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Summary

1. We examined spatiotemporal data in a transient, seasonal system involving a
specialist predatory beetle, Carcinops pumilio (Erichson), and its prey, larval Musca
domestica L.

2. Prior to beetle colonization, larval fly populations were highly spatially structured,
but as adult predatory beetles immigrated and colonized the field, the beetles became
increasingly clustered at local spatial scales, causing spatial decorrelation in the dynamics
of their prey. Larval flies appeared to regain local clustering as beetle abundance
approached a carrying capacity with the prey population.

3. During exponential population growth, beetles were generally strongly negatively
cross-correlated with their prey at local spatial scales.

4. We were able to simulate these spatially—extended interactions in a predator-prey
coupled map lattice model. We used this model to investigate the effects of global and
local prey reproduction, in the presence and absence of global stochasticity, on predator
and prey spatial structuring and cross-correlation.

5. The work shows in a uniquely detailed fashion how the transition from eruptive pest
abundance to regulation by a specialist predator is associated with a transition in spatial
structure.

Key-words: coupled map lattice, interspecific covariance, nonparametric spatial covari-
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Introduction

The synchrony and spatial correlation of population
dynamics has been widely debated since Elton’s study
on population cycles in the Canadian lynx (1924).
Much attention has been placed on two important
causes of synchrony: the Moran effect (i.e. regional
abiotic stochasticity) and dispersal (Royama 1992; Ranta
et al. 1997; Bjornstad, Ims, & Lambin 1999). A number
of studies have also focused on the role of trophicinter-
actions on synchronization and, more generally, on
spatial pattern formation (Ims & Steen 1990; Hassell,
Comins, & May 1991; Bascompte & Solé 1995), and
recent empirical studies support the notion that both
synchronization and desynchronization can result
from trophic interactions (Maron & Harrison 1997;
Ims & Andreassen 2000; Bjornstad et al. 2002). In
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parallel, great theoretical stride has been made in
studies of spatially extended consumer-resource
systems (Hassel ez al. 1991; Wilson & Hassell 1997,
Wilson et al. 1999; Keeling, Wilson, & Pacala. 2000).
Much of that work, however, focused on the stationary
(asymptotic) dynamics that will have little relevance to
highly seasonal or disturbed ecosystems. Hastings &
Higgins (1994) furthermore argued that long-term
dynamics might be irrelevant to understanding a
system because stochastic disruptions are frequent
relative to the return times of spatiotemporal system,
and Hastings (2001) suggested that understanding the
dynamics of transients can play a key role in under-
standing the structure of natural systems. Also, secular
changes in host demography can defy the notion of
stationarity (Grenfell, Bjornstad, & Kappey 2001).
Transient dynamics may thus be the rule rather than
the exception.

Agricultural systems, most of which are relatively
short-lived, involve seasonal reestablishment of the
community and internal system changes from season-
to-season. Also, control interventions targeting insect
pest populations can be frequent, exacerbating the
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transience of the dynamics. Natural systems exhibit
similar characteristics, in which communities may con-
tinuously re-establish themselves due to disturbances
or phenology. In that context, studies of spatial struc-
ture and cross-correlation in transient populations of
both insect pests and beneficial species would augment
our understanding of their intricate relationship
(Winder et al. 2001). This is a critical issue in agricul-
tural systems since control tactics against insect pests
are largely motivated by the potential for insecticide
resistance (e.g. Alstad & Andow 1995), possible effects
on nontarget organisms (e.g. Flexner, Lighthart, &
Croft 1986), and concerns of food quality (e.g. Food
Safety Act of 1990, Great Britain; Food Quality Pro-
tection Act of 1996, United States). We studied the
spatiotemporal dynamics of a predator-prey system
through the invasive phase of the predator. We describe
the pattern of spatial aggregation (and segregation) of
the prey and the predator through the spatial (cross-)
correlation functions at several snapshots in time, and
find a significant shift in spatial dynamics. The shift is
consistent with an exploratory couple-map lattice
model of the system.

