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This supplementary material describes the data and methods in more detail, and presents 

additional analyses referred to in the main text. This material is organized as follows: 

Data:  

Epidemic data: p. 2-3 and Fig. S1 

Geographic and movement data: p. 3-4 and Fig. S4 

Methods:  

Excess mortality model: p. 5 

Timing, phase and synchrony analyses: p. 5-6 

Statistical analysis of influenza spread, distance, and human movements: p. 7 

Gravity model simulations: p. 7-9  

Estimation of the effective reproduction ratio (R) and model fit: p. 9 and Table S2 

Supplementary analyses: 

Relationship between influenza-related mortality, morbidity and virus prevalence: p. 10-

12 and Fig. S2, S3 

Differences in virus subtype, disease spread and level of reporting: p. 12-14 and Table S3 

Location of the initial epidemic focus in the US: p. 14-15 

Epidemic synchrony and winter seasonality: p. 15-16 and Table S1 
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DATA 

 
Epidemic data 

 

• Mortality data 

Assessment of the burden of influenza is not straightforward because the severe 

complications triggered by influenza infection, such as bacterial pneumonia, are often 

diagnosed after the infection has been cleared (1, 2). Many influenza-related deaths are 

therefore not coded as influenza but rather as underlying respiratory or chronic 

conditions. The traditional way to assess the mortality impact of influenza is to calculate 

excess mortality during influenza seasons, as the sum of deaths exceeding a baseline of 

expected deaths in the absence of influenza activity. Mortality from pneumonia and 

influenza (P&I) is considered a reliable indicator of the timing and relative severity of 

epidemics (1, 2).  

Deaths from pneumonia and influenza (P&I) were obtained from the US vital 

statistics agency, the National Center for Health Statistics, for the period January 1st, 

1972 to December 31st, 2002 (3). We used underlying codes of death 470-474 and 480-

486 from the International Classification of Diseases (ICD) 8th revision, from 1972 to 

1979, codes 480-487 from ICD-9 from 1979 to 1998, and codes J10.0-J18.9 from ICD-10 

from 1999 to 2002 to select P&I deaths. P&I deaths were broken down by week (1,617 

weeks in the study period) and by 49 administrative “states” in the US (48 Continental 

US states and the District of Columbia), based on the place of occurrence of deaths (Fig. 

1). We excluded non-contiguous states (Hawaii and Alaska) since they consistently 

appeared as outliers in the analyses; probably because of weaker connections with the 

Continental US, potential importance of non-US areas for which we do not have data, 

and/or differences in climate and population. We standardized P&I deaths for changes in 

ICD revisions based on adjustment factors given by the National Center for Health 

Statistics (4). P&I death rates were then derived from annual population estimates from 

the US Census Bureau (5).  
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• Virus surveillance data 

Unfortunately, virus surveillance data in the US are less extensive than mortality 

data; they are not available electronically at the weekly time scale for most years, nor are 

they available at the state level. Since virus surveillance does not give the within-season 

grain of the mortality data, we only use the virus data to identify predominant influenza 

subtype each season and confirm mortality patterns whenever possible. 

To identify the predominant circulating subtypes for each influenza season, we 

reviewed annual Morbidity and Mortality Weekly Reports influenza summaries from the 

CDC (6-9). Fifty to 75 virology laboratories across the US participate to the CDC 

influenza virus surveillance each season from October through mid-May. We considered 

an influenza subtype dominant when it accounted for at least 70% of all isolates subtyped 

in that season (6). Of the 30 seasons studied, 1972/73 to 2001/02, A/H3N2 predominated 

in 17; A/H1N1, B, or a combination of these two subtypes dominated in the remaining 13 

seasons. 

In addition, we obtained a measure of overall influenza virus prevalence in the US 

each season by compiling the proportion of respiratory specimens sampled by the CDC 

that tested positive for influenza (7-10). Since this information became available in the 

winter 1976/77, the CDC has tested an average of 35,000 respiratory specimens per 

season. Since the number of specimens tested varied substantially across seasons, the 

proportion of influenza-positive specimen was considered a better indicator of virus 

prevalence than the number of positive specimens. 

 

Geographic and movement data 

 
• Geographic data 

We obtained the geographical coordinates of the population centers in each state 

and county in continental US from the 2000 census (11). All geographical analyses used 

the population centers of US states or counties. 

