Chaos in microtine populations
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SUMMARY

On the basis of nonlinear time-series analysis of vole data, Turchin (1993) proposed that there is a
latitudinal shift from stability to chaos in the dynamics of vole populations. Falck e al. {1993} question
several aspects of the approach I used. In particular, they point out that no measure of uncertainty has
been calculated for each point estimate of the dominant Lyapunov exponent (a positive Lyapunov
exponent implies chaos, while a negative one implies stability). In this note [ respond to the criticisms of
Falck ef al. (1995). As part of my response, I analyse fluctuations of pooled numbers of microtine radents
at all European locations for which I currently have data. Treating each geographic location as a
replicate, I show that the mean Lyapunov exponent is significantly greater than zero in northern

populations (latitude greater than 60 °NJ.

1. INTRODUCTION

Early attermpts to apply ideas from nonlinear dynarmics
to ecalogical systems employed noise-free deterministic
models (Schaffer 1983; Schaffer & Kot 1986). These
approaches have not succeeded in convincing ecologists
that chaos may be found among natural pepulaticns,
because populations are affected by both endogenous
(density-dependent) and exogencus (density-in-
dependent] processes (Hastings of /. 1993). Recently,
Ellner and co-workers (Ellner ¢ af. 1991 ; Nychka et af,
1992; Ellner & Turchin 1995) have developed a
theoretical framewaork for detecting chaos in dynamical
systems affected by noise. [ have used an approach
based on this framework (implementation details are
given in Turchin & Millstein 1993) to examine the
latitudinal gradient in microtine population dynamics
{Turchin 1993). My tentative conclusion was that
microtine populations in Europe exhibit a dynamical
shift from stability in the South to chaes in the North.

In their note, Falck e al. (1992} question this
conclusion. Their main criticismn is that the approach I
used lacks a measure of uncerrainty associated with

each point estimate of the dominant Lyapunov -

expaonent, and they propose a methad for calculating
confidence intervals. They also question several other
aspects of the logical foundations of the approach. I
answer these criticisms in turn.

2. BIAS AND UNCERTAINTY IN LEL
ESTIMATES

When estimating any quantity, we should be
concerned about two Important issues: presence and
the degree of bias, and the degree of uncertainty
associated with each point estimate. Falck ¢ a/. do not
address the first issue, although, in my opinion, it is
potentially a2 more serious probletn. [ have investigated
whether the response surface method ({Rsm) for esti-
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mating the dominant Lyapunov exponent (LE1) is
biased by generating ‘data’ series of realistic length’
using ecological models incorporaiing such realistic
features as multispecies interactions, dynamical noise,
and measurement errors { Turchin & Millstein 1993). 1
have also generated such test data with the best-
supported mechanistic model that we have for the
specific system, microtine populations in Europe
(Hanski ef af. 1993; Turchin & Hanski unpublished
results; the model assumes that oscillations are driven
by a predator—prey interaction between Microtus voles
and least weasels). The results suggest that there is a
bias in the LEI estimate, but the general tendency is to
misclassify chaotic dynamics as stable, rather than vice
versa. In other words, the rsM approach is actually
conservative with respect to detecting chaos. [t appears
that any mechanism that increases data scatter around
the estimated response surface —an insufficient em-
hedding dimension, lack-of-fit errors, dynamical and
observational noise — increases the degree of this bias
{Turchin & Millstein 1993).

The tests with computer-generated data also indi-
cated that the degree of uncertainty associated with
each LE] estimate based on 20-25 years of data is quite
high: the standard deviation of the LE] estimate is
either similar or somewhat greater than the estimate’s
absolute value (tables 1-3 1n Turchin & Millstein
1993]. This result suggests that we will not be able to
decisively support or reject the hypothesis of chaos, if
we have only a single typical microtine data set to work
with (2 hardly unexpected conclusion!). For this
reason, from the very beginning I have focused on an
overall analysis of microtine data sets collected at a
number of geographical localities (Turchin 1981,
1993).