Materials and methods

FIELD SITES AND SAMPLING REGIMES

Spatiotemporal abundance data of larval house flies,
M. domestica, and a predatory beetle, C. pumilio, were
collected from two poultry production facilities in
Juniata and Lancaster Counties, Pennsylvania (Sites 1
and 2, respectively). M. domestica populations in accu-
mulated hen manure can reach remarkable levels; for
example, Tobin (1997) observed > 4000 third instars
in 200 g samples during peak fly abundance. Not
surprisingly, nuisance and public health problems are
often associated with poultry operations. C. pumilio
adults and larvae are naturally occurring and effective
predators of fly eggs and early instars, and adult bee-
tles, for example, can each consume > 50 eggs and
immatures per day (Geden & Axtell 1988).
Temperatures inside facilities were maintained
within the hen thermoneutral zone (20-24 °C) by fans
located at evenly spaced intervals on both sides of the
facility. The fans are primary ports of entry and egress
for M. domestica and C. pumilio. At Site 1 (14 %79
meters), we collected 108 samples per week for 8 weeks,
and then biweekly for the next 8 weeks. Sampling at
Site 1 began 5 days (25 November 1996) following
manure removal, although clean-out was not complete
and ~5% of the manure volume, accumulated over
~10 months, was left in the facility. For the duration
of the sampling period (November—March), outside
weather conditions in central Pennsylvania, whose
monthly mean temperatures were < 5°C, negated
immigration. At Site 2 (16 x 160 m), we collected 162
samples per week for 10 weeks. Sampling began
90 days following manure clean-out on 3 April 1997. In
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Fig. 1. Mean (and standard error lines) of abundance of
larval flies (solid shapes) and adult beetles (open shapes) at
Sites 1 and 2 (circles and squares, respectively) (top graph),
and the corresponding percent of samples containing at least
one C. pumilio adult (bottom graph).

this case, the manure was completely removed and the
facility chemically sterilized following clean-out.
Although the facilities differed in their clean-out
schedules, predator population growth increased at
statistically the same rate in both facilities (Tobin,
Fleischer, & Pitts 1999; Fig. 1), and the initial sampling
value of C. pumilio adults was 0 in both facilities. Sam-
ples were taken from spatially referenced locations and
weighed, generally ranging from 100 to 200 g. Sub-
samples were taken from each sample to measure
moisture, and third instar M. domestica and adult
C. pumilio were counted and expressed as log,, + 1 abund-
ance per 200 g of dry manure matter.

At hen thermoneutral zone temperatures, the fly
generation time is an average of 23 days, with roughly
13 days spent during the egg and larval stages (Lysyk &
Axtell 1987). Developmental history of C. pumilio over
a range of temperatures is not well known; however,
Morgan, Patterson, & Weidhas (1983) reported that at
26 °C, average beetle generation times were approxim-
ately 40 days, with 22 days spent as egg and larvae.
[For comparison, fly eggs and larvae require ~8 days to
complete development at 26 °C (Lysyk & Axtell 1987)].
This system may thus go through many generations per
year, and our temporal length of our study includes at
least 24 fly and 1-2 beetle generations.

PREDATOR-PREY SIMULATIONS

We used the discrete-time density-dependent Lotka—
Volterra model as the basis for simulating predator-prey
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dynamics of an idealized fly beetle system. Local
predispersal dynamics of predator (P) and prey (N)
abundance at time ¢ and spatial location i were

N =WV, )exp{r(1-N,;,) -0, —aP,,}, eqn 1

P;,H—l = (Ni,z){l - exp(fapi./)}v eqn 2
where r is prey growth rate, and a is the predator—prey
interaction strength that represents system product-
ivity (Murray 1993). The primed vectors on the LHS
represent predispersal local abundance (e.g. Hassell
et al. 1991). Stochasticity (local and global) in prey
dynamics were added according to

0. = {(1 —pe)(U;,) + PV}, eqn 3
where p, is the global correlation in the stochastic for-
cing. Both U;, and V, were sequences of independent
zero-mean Gaussian random variables with variance ¢
= 0-1 (see Bjernstad 2000). Environmental stochasti-
city was thus assumed to be temporally independent yet
possibly spatially correlated. Because of the transient
nature of our field system, we simulated 30 generations
of spatiotemporal dynamics, realized according to
Eqns (1-3) in 30 x 30 coupled map lattices with absorb-
ing boundaries. Prey and predator abundance were
thus represented as 900 x 1 matrices, NV and P, respect-
ively. Following local dynamics, half of the individuals
were assumed to disperse to the four adjacent cells
according to