 

• Movement data 

We compiled data on passenger air traffic across the US based on the “domestic 
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airline fares quarterly consumer report” from the US Department of Transportation, for 

the second quarter of 2000 (12). This report provides data on passenger flows between 

pairs of airports, based on 100% airline tickets issued (in airports with more than 10 

passengers per day). To test for changes in geographical patterns of air traffic over time, 

we also examined a similar report for year 1990, the first year when this information 

became publicly available. Then, the datasets were aggregated by state to match the 

spatial resolution in the epidemiological data. The correlation coefficient between the 

1990 and 2000 datasets was above 0.98 (P<0.0001), suggesting that the geographical 

patterns did not change over the last decade, although the volume of passenger air traffic 

increased (by ~ 40%). A limitation in the consumer report data is that individuals who 

transit an intermediate city are distinguished from persons who travel directly. For 

example, an individual flying from Miami to New York and connecting in Atlanta is 

counted as both a Miami-Atlanta and Atlanta-New York passenger. Hence this does not 

reflect the origin and final destination of each trip and the consumer data are probably 

biased towards large hubs in the airline network. To assess this bias, we investigated data 

on the origin and final destination of each trip for year 2000, available for 10% of all 

passengers (13). Note that the latter data may be less biased, but are also less precise, 

since they rely on a 10% sample of the actual trips taken. The correlation between the 

consumer data and the origin-destination data for 2000 was above 0.99 at the state level 

(P<0.0001), suggesting that the bias towards large hubs was indeed minor. Hence 

subsequent analyses were performed with the more extensive airline consumer report 

from 2000.  

We also compiled data on long-distance movements from the 1995 “American 

travel survey” from the US Bureau of Transportation Statistics (14). The Survey reported 

the cities of origin and destination for all long-distance trips taken by a sample of 80,000 

households in the US (trips of more than 500 miles in total from the point of origin).  

Moreover, we obtained data on flux-to-work from the US Census Bureau, which 

recorded the county of residence and county of workplace for all US residents in the 2000 

Census (county-to-county worker flow file (15)).  
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METHODS 

 

Excess mortality model  

From the weekly time series of P&I deaths in each state for 1972-2002, we 

calculated seasonal excess mortality as the total mortality in excess of an epidemic 

baseline during winter months, separately for each state. To obtain a baseline for 

mortality in the absence of influenza, we applied a seasonal regression model adapted 

from the model developed by the CDC in 1963 (16) and recently refined (6, 17). We 

detail the algorithm briefly here. Before applying the seasonal model, we detrended the 

time series of weekly P&I mortality rates in each state by fitting a spline smooth function 

of time to the mortality for the summer weeks (June-August). Then we divided the 

original time series by the spline trend, to obtain detrended series with constant level of 

summer mortality. We then applied a seasonal regression model to the detrended series in 

each state, Yt,i, excluding values for December-April, following: 

Yt,i = ai + bi*cos(2π*t/52.1667) +ci*sin(2π*t/ 52.1667)+εti,  

where t is the index for week of death (from 1 to 1617), i the index for the state (from 1 to 

51) and εti is the error term.  

Weekly excess mortality rates in each state were calculated as the observed minus 

predicted mortality rate during December-April.  Seasonal excess mortality was 

estimated as the sum of weekly excess mortality, after back-adjusting for the time trend.   

All terms included in our model were statistically significant (p<0.0001), but additional 

terms for time trends were not (p>0.05). We conducted a sensitivity analysis by using 

monthly instead of weekly data to estimate seasonal excess mortality. 

The total influenza mortality impact for the US (~ national epidemic size) was 

estimated by applying the above procedure to the aggregated time series of P&I deaths in 

the US.  

 

Timing, phase and synchrony analyses 

• Phase analysis (epidemic timing):  

We conducted a phase analysis of the P&I mortality time series, following a 

methodology developed for the analysis of travelling waves in measles epidemics (18-
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20). We reconstructed the weekly time series of phase angles in each state using wavelet 

reconstruction (20) to extract the major 1-year seasonal component (period 0.3 to 1.3 

year) of the Morlet wavelet decomposition of P&I logged death rates.  

 

• Spatial synchrony:  

Analysis of spatial synchrony can provide insight into the similarities in 

epidemics occurring in neighboring locations (21). Synchrony of influenza epidemics in 

continental US was derived from pairwise (between-state) correlation in 3 different 

series: logged P&I mortality rates (a measure of the weekly amplitude and timing of 

epidemics, n=1,617 observations for each state), seasonal P&I excess mortality (a 

measure of amplitude aggregated over an influenza season, n=30 observations for each 

state) and P&I phase angles (a measure of weekly timing, n=1,617 observations for each 

state). The relation between synchrony and Euclidian distance was assessed using 

algorithms from the NCF library for R (22); in particular the spatial correlation function 

was estimated using the non-parametric spline covariance function and 500 bootstraps to 

generate 95% confidence bands (23).  