Table [ shows the results of analysing all the
European data that [ have found up to date (I did not
include North American and Asian data sets because
we are primarily interested in whether there is a shift
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Table |. Summary af fime-series analysis of European vole
data

{Abbreviations: lar = latitude in °N, &= the estimated
embedding dimension, g = the estimated polynomial order,
detr = whether the data were detrended (Y) or not (N}, §' =
the standard dewviation of log-transtormed vole numbers.
Sources of data: Finse, Framstad et of. {1993); Kilpisjarvi,
Hentronen et al. (1984); Pallagjirvi, Henttonen ef af. (1987},
Kalz, Koshkina {1966); Umed, Harnfelde (1994); Ruatsala,
Loppi and Saotkamo, Hanski e 2l {1933} {data collected by
A. Kaikusalo), Alajoki, Korpimiki & Norrdahl {19%1);
Karelia, Tataria, Serpukhov and Tula, Ivanter {1981),
Grimsd, Lindstrom e al (1994); Zvenigorad, Ivankina
{1987); Bialowieza, Pucek ef af. {1993); and Wytham Waad,
Sauthern {1979))

lacality years lac 4 ¢ decr S LElL

1. Finge® 1970-94 60 3 2 N 1.23 1.36
2. Kilpisjarvi 1® 1949-70 69 2 2 N .58 0.12
3. Kilpigjarvi 2¢ 197192 6% 3 1 N (.68 0.12
4. Pallasjarvi 1970-92 68 2 2 N .73 [.36
5. Kala 1946-64 67 2 2 N (.79 0.70
6. Umes 1471-91 64 2 2 ¥ 0.54 .16
7. Sotkamo 1966-92 64 2 2 ¥ .49 .21
8. Rugrsala 1975-92 63 3 2 N .65 0.87
9. Alajoki 197792 63 3 2 ¥ 0.77 .63
19, Loppi 1472-92 61 1 2 N 0.27 —2.06
1L, Karelia 19457-77 61 2 1 Y 0.35 —-0.672
12, Grimsa 1973-91 53 2 2 Y 0.50 0.33
13. Zvenigorod 1956-86 57 2 2 N 0.34 —0.18
14. Tataria [936-56 26 1 1 Y 0.34 —269
15, Serpukhov  1936-58 53 2 2 N 0.26 —0.,52
16. Tula 1936-%8 54 2 | Y 0.32 —0.46
[7. Bialowieza 197191 52 1 1 Y 042 —1.02
18. Wytham [948-70 51 1 2 W~ 027 —-079

Waad

* Because Finse is situated at the elevation of 1200 m above
sea level, it 15 grouped with the northern data sets (for
exarmnple, it has snow caver lasting from mid-September to
the end of June (Framstad ef af. 1993)).

" Kilpisjarvi data were analysed in two separate pieces to
compensate for nonstationarity in this long data set.

fram stability to chaos in European populations). Only
one time-series per location is analysed: pocled
numbers of microtine rodents trapped in the autumn.
Population fluctuations from different locations are not
significantly correlated, and thus we can use each
location as a true replicate. Such a lack of spatal
autocarrelation may be the result of, amaong other
factars, a systematic shift in the statistical period of
oscillations from almaost five years in the far north to
three years in the transition zone (Hanski ef af. 1993).
Anagther potential mechanism is the sensitive depen-
dence on initial conditions that characterizes chaotic
oscillations, which also promotes spatial asynchrony
{Allen 2 af. 1993).

An informal meta-analysis of the expanded database
{table 1) supports my previous conclusions (Turchin
1993): positive LE] estimates in the North, and
negative in the South. The mean (4 s.¢.) RsM estimate
for the northern series (numbers 1-9) is 0.73 (£0.21),
whereas for the southern series (numbers 10-18) the
mean is —0.88 {+0.32). Assumung normality, the
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respective 95 %, confidence intervals are (0.27, |.19]
and {—1.61, —Q.153}. T hasten to add that this is
not a formal meta-analysis, because I have implicitly
assigned the same weight to each time series. However,
I believe that in this case such an assumption is not
unwarranted, since data from each location are of
comparable length, and were collected using similar
methods (this is especially true for the Fennoscandian
locations).

Anather relevant point is that there is a high degree
of variation between estimates within each group
(northern wversus southern). The standard deviations
for the northern and southern LE! estimates are (.61
and (.87, respectively: on the same order of magnitude
as LE| estimates themselves. This result agrees with
the patterns ohserved in the analysis of model-
generated data. (Incidentally, it appears that obtaining
positive LE] estimates for all northern populations was
likely 2 matter of chance; given such a high variability,
we should expect a few negative estimates even when
true LE] is positive.] Again, my conclusion is that any
single location cannot provide a definitive answer as ta
the sign of LE. Thus, one would expect that estimating
confidence limits for any of these data sets separately is
unlikely to resolve the issue of whether vaole oscillations
i the Naorth are chaoctic or not. The only haope for
obitaining any definitive answers rests with an approach
that will combine numerous data sets.

