 15

La Norme internationale pour les mesures phytosanitaires NIMP No. 15 (Réglementation des matériaux d'emballage en bois dans le commerce international) présente des recommandations pour traiter le bois d'emballage utilisé dans le commerce international. Elles consistent actuellement en deux traitements phytosanitaires approuvés: le traitement par la chaleur et la fumigation au bro- mure de méthyle. De nouveaux traitements sont en cours de développement et sont nécessaires étant donné que le bromure de méthyle est supprimé progressivement. L’efficacité Probit 9 (100% de mortalité d’au moins 93613 organismes testés) a été suggérée comme critère d’évaluation pour de nouveaux traitements du bois, et est basée sur la recherche sur les mouches des fruits. Nous nous interrogeons sur la pertinence d’exiger une efficacité Probit 9 pour les ravageurs du bois (insectes, nématodes et champignons) et discutons des défis pour atteindre cette exigence. A la place, nous suggérons une approche alternative en 3 étapes au laboratoire. La première étape implique des expériences au laboratoire (tri préliminaire) pour estimer la dose létale pour le stade le plus sensible de chaque organisme cible. Nous considérons chaque pièce de bois infestée comme étant une unité expérimentale, et non pas les ravageurs individuels pour éviter des pseudorépétitions. L’étape 2 demande des expériences répétées (avec aucun survivant) à la dose létale estimée. Nous suggérons une taille minimale d’échantillon de 60 unités expéri- mentales, ce qui permet d’atteindre une fiabilité statistique de 0.95 avec un niveau de confiance de 95%. La troisième étape implique des études en conditions opérationnelles simulées en utilisant des échantillons de bois similaires en taille au bois d’emballage et infestés à des niveaux qui reflètent les conditions sur le terrain.

References


Baker AC (1939) The basis for treatment of products where fruit flies are involved as a condition for entry into the United States. US Department of Agriculture Circular 551.


Alternatives to probit 9 – treatments for wood packaging materials