 

• Analysis of the timing of the epidemic peak in each state 

For all weekly P&I mortality time series, at the state and national level, the peak 

week was defined as the week with the maximum P&I death rate. Of the 30 epidemics 

studied, only 4 had two peaks, which were truly similar in magnitude and were mild 

epidemics.  In this case, we always took the first peak; our purpose here was to consider 

the major epidemic – the center of mass of influenza in the season. Note that in the US 

and elsewhere, it is relatively common that a large A/H3N2 season ends in a period of 

low A/H1N1 or B activity; however in all these cases, surveillance reports a single winter 

peak of influenza transmission (see a discussion of this phenomenon in (24)). Results 

based on the timing of peak P&I excess mortality were confirmed by the wavelet phase 

analysis, which takes into account the entire epidemic cycle. 
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Statistical analysis of influenza spread, distance, and human movements 

Influenza spread in continental US can be summarized by a 49*49 matrix, in 

which elements ai,j represent the “epidemic synchrony” between states i and j. We built 

two separate matrices representing epidemic synchrony, based on correlation in phases 

and log(death rates). Then, we compared the epidemic matrices with the matrix of 

Euclidian distance between states, and 3 separate matrices of population movements 

based on air travels, long-distance trips and flux-to-work. Since the epidemic matrices 

were symmetric, the movement matrices were symmetrized by summing the movement 

between states i → j and  j → i. We estimated the association between the epidemic and 

distance/movement matrices using Spearman rank correlation and Mantel tests (25, 26). 

Since the elements of a distance matrix are not independent, the significance of the 

correlation coefficient was tested by permutation as described in (25, 26). We used partial 

Mantel tests to test the association between two matrices, while controlling for a third 

(25, 26).  

 In the geographical analyses, we use the administrative borders of states or 

counties to study the spread of influenza. This may not be exact since the natural unit of 

spatial spread is probably the city.  Large cities usually comprise several counties, so that 

administrative borders should not affect county-level analyses. In contrast, administrative 

borders may have an impact on some of the state-level analysis; however only 5 of the 20 

largest US cities are located on the border of 2 states (http://www.census.gov/). Further, 

using administrative borders may dilute the relationships between disease spread and 

transportation data (ie, bias towards the null), but this is unlikely to spuriously favor one 

transportation mode versus another. 

 

Simulating influenza spread in the US using a gravity model fitted to workflow data  

To explore the stochastic behavior of a patch-based SIR model with a gravity 

formulation for between-patch coupling, we let S, I, and R denote vectors of the number 

of susceptible, infected, and recovered individuals in the 49 continental US states.  We let 

ν = 1/3.5 denote the daily probability that an individual recovers, and β Ι the daily per-

capita rate of infection from infectious individuals in-state. Here, β varies from state-to-

state; it is a vector scaled such that the effective R = β N / ν is equal everywhere (as 



 8

consistent with estimates from data; see below), counting only within-state contacts (N is 

the vector of state population sizes). The per-capita rate of contact with infectious 

individuals from other states is given by γ I, where γ  represents between-patch coupling; 

γ is a scalar multiplied by the gravity matrix of movements which has zeros along the 

diagonal and off-diagonal elements based on the gravity model 

Popτ1*Popτ2/Distanceρ, where the exponents τ1, τ2 and ρ are estimated from the observed 

work movements (see main text and (15)). This introduces one free parameter to scale the 

amount of contact that occurs among individuals in different states, relative to individuals 

within states. Therefore, the expected number of contacts, per person per day, is β ( I + γ 

I ), and the probability that an individual becomes infected is taken from the non-zero 

terms of a Poisson, 1 – e- β ( I + γ I ) .  The stochastic dynamics are then described by the 

following spatially-extended chain-binomial system: 

 

St+1 = St – Wt   

It+1  = It + Wt  - Vt  

Rt+1  = Rt + Vt  

Wt   = binomial(St, 1 – e- β ( I + γ I ) ) 

Vt   = binomial(It, ν). 

 

Here, Wt is the daily incidence (ie the number of new cases), and Vt is the number of new 

‘recovereds’.  

In simulations, the epidemic is initialized by infecting 5 individuals in a 

predetermined state; we chose to investigate an epidemic start in the most populous state, 

California, and for contrast, in the least populous state, Wyoming. After the first infection 

occurs in each state, we draw a multinomial to determine the source of the infection, from 

a normalized vector γI.  