3. SOME PROBLEMS WITH THE APPROACH
OF FALCK et al (1995)

Despite doubts expressed above, I welcome the
attempt by Falck et al. 1o a develop a general method
for calculating confidence limits for a single time series.
Such a method may prove useful in the analysis of
longer time series, for example, the famous Canadian
lynx data. Addivonally, a measure of uncertainty
associated with each LE] estimate would allow one to
conduct. a formal meta-analysis of all the data
available.

Although T support the general direction taken by
Falck ef al. {1993), there are a2 number of problems in
their method that need to be worked out before we can
use it with confidence. The chief problem with their
approach is that it requires a quantification of the noise
component of the system that produced the time-series
data, Estimating noise 1s probably the chorniest
problem 1o statistical analysis, Simply calculating the
variance of residuals 1s not a satisfactory procedure,
because residuals are composed of the combined effects
of dynamical noise, observation errors, and lack-of-fit

“errors. Therefore, the Falck ef af. method probably

inflates the magnitude of the dynamical noise. At the
same time, their parametric bootstrap procedure
assumes that the observation noise is absent. Yet, these
twa sources of noise can have very different implica-
tions for the estimation bias and precision. It is
unknown how the methad of Falek o 4f. is affected by
these assumptions about the noise structure. By
contrast, the statistical approach developed by Ellner
al. does not require an estimate of the dynamie noise
(Ellner & Turchin 1995). Although our approach does



assume that the measurement noise 15 absent, the effect
of making this assumption is known (a negative bias in
the LE] estimate).

Anather prablem is the logically inappropriate use of
the confidence intervals calculated by Falck ef ol
(1993). They are interested in distinguishing hetween
twa hypaotheses: HO that LE] is zero (or less) and HI
that LEl > 0. The standard way to approach this
prablem is to estimate the distribution of the statistic
{LE1) assuming the null hypothesis and to determine if
the actual value falls into the rejection region. Instead,
Falck et af. estimated the distribution of the statistic
assuming HIl. The problem with this approach is that
the estimate of LEl depends greatly on selecting the
appropriate maodel complexity. Models with too few
parameters, or too low embedding dimension, may not
be able to approximate dynamics; whereas a model
with too many parameters will fit the noise instead of
cnly firting the endogenous feedbacks (Ellner &
Turchin 1995). Thus, fitting the data with an overly
simple model will bias the LEl estimate negatively,
while using an overly complex ‘model will bias the
estimate positively. If the response surface model
estimated for a data set was overly complex, then it
would not only vield a supurious positive LE], but also
an equally spuricus confidence interval.

A third problem is the censored nature of many sets
of pseudodata on which confidence limits are based. In
some cases, mare than 909 of generated time series
had tc be thrown out. While Falck ef 4/. acknowledge
this problem, they offer no potential solution for it, nor
any indication as to how it might affect their results.
This prablem arises for the following reason. When the
estimated response surface model with noise is iterated,
the trajectory occasionally Jumps outside the range of
observed N, values, where the fitted response surface
does not provide meaningful predictions. A frequent
consequence of leaving the data-circumscribed region
15 that the iterated trajectory will increase (or decrease)
without limit. This problem was noted by Turchin &
Taylor (1992) and Perry et ol {1993), who did not,
however, offer a satisfactory solution to it. The
Jacobian methad used in Turchin (1993) does not
suffer from this problem, because it does not require
generating trajectories (see point 4 below),

Finally, I cannot agree with how Falck e ol
interpret their results. As expected, their methaod
vielded large confidence intervals, most of which
overlapped zero {although, surprisingly, as many as six
confidence intervals from the northern dara were
strictly positive]. Just because the confidence intervals
for the majority of data contain zero, however, is not a
valid reason to conclude that there is no evidence for
chaos in the northern populations. Any test of HI
versus HO can be rendered ‘non-significant’ by
dividing the data set into such small subsets, that HO is
not rejected on any of them due to lack of power. Thus,
valld results may be obscured when all data available
is not analysed as a whole. This point can be illustrated
with the following example. Suppose one performs 20
studies measuring effects of an experimental drug.
Each of the 20 studies indicates that the drug has a
pasitive effect, but because the group of patients (data
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points) in each study is always small, the effect is never
statistically significant. Should we conclude from this
that the drug really has no effect? On the contrary!
Any kind of a meta-analysis combining all 20 studies
together would show that the drug’s effect is highly
significant. Simularly, before we can conclude any-
thing about the dynamics of northern populations in
general, we need to combine together the results of the
separate analyses of each darta set for an averall rest of
significance.