Ny =D XN, eqn 4

P, =DxP,, eqn 5
where D is the 900 x 900 dispersal matrix with 0-5
along the diagonal and 0-125 at entries linking
neighbours, and x denotes matrix multiplication. Initial
prey was assumed to be randomly distributed at low
abundance according to a uniform distribution from
[0,1]. To investigate transient spatiotemporal dynamics
following predator colonization, initial predator
abundance was random over ~5% of the cells and zero
elsewhere.

The rate of prey growth, r, was held fixed at 1-5, and
was chosen to represent the reproductive capacity of
M. domestica, in which females can each oviposit ~400
eggs (Fletcher, Axtell, & Stinner 1990), yet avoiding
complex population dynamics (May 1974; Ruxton
1994). The predator—prey interaction parameter, a,
was set at 1-5. Although the values of these parameters
were somewhat arbitrarily chosen, we used them as a
starting point for investigating transient, spatiotem-
poral predator-prey dynamics. [In accompanying studies
(Tobin 2002; Tobin & Bjernstad, unpublished), we
detailed the consequence of nonlinear dynamics and
the strength of the predator—prey interaction para-
meter on transient patterns in theoretical predator-

prey populations.] Because house fly adults are quite
mobile, we further compared the effects of local and
global prey reproduction on spatiotemporal dynamics.
The former assumes that local prey populations
influence local abundance at the next time step, while
the latter accounts for the field-wide fly abundance to
influence local dynamics due to fly dispersal capability.
We thus simulated predator-prey dynamics with both
local (eqns 1-2) and global [through substitution of V;,
with a time-specific field-wide mean abundance in eqns
1-2] prey reproduction. We also simulated dynamics
in the presence and absence of regional correlation in
stochasticity (i.e. p, = 0 or 0-3; cf. eqn 3).

SPATIAL SIMULATION AND ESTIMATION

We simulated the coupled map lattice and conducted
subsequent analyses using S-Plus (Mathsoft 2000) on
a 250 CPU Linux cluster operated by the Center for
Academic Computing — Numerically Intensive Com-
puting Group of The Pennsylvania State University.
Spatial structure in predator and prey populations, and
their interspecific covariance, was estimated using a
nonparametric spatial covariance function in S-Plus
(Mathsoft 2000) on the PC-Cluster. This function uses
a smoothing spline to measure the correlation between
the density of pairs of samples over a continuous func-
tion of the distance separating samples, without
assuming any functional form a priori (Bjernstad &
Bascompte 2001; Bjornstad & Falck 2001). Let §; be
the Euclidean distance between spatial locations i and
J. and p;, be the spatial correlation in prey or predator
abundance, z; and z;, at the two locations at time ¢,

~ _(Zi,r_z_z)(zjj_z-t)

i = 1 M
s (Zu. - Z_z)z
M 2; !

> eqn 6

where M is the total number of local populations and Z,
represents the field-wide mean abundance at time ¢, so
that the denominator represents the spatial variance of
the population. Letting p,(8) be the expected spatial
correlation between abundances as a function of dis-
tance, 8, the spatial covariance function can be esti-
mated from nonparametric regression of p;, against §;
according to

22 K(S}:] Pij.i
o) =
LY

i=1 j=i+l

eqn 7

where K is a kernel function with bandwidth, /4, that
defines curve smoothness (Héardle 1990; Hall & Patil
1994). We used a spline function as an equivalent kernel
and 15 degrees of freedom for the spline estimation.