When the maximum element of the coupling matrix, γ,  is less than approximately 

10-5, the epidemic tends to die out before spreading to other states. When the maximum 

element is larger than unity, the spread across the 49 states is almost instantaneous (< 4 

days). In between these values, realistic patterns of spread are found, which match the 

observed level of synchrony in the empirical influenza data. In the simulations shown, we 
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set the maximum element of γ  at 10-1 (see Table S2 for comparison of the duration of 

spread between observed and simulated epidemics). We note that the maximum ratio of 

any two elements off the main diagonal in γ  is in the order 104. 

 

Calibrating the gravity model by estimating the effective R from the data 

The effective reproduction ratio R is a central quantity in SEIR-type models. In 

the gravity model in particular, it is important for epidemic spread (higher R leads to 

faster spread). We estimated R from large observed epidemics, dominated by A/H3N2 

viruses, and used the average estimate in our model, R=1.35 [95% confidence interval 

1.10-1.60] (see in particular Figures 4 B-C). To estimate R, we used the regression 

method of Ferrari et al. (27), where the estimator is relatively robust to under-reporting of 

cases -- here, deaths are only a small proportion of all influenza cases occurring. We used 

a weighted regression with weights proportional to the number of deaths, as in (27). 

We found no relation between the R estimates in each state and the state 

population density (P=0.25) or population size (P=0.99), indicating that the effective 

reproductive ratio must be quite homogeneous between states. Note also that this is in 

agreement with an earlier study of the 1918 pandemic examining the reproductive ratio in 

45 US cities (28). This study found no correlation between R and population size and 

density (nor with latitude, longitude, age or gender distribution (28); see also an early 

analysis by Pearl (29)).  

To evaluate the gravity model predictions, we compared the predicted and 

observed sequence of timings of onsets in 16 “States” (14 most populated states + the 

Dakotas + Montana-Wyoming). We chose to combine the Dakotas and Montana-

Wyoming because of their geographical proximity, as well as to be able evaluate the 

model fit in less populated areas, while at the same time not being overwhelmed by 

observational errors. The gravity model showed good agreement in the overall duration 

of epidemics (Table S2) and also in the sequence of timings of onsets in general. For the 

1999/00 epidemic for instance, which started out of California, the correlation between 

observed and predicted dates of onsets in the 16 “States” was 0.77. 
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SUPPLEMENTARY ANALYSES 

 
Association between influenza virus prevalence, morbidity and mortality 

 
• Mortality and epidemic timing 

We checked that the weekly time series of P&I mortality were a good indicator of 

influenza epidemic timing. We compared the peak week in the P&I mortality data for the 

US with the peak week in the CDC’s data on influenza virus prevalence, for each winter 

from 1979 to 2002 (the period when both data were available). We found a good 

agreement in timing between mortality and virus data, with high correlation (Spearman 

correlation coefficient= 0.83, P<0.01) and a median difference in peak week of 1 week 

(range 0-4) (Fig. S2A).  

• Mortality and virus prevalence 

To check that our measure of influenza mortality impact could be used as a proxy 

for the level of influenza transmission in the community, we investigated the association 

between seasonal P&I excess mortality and the CDC’s estimate of average virus 

prevalence each season. Although this estimate of average virus prevalence is a poor 

indicator of overall disease transmission (we return to this later), it is the only indicator 

available in the US. Influenza virus prevalence and mortality were highly correlated 

(Spearman correlation coefficient = 0.64, P<0.01, Fig. S2B).  

• Mortality and morbidity (UK) 

Next we examined the relation between mortality and morbidity impact, as 

measured by the number of influenza-like-illnesses (clinical flu) monitored by general 

practitioners. Since there is no such measure of morbidity in the US, we investigated this 

relation from published data for the UK for the period 1987-99 (30). Influenza mortality 

and morbidity were strongly correlated (Spearman correlation coefficient = 0.88, P<0.01, 

Fig. S2C).  

• Mortality and hospitalizations 

There are no data on overall influenza morbidity in the US, yet, there are data on 

hospitalizations, an indicator of severe morbidity. Previous work has shown strong 

correlation between influenza-related hospitalizations and mortality, even when each 

subtype is considered separately (see for instance (31)). We show this relationship in Fig. 
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S2D for the period 1989-2002, based on the hospitalizations data from the Agency for 

Healthcare Research and Quality (http://www.ahrq.gov/), which represents 16 states in 

the US and about half of the US population (correlation between hospitalization and 

mortality ρ=0.97, P<0.01). 