4. OTHER ISSUES

There are several other statements made by Falck ¢
af. (1995) that I would like to address:

1. In Introduction, Falck ef af. imply that I have used
2 deterministic-hased definition of chacs. In actuality,
my approach is based on recent theoretical develop-
ments that specifically address how to analyse chaos in
stochastic ecological systems (Ellner ez al. 1991 ; Nychka
ef al. 1992]. I cannot agree maore with Falck #f al. that
natural populations are affected by both endogencus
feedbacks and by exogenous influences. Therefore, an
approach to the analysis of time-series data should
incarparate both deterministic and stochastic com-
ponents, as the response surface method does. These
points are further discussed in Ellner & Turchin
{15993).

2. As Falck ef al. point gut, the noise term in the
response surface model is assumed to bhe state-
independent and additive. This is certainly a weakness
of the approach. My defence 1s that including a noise
tertn at all is a great umprovement over previous
methods that assumed complete determinism. Further,
the rsM approach performed adequately in tests with
model-generated data, even though dynamical noise
was included in models in 2 non-additive, state-
dependent way. Nevertheless, I believe that more
saphisticated ways of modeling noise {dynamical as
well as measurement) would be a very fruitful direction
to pursue in the future,

3. Falck e ol state that estimating the sign of LEL

- requires 200-500 or more data points. This statement
should be qualified as follows. First, this may be true

for applications {e.g. in physics) that require a
quantitative LEl estimate. With the vole data, our
goal is less ambitious: simply to determine whether
LEl is positive. Secondly, the relevant number is not
really data points, but the number of excursions within
the phase space (or oscillations). For example, 1000
points delineating a single oscillation would not be
terribly useful; because 999 of the data points will’
contzin redundant information. Thirdly, long data
series are not a panacea, especially in ecological
applications where long-term data are almast always
nonstationary.

‘The nine northern populations in table | have a
combined total of 195 data points, corresponding to
about 50 oscillations {at approximately four data
points per oscillation). I believe this is a respectable
data set on which to base one’s conclusions. In addition,
I view multiple localities as a virtue, rather than a
problem: I would rather have nine series each 20 or so
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years long, than a single series of 193 points. A broad
agreement between results from different localities
found in table | suggests that the finding of chaos is not
limited ta a freak combination of conditions peculiar to
some location, but is rather a result of some general
mechanism relevant to all microtine populations in
northern Fennoscandia.

4. [ am puzzled by the claim of Falck ¢t al. that in
estimating LE] T make a restrictive assuraption that
twa nearby trajectories are exposed to exactly the same
sequence of noise. The confusion may have arisen
because the approach for estimating LEL from the
fitted response surface has evolved with time. Orig-
inally, Turchin & Taylor {1992) characterized the
dynamics of noise-free “skeleton’ by iterating the fitted
response surface. A modification employed in Turchin
(1991] was to estimate naise-dependent LEL by
iterating two nearby trajectories perturbed by the same
sequence of dynamical noise. These approaches have
heen superseded by the Jacobian-based approach
{Turchin 1993; Turchin & Millstein 1993). In this
approach, a response surface function is fitted as

hefore, but its Jacobians are evaluated at each data

point. The LE1 is then calculated from the product of
these Jacabians. Subjecting two nearby trajectories to
the same sequence of noise is not an assumption of the
approach, but rather a heuristic device employed by us
to illustrate what chaos in a stochastlc system means
(see Ellner & Turchin 1993, pp. 348-350).

5. Falck ef al. propose that instead of focusing on
sensitive dependence, we should test for nonlinearity,
Their test finds greater evidence for nonlinearity in
northern, compared with southern time series. How-
ever, we already know that some dynamical shift occurs
with latitude, as evidenced, for example, by a change
in amplitude of fluctuations (Hansson & Henttonen
1985} and the strength of periodicity (Hanski e ol
[993). The point in question js whether the shift is
extreme enough, so thar northern populations are
actually chaotic. The shift iy not from linear to
nonlinear dynamics: all pepulation dynamics are
inherently nonlinear (Royama 1981, Turchin &
Millstein 1993).