We estimated the spatial cross-correlation between
prey and predators as a function of distance, C(3),
defined as
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C@)=2m A0 eqn 8

where w;; , denotes the spatial cross-correlation in abund-
ance of the prey abundance at location i and time ¢, and

the predator abundance at location j according to

~ — (Ni.r - Nz)(P// - Pl), eqn9
GNOp

ij,t

where ¢ denotes the space-time variance in prey (V)
and predators (P) (Bjernstad & Bascompte 2001; cf.
eqn 6). We used the bootstrap method (1500 replica-
tions) to generate confidence limits around the esti-
mated nonparametric covariance function from field
data. We erected 95% confidence intervals as the
0-025% and 0-975% quantiles of the bootstrap distri-
bution (Efron & Tibshirani 1993; Bjernstad & Falck
2001). For our theoretical system, we derived sampling
distributions from a Monte Carlo distribution of 1000
replicated simulations of the transient predator-prey
system. Although we focused on estimating local
aggregation (i.e. local spatial autocorrelation) for fly
larvae and adult beetles, and their local segregation
(i.e. local spatial cross-correlation between flies and
beetles) because it generally dictated the range of spatial
structure — greater deviations from 0 in local correlation
resulted in longer ranges of spatial continuity — we also
estimated spatial correlation over a range of lag distance.

Results

SPATIAL ESTIMATION IN FIELD DATA

Temporal dynamics of larval flies and adult beetles,
and the percent of samples containing at least one

C. pumilio adult, are presented in Fig. 1. Because of
different hen management schedules between the two
sites, sampling dates of key events, such as initial beetle
colonization, differed yet the overall dynamics were
similar. Field-wide fly populations prior to predatory
beetle establishment were high, with means often
exceeding 200 third instars per 200 g sample, but
were drastically reduced in concert with beetle logistic
growth. Tobin et al. (1999) reported that once adult
beetles were detected from samples, the rates of
predator population growth were statistically the same
between the two sites.

Estimates of local aggregation (estimated by the
spatial correlation at distance lag = 0; e.g. Bjornstad &
Bascompte 2001) of larval flies prior to beetle estab-
lishment were fairly similar between the two sites and
indicated significant clustering (Table 1). During beetle
population growth and establishment, beetles became
increasingly aggregated. Concurrently, fly larvae became
decorrelated at local spatial scales (Table 1). Predatory
beetles and larval prey were locally segregated (i.e. neg-
ative cross-correlation) during rapid beetle population
growth. This spatial segregation between predator and
prey was observed at both field sites and appeared to be
linked to predator abundance — during rapid beetle
population growth, beetles and larval prey were segre-
gated at local scales, but as predators approached a
carrying capacity, the cross-correlation tended towards
no correlation or positive correlation (Fig. 2 A and 2B).

The transition in spatial dynamics also occurred
over a range of lag distance. This is exemplified in
Fig. 3, which shows the behaviour of the spatial cor-
relation function at Site 2 for fly larvae, adult beetles,
and their interaction over both sampling week and lag
distance. Initially, larval flies were highly aggregated
over scales > 10 meters, while the initial immigrants of
predatory beetles were only weakly autocorrelated. The
inverse was true when beetles were rapidly increasing in
abundance. However, as a carrying capacity is reached,

Table 1. Estimates of local aggregation (spatial correlation at lag distance = 0) in third instar house flies and adult predatory

beetles (95% bootstrapped CI)

Site 1 Site 2
Week Flies Beetles Flies Beetles
1 0-36 (0-01, 0-86) NA 0-26 (0-03, 0-56) NA
2 0-35(0:04, 0-77) NA 0-50 (0-24, 0-80) —-0-03 (=0-14, 0-01)™S
3 0-49 (0-15, 0-93) NA 0-54 (0-26, 0-87) 0-09 (=0-14, 0-41)NS
4 0-42 (0-03, 0-89) NA 0-32(0:03, 0:67) 0-07 (-0:18, 0-33)S
5 0-22 (-0-15, 0-65)™8 NA 0-28 (—0-04, 0-66)NS 0-05 (-0:17, 0-33)8
6 0-36 (0-03, 0-81) 0-08 (—0-10, 0-49)NS 0-17 (=0-09, 0-44)NS 0-39 (0-14, 0-67)
7 0-46 (0-06, 0-92) —0-21 (=0-52, —0-01)™ 0-24 (—0-01, 0-54)™S 0-39 (0-11, 0-73)
8 0-48 (0-98, 0-06) —0-02 (=0-13, 0-01)™S 0-04 (—0-22, 0-29)NS 0-55(0-24, 0-96)
9 - - 0-02 (=0-20, 0-27)NS 0-54 (0-24, 0-98)
10 0-23 (-0-16, 0-66)~S 0-10 (-0-34, 0-67)™8 0-35(0-08, 0-68) 0-34 (0-10, 0:69)
12 0-01 (-0-40, 0-41)™8 0-28 (0-11, 0-59) - -
14 0-20 (=0-08, 0-58)~ 0-22 (0-05, 0-56) - -
16 0-40 (0-05, 0-79) 0-37 (0-13, 0-66) _ _