• Relevance of various indicators of influenza activity 

A literature search reveals that indicators of influenza virus prevalence, morbidity 

and mortality have been thoroughly compared in the UK (32-34). A strong agreement 

was reported between influenza-related mortality and influenza-like-illnesses monitored 

by sentinel physicians, both at the monthly and seasonal time scale (Spearman ρ=0.99 for 

seasonal impact, and Spearman ρ =0.97 for monthly data, all P<0.01, 1969/70 to 1980/81 

(32, 33)). Encouragingly, these studies reveal both indicators to be consistent even during 

the two mildest A/H1N1 and B seasons of their study period. By contrast, virus 

prevalence was less correlated with mortality and influenza-like-illnesses, due to changes 

in laboratory surveillance of influenza over time (including changes in number of 

specimen sampled, case definition of patients, and isolation techniques). This explains the 

rather poor reliability of virus surveillance data for assessing the timing and impact of 

influenza epidemics, both in the UK and in the US. These findings were confirmed by a 

more recent analysis covering the 1980s and early 1990s, where a strong relationship was 

found between mortality and illnesses (correlation ρ =0.92, P<0.001), and a weaker 

relationship between mortality and virus prevalence (ρ =0.60, P<0.001; (34)). The 

strength of these relationships is very much in line with our own analysis of these 

indicators on the available US and UK data, as presented in Fig. S2B-C. 

Another caveat in using influenza mortality and morbidity indicators as proxies 

for transmission relates to asymptomatic infections (infected but healthy individuals) and 

their role in disease transmission. The severity of influenza symptoms is directly related 

to the amount of viral shedding, for both influenza A and B (as suggested by several 

clinical studies, eg, (35, 36)), and hence to disease transmissibility. Therefore 

asymptomatic cases are probably not as important as symptomatic cases in the spread of 

influenza.  

 

Taken together, these analyses and discussions indicate that influenza seasons 
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associated with higher mortality are also those with higher virus prevalence, and in turn 

higher transmission (modelled through a higher effective reproductive ratio R in our 

simulations). The relationship is probably stronger during A/H3N2 seasons. Overall, we 

conclude that influenza mortality can, with caution, be used as a proxy in the study of 

influenza spread.  

 
Disease spread, virus subtypes and level of reporting 

• Co-circulation of influenza subtypes 

We have carefully considered the possibility that in seasons dominated by 

A/H1N1 and B viruses, the observed influenza mortality impact was due to a small 

number of co-circulating A/H3N2 viruses; but we found that this was not the case. There 

was no association between P&I excess mortality in A/H1N1-B seasons and the 

prevalence of A/H3N2 in the same seasons (ρ=0.35, P=0.24, N=13 seasons), suggesting a 

true quantitative relationship between prevalence of A/H1N1 and B infections and 

mortality.  

As regards co-circulation of influenza (sub)types, it is worth noting that in the US, 

influenza seasons are neatly split into those strongly dominated by A/H3N2 and those 

where B and A/H1N1 dominate or co-dominate. Of the 29 influenza seasons fully 

characterized by the CDC from 1976/77 to 2004/2005, H3N2 dominated in 16 seasons, 

where by definition of “dominance” more than 70% of influenza specimens were 

identified as A/H3N2. In the remaining 13 seasons, B dominated in 6 (where it 

represented >70% of influenza isolates), A/H1N1 dominated in 2, and there was mixed 

circulation of A/H1N1 and B in 5 epidemics (~ 50%-50%) (6-9) (see also 

http://www.cdc.gov/flu/weekly/fluactivity.htm for recent years). Hence A/H1N1 and B 

epidemics could not be examined separately.  

 

• Potential bias in subtype comparisons: role of level of reporting in estimates of 

disease spread 

One might speculate that the observed subtype differences in disease spread (Fig 

2F) stem from underlying differences in the level of reporting. In particular, consider a 

Null hypothesis where A/H1N1-B viruses are “milder” than A/H3N2 viruses in that they 
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are associated with a lower case fatality rate. Under this hypothesis, A/H1N1-B viruses 

might cause fewer deaths, even though the overall number of cases might be similar to 

that of A/H3N2 epidemics. We test this possibility by simulating A/H1N1-B epidemics 

under the Null hypothesis and comparing them with observed A/H1N1-B epidemics. To 

do so, we downsize observed H3N2 epidemics through binomial sampling (mirroring a 

lower sampling of deaths due to lower case fatality), so that the resulting simulated 

epidemics have a total death toll similar to that of observed A/H1N1-B epidemics. We 

consider 3 different scenarios for downsizing, by choosing 3 different H3N2 epidemics 

among the 17 observed between 1972 and 2002, which represent the observed range of 

A/H3N2 mortality impacts (~ min, max, and a median point, Table S3).  