In general, it is nat ¢lear to me whether a search for
nonhinearity wauld really advance our understanding
of population dynamics. Dynamics of 2ll papulation
systems are inherently nonlinear. Thus, if a test finds
nonlinearity, then nothing new is learned. If the test
cannat reject the hypothesis of linearity, then it simply
means that eicher dynamics are approximately linear,
or that the data are too nolsy to make any conelusion.
Again, nathing new Is learned. By contrast, an
appreach that fits models to time-series data can tell us
much more than whether the system s stable or chaotic
(Turchin 1995). The estimated dimensian {or order) of
dynamics can be used to test hypotheses about
biological mechanisms that may be driving oscillations.
For example, presence of delayed density dependence
is often an indication that trophic interactions may be
important. Furthermore, nonlinear meodeling of data
raises the possibility that we eventually may be able wo
successfully forecast population dynamics, although
this potential for prediction has not yet been realized.
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5 CONCLUSION

The paper of Falck ¢f af. 1s clearly an honest effort to
tackle a very difficult problem. However, several
problems with their approach remain to be resolved. It
is particularly important to extensively test any
proposed approach with simulated data to see whether
it really works as expected. Furthermore, whatever
method is propaosed, it should be capable of combining
confidence intervals estimated from different data sets
into an overall measure of significance. Although it is
underused by ecologists, meta-analysis is both tractable
and powerful {Arngvist & Wooster 1995).

Here 1s a suggestion for an alternative (and I believe
more viable] appreoach for calculatng confidence
limits, based on a direct resampling of data. A simple
resampling of the time series will, of course, not werk,
because it would destroy the time-dependent structures
in the dara, that is, the dependencesof ¥, on N,_,, N,_,,
and so on. This difficulty can be overcome if we realize
that our actual data are not a collection of N, points,
but rather a collection of {N, N, |,...,N,_,} ‘multi-
plets’, where & s the maximum embedding dimension
we are willing to consider (typically, no more than
3-4). The number of these multiplets is the time-series
length minus 4. The proposed hootstrap procedure
samples with replacerment among these multiplets, and
then uses each pseudo-dataser to do a complete round
of rsm fitting (however, the ordinary cross-validation
should probably he avoided in favour of same other
approach such as the general cross-validation, or the
Bayesian information criterion). The resampling and
fitting 1is repeated many times, and a bootstrapped
distribution of LE1 estimates is constructed in a usual
fashion. A meta-analysis can be accomplished with a
hierarchical resampling scheme: first one samples
among tme series from different localities in the usual
manner, and then within each time series as suggested
above. I am currently investigating this approach by
testing it with model-generated data in an approach
similar to that in Turchin & Millstein (1993). A
resampling approach, such as the one I sketched here,
15 possible only because fitting models with response
surface methodology is quite fast on modern personal
computers. For large data sets and mare complex
models, where multiple re-fittings are computationally
infedsible, B. Bailey (Department of Statistics, North
Carolina State University) has developed an alterna-
tive approach that calculates approximate confidence
intervals based on likelihood-ratio tests.

In closing, any method may yield spurious results,
and therefore, my conclusions that northern wvole
populations are chaotic should be considered as
tentative, and subjected to further esting. Yet, the
support for this hypothesis is not limited to evidence
from time-series analyses. Parameterizations of the
best-supported mechanism explaining vole oscillations
— interactions with specialist mammalian predators -
result in chaotic models {Hanski of o/ 1993 ; Hanski &
Korpimaki 1995, Turchin & Hanski, unpublished
results). Furthermore, there 1s a widespread agreement
that some sort of a bifurcation occurs in European vole
population dynamics around 60° N. Southern popula-



tions are stable, characterized by strongly negative
LEls. The controversy is whether Lyapunov expenents
in northern populations are significantly greater than
zero, implying chaes, or near zero, implying guasi-chags
(Turchin 1995). Even if it turns out that the RriM
approach is for some reason biased, and northern
populations are actually quasi-chaotic, the implica-
tians of this result would not greatly differ from a
finding of chaos. This is because LE] measures the
long-term average of trajectory divergence. When the
long-term Lyapunov exponent is near zero, the
dynamical system alternates between periods charac-
terized by trajectory divergence with pericds charac-
terized by trajectory convergence. To quantify such
transient effects, the long-term Lyapunov expanent
may be replaced by state-dependent local Lyapunov
exponents {Eilner & Turchin 1995}. The point here is
that there is no hard boundary between chaos and
stahbility, so that a quasi-chaotic system with LE] & 0
will behave in many ways like a weakly chaotic system
with LE] = 0.

I thank Steve Ellner and Doug Nychka for suggestions, two
anonymmous referees for their comments on the manuscript,
and the editors of the Proceedings of the Royal Society of London
for providing an opportunity for me 1o puhlish this response,
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