NS, Not Significant. NA, prior to collection of beetles from samples.
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Fig. 2. Relationship between predator abundance at Sites 1 and 2 (A, circles and squares, respectively), and the respective mean
local segregation between predators and prey (B). Solid shapes indicate significant cross-correlation estimates, whereas open
shapes denote nonsignificant estimates. Comparatively, predator abundance in our theoretical system (C) is shown with the
respective mean local cross-correlation (D; 95% confidence intervals are indicated by light grey lines).
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Fig. 4. Phase plots of log,, abundance of larval house flies and predatory adults beetles at Sites 1 and 2 (A, circles and squares,
respectively), and phase plot of synthetic predator and prey abundance (B). Initial conditions for all sets are characterized by low

predator abundance.

the spatial structure of beetles decreases both locally
and over a range of lag distance, while the correspond-
ing structure of fly larvae increases both locally and
over a range of lag distance to a similar level as adult
beetles (Fig. 3).

THEORETICAL SPATIAL ESTIMATION

The transient dynamics of theoretical predator and
prey populations bore considerable resemblance to
our field data (Fig. 4) [Note, though, that our initial
parameters for the theoretical model had predators
and prey oscillating around an equilibrium ratio of
1 : 4, respectively, as opposed to the approximately 1 : 1
ratio observed in fly beetle dynamics. This is a trivial
consequence of the somewhat arbitrary choice of
parameters in our model system.]

Theoretical spatial segregation between predators
and prey are depicted in Fig. 2(D), with notable sim-
ilarities between the strategic model and empirical
data. There were periods of local segregation induced
by predator establishment and growth. Also, the
local cross-correlation increased from negativity to
roughly zero as predators approached a stable level, and
values continued to increase to stable positive values as
predator-prey dynamics stabilized around an attractor
(Fig. 2C,D). Comparatively, this pattern of spatial
segregation corresponded well with the increasing
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Fig. 5. Mean local spatial segregation between synthetic
predators and prey with global or local prey reproduction,
coupled with either local stochasticity or local and global
stochasticity.

predator abundance observed in field data, although
we do lack empirical evidence of significantly positive
cross-correlation during the stabilization of predators
and prey during the late stable phase.

Estimates of local spatial segregation between pred-
ators and prey using different prey production strat-
egies (i.e. global or local) in combination with the
presence and absence of global stochasticity are rep-
resented in Fig. 5. The dynamics were similar for all
cases and demonstrated periods of segregation that
corresponded to predator colonization. Global prey
reproduction tended to result in asymptotic levels of
cross-correlation in 3-5 fewer generations than local
reproduction, while global stochasticity yielded somewhat
more negative levels of local cross-correlation (Fig. 5).

Discussion

Research on the ecology of infectious disease shows
that control interventions, such as vaccinations, can
lead to asynchrony or synchrony depending on details
of natural history (Rohani, Earn, & Grenfell 1999;
Bjernstad 2000). In the former case, persistence may be
enhanced while in the latter case, it may not, showing
how spatiotemporal dynamics are critical for ecolo-
gical consequences of human interventions. The analogy
to systems where insect pests are managed through
control interventions in integrated pest management is
thus apparent. Spatial dynamics are also increasingly
recognized as having diverse effects on local temporal
dynamics (Keeling et al. 2000), motivating a range of
new questions about how spatial pattern affects tem-
poral processes.