From the simulated downsized epidemics, we calculate the standard deviation 

(SD) between the date of the national peak and local peaks in each state -- which is the 

statistics used in Fig 2F. The SD of simulated A/H1N1-B epidemics is then compared 

with the SD of observed A/H1N1-B epidemics. 

The results presented in Table S3 indicate that lower case fatality in A/H1N1 and 

B viruses is not biasing the comparison between subtypes, since the downsized A/H3N2 

epidemics still reveal faster estimated spread than the observed A/H1N1-B epidemics. 

Note that the lower case fatality may still play, a role as shown by these simulations 

(Table S3), but it does not fully account for the observed differences in spread between 

A/H3N2 and A/H1N1-B epidemics. 

 

• Perspectives related to subtypes comparisons, and pandemic versus epidemic 

spread 

Of further interest is the comparison of the age pattern of infection between the 

various influenza subtypes – and resulting contact networks --, as A/H1N1-B viruses 

infect mostly children and young adults (37). Analysis of more refined incidence data 

should provide further insights into subtype differences in disease spread, beyond those 

driven by the overall level of transmission. Along the same line of thoughts, changes in 

the effective contact network of influenza may also occur during pandemics. It is worth 

noting that in previous pandemics, influenza attack rates in school-age children increased 

disproportionately as compared with those in adults (38), suggesting important 
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differences in the contact network of pandemic and inter-pandemic influenza. Predicting 

the spatiotemporal dynamics of such novel disease invasions is always a greater 

challenge because calibration against old epidemics is likely to be less accurate. On the 

other hand, pandemic viruses confront a much larger susceptible population, so that 

predicting their spread does not involve capturing the complex population profile of 

partial immunity encountered by inter-pandemic viruses (39)– although recycling of 

influenza antigens has been proposed for past pandemics (17, 40, 41).  

 
Analysis of initial epidemic foci  

We set out to identify the specific state(s) where each of the 30 epidemics started. 

Using the seasonal mortality baseline as described earlier, we defined the date of 

epidemic onset as the week when the observed P&I mortality first exceeded the baseline 

for two consecutive weeks. We repeated this analysis for each season and each state as 

well as for the aggregate US time series. We found that identifying the exact date of 

epidemic onset was difficult for smaller states where demographic noise was higher. To 

avoid confounding by noise, we restricted the analysis of epidemic onsets to the 10 most 

populous states in the US. These 10 states comprised locations in the East, West, North 

and South of the US and each of them had a population size between 8 and 30 millions 

(by decreasing population size, CA, TX, NY, FL, IL, PA, OH, MI, NJ, GA). Then we 

calculated the difference in weeks between the date of epidemic onset in 10 large states 

and the onset in the US time series. Next, we identified those states that had more 

frequent early onsets during the 30 influenza seasons under study.  

California was the only state that was significantly early when compared with the 

national epidemic (average lead=1.0 week, P<0.0001, Wilcoxon test). We also conducted 

a sensitivity analysis by using death rates specifically attributed to influenza instead of 

P&I death rates, a series believed to be more specific in terms of timing (see (6, 17), ICD-

8 code 470-474; ICD-9 code 487; ICD-10 code J100-J118). The analysis of influenza-

specific death codes also identified California as having early epidemics more often than 

other highly populated states. 

Finally, we considered the hypothesis that epidemics started more often in 

California because it was the most populous state. To investigate this hypothesis, we 
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compared the timing of epidemic onsets in California with that in 3 large Eastern States 

combined (New York, New Jersey and Pennsylvania, where the combined population 

sizes and densities are larger than that in California). In this comparison, California had 

more frequent early onsets than the 3 Eastern states combined (P<0.01). This result 

suggests that geographical factors may drive early epidemic activity in California, in 

addition to population factors. We think that international connections may play a role, 

and investigating international travels as potential drivers of the timing of epidemic onset 

is an area for future research. 

 

Synchrony in the timing of influenza epidemics and seasonality 

We found a high countrywide “global synchrony” in influenza epidemics across 

the US, especially with respect to the timing of epidemics (Fig. 2B). One might 

hypothesize that the high level of synchrony observed could be explained by the strong 

seasonality of influenza, known to drive epidemic timing in temperate areas of the world 

in general, and in the US in particular (1, 43). The alternative hypothesis is that not only 

seasonality, but also other factors, act together to synchronize epidemics. 

To test the “Null” hypothesis that winter seasonality is the only synchronizing 

factor, we permute the 30 influenza years under study, independently for each state (here 

an influenza year runs from August to July), as described in (44). These permutations 

retain the common winter seasonality of influenza, but break the interdependence 

between states, thus removing the influence of other synchronizing factors. We then 

examine the synchrony among the permuted series, using the procedure described earlier 

and in references (21, 22). The statistics of interest here is the “global synchrony”, i.e. the 

average correlation across the US. 1,000 simulations give a null distribution of synchrony 

originating from seasonality alone.  

We repeated this procedure for 3 types of epidemic time series: weekly logged 

death rates, weekly phases, and seasonal excess deaths. For all 3 types of epidemic series 

studied, the observed synchrony is much higher than that seen under permutation 

(P<0.001, table S1), suggesting that observed epidemics are more synchronized than 

seasonality alone would predict. The simulations did, however, reveal that seasonality 

was responsible for part of the synchrony observed. Indeed for time series of weekly 
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death rates and phases, we found a positive and significant global synchrony in the data 

simulated under the Null hypothesis (Table S1). In contrast, for time series of seasonal 

excess deaths, no synchrony remained under the Null hypothesis, probably because of the 

aggregated time scale of this comparison.  

This analysis supports the role of external factors superimposed on seasonality to 

drive the synchrony of influenza epidemics at the scale of the US. The analyses in the 

main text identify a dispersal force - movements to and from work - as one of these 

factors.  
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Table S1: Synchrony of influenza epidemics and winter seasonality. Observed global 

synchrony and simulated synchrony under the Null hypothesis that winter seasonality 

alone synchronizes epidemics. 

Synchrony measure 

derived from P&I 

mortality data 

Observed global 

synchrony  

Mean (95% CI) 

Simulated global 

synchrony under 

Null hypothesis * 

Mean (95% CI) 

P-value for 

difference 

between observed 

and Null 

distribution 

Logged weekly death 

rates 

0.54 (0.49-0.58)  0.32 (0.320-0.325) <0.001 

Weekly phases 0.79 (0.76-0.81) 0.682 (0.681-0.684) <0.001 

Seasonal excess 

deaths 

0.57 (0.52-0.61) 0.00 (-0.01, +0.01) <0.001 

P&I, Pneumonia and Influenza; CI= Confidence Interval  

* Null distribution of synchrony for 1,000 simulated time series where seasonality acts as 

the only synchronizing factor 
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Table S2: Comparison of the duration of influenza spread across the US in observed and 

simulated epidemics. Simulations use a gravity model based on workflows. 

  Mean duration of spread 

across US states a 

Mean (range) in weeks c 

Maximum duration of 

spread (weeks) b 

Mean (range) in weeks c 

Empirical data:  

30 epidemics 1972-2002 d 

5.2 (2.7 - 8.4) 6.9 (4.0 - 11.0) 

   

Simulated epidemics (reproduction 

ratio=1.35) 

  

First case in California 4.7 (1.0 - 9.0) 6.0 (1.0 - 14.0) 

First case in Wyoming 6.9 (1.0 - 14) 8.3 (1.0 - 18.0) 

   

Simulated repeat of the 1968 

pandemic (reproduction ratio=1.89 e) 

  

First case in California  2.2 (1.0 - 4.4) 3.6 (1.0 – 6.0) 

First case in Wyoming 3.7 (1.0 – 7.5) 5.0 (1.0 – 8.0) 

 
a Average time between first case in the first epidemic state and first case in other states 
b Time between first case in the first epidemic state and first case in the last state 
c Mean and range across 30 epidemics (empirical data) or 1,000 runs of the gravity model 

(simulated data) 
d Time interval between peaks used as a proxy for time interval between first cases 
e Reproduction ratio for the 1968 pandemic as estimated in (42).  
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Table S3: Spread of epidemics in observed and simulated epidemics. Simulated 

“A/H1N1-B epidemics” are obtained by downsizing A/H3N2 epidemics through a 

binomial sampling, so as to obtain a mortality impact similar to observed H1N1-B 

epidemics. The spread statistics considered is the Standard Deviation (SD) of the 

differences in the timings of the local and national peaks (as in Figure 2F). The 

simulations rule out the hypothesis that the subtype difference is only due to differences 

in the level of reporting (ie case fatality). 