In field data, the level of local aggregation exhibited
a characteristic density-dependent shift through time
(Table 1, Fig. 1). Prey were initially high in abundance
and locally aggregated, while predators were initially
very low in abundance and did not significantly differ
from spatial randomness. This is intuitive, as initial
prey populations result from large clutch sizes of rapidly
developing eggs laid gregariously by adult flies (Lysyk
& Axtell 1987; Stafford & Bay 1994). In contrast, the
immigration of predatory beetles occurs more slowly
than of their prey, clutch sizes are roughly 10-fold



466
P. C. Tobin &
O. N. Bjornstad

© 2003 British
Ecological Society,
Journal of Animal
Ecology, 72,
460467

smaller, and development of beetle immatures occurs
almost three times as slowly (Morgan et al. 1983).
It is still unknown exactly how these beetles colonize
poultry production facilities. Geden, Stoffolano, &
Elkinton (1987) observed that adult beetles shifted
from negative to positive phototaxis when food sources
were depleted due to, for example, overcrowding,
which suggested a mechanism for emigration. Also,
Tobin et al. (1999) observed a temporally consistent
spatial trend in beetle dynamics that emanated from
one area of the facility, suggesting a singular immigration
event in space and /or time. Overall, as predators increased
in abundance, they became increasingly aggregated, result-
ing in decreased prey abundance and prey aggregation.
Over broader spatial scales, the interplay between
abundance and synchrony has been observed, for
example, in bird populations, with the more abundant
species tending to be more synchronous; however, this
relationship did not exist across spatially unique popu-
lations of the same species (Paradis et al. 2000). In our
field data, prey appeared to regain local clustering as
their density approached an equilibrium with predator
density (Table 1, Fig. 1). It is possible that C. pumilio,
an effective predator that can consume > 50 fly imma-
tures each day (Geden & Axtell 1988), caused local
decorrelation of prey if dispersal of beetles was limited.
Indeed, Geden et al. (1987) observed that adults rarely
engaged in flight unless food sources were depleted
over several days. During beetle exponential popula-
tion growth, however, local clustering of both species
may have been maintained through the formation of
patches that were, in essence, spatially segregated.
Our theoretical model of a predator-prey system
provided temporal dynamics of abundance similar to
field data (Fig. 4), and cross-correlation estimates showed
that predators and prey is consistently predicted to be
spatially segregated during the transient phase (Fig.
2D). Allsets of data, whether empirically based or theor-
etically derived, revealed that the transition in spatial
cross-correlation between predators and prey could be
linked to increasing population growth of a natural
enemy (Fig. 2), whether prey reproduction was locally
or globally governed, or whether or not prey and pred-
ator populations were subject to global stochasticity
(Fig. 5). In essence, the transition from eruptive pest
abundance to regulation by a specialist predator was
thus associated with a transition in spatial dynamics.
Developing a sound theoretical model based on
empirical evidence is a first step toward gaining insight
into transient predator-prey population cycles. In the
future, we intend to investigate patterns of local spatial
aggregation and cross-correlation across a wider range
of parameter values in theoretical dynamics. In particu-
lar, since many agricultural and other anthropogenic
systems are transient, environmental factors, particu-
larly weather, may not play as large a role in inducing
spatial structure as they do in perennial systems
(Royama 1992; Ranta et al. 1997). For instance, the
relative roles of regional stochasticity and dispersal in

inducing long-term regional synchrony in six forest
insect species have been recently examined, with the
former being the dominant process (Peltonen et al.
2002). However, it is not known what their respective
contributions would be in more transient systems. Dis-
persal ability, for example, has been shown to play an
important role in influencing spatial structure in single
and interacting species (Hassell ez al. 1991; Sutcliffe,
Thomas, & Moss 1996; Keeling et al. 2000; Bjornstad
& Bascompte 2001).

Understanding spatial structure in transient systems
has several rewards. In agriculture, a comprehensive
understanding of the spatial and temporal dynamics of
not only the herbivore pest species, but also its natural
enemies, should facilitate our understanding of the
nontarget effects of pest control tactics to beneficial
species, and the potential of pest species to develop
resistance to these tactics. In particular, one potential
application involves site-specific management in agri-
culture, in which a cropping system is differentially
managed in space and time. Although this approach
has shown much promise in more stationary processes,
such as when managing and optimizing soil properties,
using this approach to manage spatially and tempor-
ally dynamic insect populations could be problematic
unless the factors that influence spatial structure are
better understood.
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