Epidemics Number of 

seasons 

Mortality 

impact 

(median P&I 

excess death 

per 100,000)  

Difference in peak 

dates* 

(Median SD in 

weeks) 

Sampling 

probability for 

downsizing  

(simulated 

epidemics) 

Observed H3N2 17 4.56 4.0 – 

Observed H1N1-B 13 2.39 7.2 
– 

100 2.39 4.8 (3.2-6.5) 0.41 a 

100 2.39 5.2 (3.2-6.8) 0.51 b Simulated H1N1-B 

100 2.39 5.6 (4.1-7.1) 0.71 c 

* Difference between the week of the national peak and the week of the local peak 
a Simulations used the 1998/99 epidemic for downsizing 
b Simulations used the 1996/97 epidemic for downsizing 
c Simulations used the 2001/02 epidemic for downsizing 
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SUPPLEMENTARY FIGURES LEGEND 

 

Supplementary Figure 1: 

Time series of weekly excess deaths from pneumonia and influenza (P&I) in the US 

and each of the 49 Continental US states (District of Columbia included, Hawaii and 

Alaska excluded). A) National P&I excess deaths are shown per 100,000 population and 

have been normalized to have zero mean and unit variance. B) P&I excess deaths per 

100,000 population are shown at the state level as a colour intensity plot; deaths have 

been normalized to have zero mean and unit variance for each influenza year and each 

state. The 49 states are arranged by decreasing population sizes (from top=California to 

bottom=Wyoming). Vertical bands in red correspond to synchronized epidemics, which 

occur in the most populated states or during larger epidemics, suggesting that synchrony 

increases with population size and epidemic size.  

 

Supplementary Figure 2: 

Relation between influenza mortality, morbidity, and virus prevalence, at the 

national scale. Dots represent the observed data (color-coded by dominant virus subtype) 

and the grey line is a linear fit.  

A. Comparison of epidemic timing in weekly time series of Pneumonia and Influenza 

(P&I) mortality and the CDC’s virus surveillance in the US. Epidemic timing is based on 

the week of maximum mortality (y-axis) and maximum virus prevalence (x-axis). Virus 

prevalence is defined as the proportion of respiratory samples positive for influenza. 

B. Comparison of mortality impact and average virus prevalence during an influenza 

season in the US. National influenza mortality impact is estimated by seasonal P&I 

excess mortality rates (y-axis). Average virus prevalence is the cumulative proportion of 

respiratory samples positive for influenza over the season (x-axis).  

C. Comparison of mortality and morbidity impact. Data for the UK taken from (30); 

influenza mortality impact is estimated by seasonal all-cause excess mortality rates (y-

axis); morbidity impact is based on the number of visits for influenza-like-illnesses 

(clinical flu) recorded by general practitioners (x-axis), from 1987 to 1999.  

D. Comparison of mortality and severe morbidity impact. National influenza 
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mortality impact is estimated by seasonal P&I excess mortality rates (y-axis). Severe 

morbidity is measured by excess P&I hospitalizations (data from the Agency for 

Healthcare Research and Quality), from 1989 to 2002 (x-axis). 

 

Supplementary Figure 3: 

Patterns of influenza spread and geographical distance (A) and prevalence of 

circulating viruses (B).  

A) The synchrony in the trajectories of influenza epidemics (y-axis, measured as pair 

wise correlation in state-specific weekly P&I death rates) is plotted against the 

geographical distance between state population centers (x-axis). Synchrony function 

(black curve) and 95% confidence bands (red curves) are presented along with the global 

countrywide synchrony (horizontal red line).  

B) Spread is measured by the standard deviation (SD) of the difference in the timing of 

epidemic peaks between national and local P&I mortality time series, in weeks (y-axis). 

National influenza virus prevalence is measured as the proportion of respiratory 

specimens tested positive for influenza across the US, 1976-2002 (26 seasons, CDC data, 

x-axis). Grey dashed line: linear fit: R2=0.24, P=0.01. Because of gradual enhancements 

in the surveillance efforts of influenza by CDC, more specimens have tested positive over 

time (P<0.0001 for linear trend). However, repeating the analysis with a detrended 

proportion of influenza positive specimens gave the same relation between spread and 

virus prevalence. 

 

Supplementary Figure 4: 

Relation between county-level workflows, population sizes and distance (gravity 

framework) A) Workplace = ‘recipient’ population center (B); place of residence = 

‘donor’ population center. 
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Supplementary Figure 1 
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Supplementary Figure 2 
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Supplementary Figure 3 
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Supplementary Figure 4 
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