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SUMMARY

Current ecological information on periodically fluctuating microtine populations are demonstrated to
support a hypothesis involving both predation and intrinsic self-regulation as necessary and sufficient
factors for explaining the ‘microtine density cycle’. The structure of the cyclic time series is largely two
dimensional with strong delayed density dependence. Together with recent field studies on rodent
demography, our modelling suggests that trophic interaction is a likely candidate to generate the
dimensionality observed for northern microtine rodent dynamics. It is shown that the trophic interaction
must be fairly strong. This suggests that specialist predation is the most likely one among the classes of
trophic interactions. We also argue that some — but not too strong — self-regulation must occur to generate
the structure of the available time series on northern European microtines.

1. INTRODUCTION

“Some of us see the universe as a puzzle, and some see it as
a mystery. To the puzzle solvers, why anyone seeks mystery
is a puzzle indeed.”” (Brewer 1992)

“The study of microtine dynamics has been schismatic. Food
has had its supporters, so have predation, group selection,
endocrine shock, and genetic oscillations. There are shades
and variations of vole cult worthy of study by an anthro-
pologist.” (Rosenzweig & Abramsky 1980)

Building upon Collett’s (1911-1912) pioneering
observations, Elton (1924) initiated the now extensive
work on the ‘microtine density cycle’ (Stenseth & Ims
1993 a; Stenseth 19954). Today, we know that many
northern microtines in the Palearctic zone exhibit
periodic multi-annual fluctuations in the northern part
of their range (recently reviewed by Stenseth & Ims
19934). In Fennoscandia, for instance, most microtine
populations north of about 60° N are cyclic whereas
conspecific populations further south exhibit only
seasonal fluctuations (Hansson 1971; Henttonen et al.
1985; Hansson & Henttonen 19854, b; Hansson &
Henttonen 1988). As going North within the cyclic
region (i.e. north of 60° N), both amplitude and period
of the fluctuations increase (Hanski et al. 1991;
Bjornstad et al. 1995).

In this paper we synthesise insights from pattern-
oriented studies on the dynamics in time and space (cf.
Hansson 1988) with insights from process-oriented
studies (or ‘mechanistic studies’; cf. Krebs 1988).
Specifically, we derive our synthesis by expressing the
parameters of the most parsimonious statistical models
for microtine time series data from fennoscandia
(Bjornstad et al. 1995) in terms of the parameters of a
mathematical model with self-regulation and trophic
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interactions (see, for example, May 1973; see also
Stenseth 1986). A synthesis is reached by combining
these results with insights on processes known to
influence the dynamics of microtines. We start by
providing a synoptic summary of these processes.

Following the publication of the hypothesis by
Chitty and the related one put forth by Voipio (Chitty
1952, 1957, 1960, 1967, 1996 ; Krebs 1978, 1979, 1996;
Voipio 1950, 1988; see also Stenseth & Ims 19934),
and the hypothesis of Charnov & Finerty (1980; see
also Charnov 1981), much effort was devoted to the
investigation of social organization and spacing be-
haviour in microtines (Christian 1950, 1980; Krebs
et al. 1973; Jannett 1978; Wolff 1980, 1994, 1995;
Bekoff 1981 ; Mihok 1981 ; Saitoh 1981, 1991 ; Hestbeck
1982, 1987, 1988 ; Boonstra & Rood 1983 ; Krebs 1985,
1992, 1996; Blaustein et al. 1987; Boonstra & Boag
1987, 1992; Ims 19874, b, 1988, 1989; Kawata 1987,
1990; Boonstra & Hogg 1988; Rodd & Boonstra 1988
Waldeman 1988; Lofgren 1989, 19954, b; Ylonen
1989; Heske & Bondrup-Nielsen 1990; Lambin &
Krebs 1991 q, b, 1993 ; Mihok & Boonstra 1992 ; Ostfeld
19924, b; Lambin 1993, 1994; Boonstra 1994; Wolff
et al. 1994; for reviews, see for example Krebs & Myers
1974; Taitt & Krebs 1985; Cockburn 1988; Stenseth
& Ims 19935).

Below we refer to the general view that population
intrinsic factors (like social and spatial organization)
generate population cycles, as the population-intrinsic
position. The consensus from the wealth of empirical
(0p. cit.) as well as theoretical studies (Stenseth 1977,
1981, 1986; Stenseth et al. 1988 ; Stenseth & Lomnicki
1990), is that intrinsic processes alone cannot generate
the microtine density cycle. Rather, most population
intrinsic processes seem to enhance stability.
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Before the focus on behaviour and other intrinsic
factors, much attention was devoted to population
extrinsic factors, in particular trophic interactions, as
responsible for population cycles (Hagen 1952; Pitelka
et al. 1955; Kalela 1957, 1961, 1962; Pitelka 1958,
1964; Schultz 1964, 1969; Pearson 1964, 1966). This
view we refer to as the community-level position
(Hansson & Henttonen 1988). Gradually there has
been a return in focus to such extrinsic processes,
particularly that of predation (MacLean et al. 1974;
Fitzgerald 1977; Erlinge et al. 1983, 1984 ; Angelstam et
al. 1984; Erlinge 1987; Hanski 1987; Hansson 1987;
Henttonen e al. 1987; Sonerud 1988; Desy & Batzli
1989; Korpimiki & Norrdahl 1989, 19914, b; Desy et
al. 1990; Steen et al. 1990; Korpimaiki ef al. 1991, 1994;
Korpimiki 1993, 1994; Norrdahl & Korpimaki 1993,
19954, b; Norrdahl 1995; Korpiméki & Krebs 1996).
A series of independent studies on predation on
microtines (Norrdahl & Korpimiki 1995a; Reid ef al.
1995; Steen 1995; see also Heske et al. 1993), indicate
that predators represent a key to understanding the
mortality associated with the microtine cycle (but see
Krebs (1996) who states that ‘predation does not seem
to be either necessary or sufficient to generate a cycle in
these small mammals’). Predators specializing on
rodents (e.g. mustelids and owls) are, as a result, seen
by some researchers as the solution to the cycle (see,
for example, Hanski et al. 1991, 1993; Hanski &
Korpimaiki 1995).

Many authors focusing on predation as a key
factor in the generation of the cycle, view predation
as an alternative to intrinsic hypotheses. Thus, the
population-intrinsic position and the community-level
position are commonly seen as representing opposing
hypotheses. In this paper we argue that the presumed
dichotomy between the intrinsic- and community
position is not an appropriate interpretation of avail-
able empirical and theoretical results. Indeed, we
suggest that both community-level and population-
intrinsic factors are necessary for generating population
dynamics of the kind seen in the ‘microtine cycle’. In
addition, we argue that a trophic interaction involving
specialist predation coupled with some self-regulatory
factor are sufficient for explaining the microtine cycle.
We are certainly not the first to propose such a
combined view (Taitt & Krebs 1985; Bondrup-Nielsen
& Ims 19884, b; Heske & Bondrup-Nielsen 1990;
Krebs 1995, 1996). We do, however, demonstrate the
validity of such a view on the basis of recent empirical
and theoretical studies.

2. AMETHODOLOGICAL PREAMBLE

The density dependent paradigm assumes that the
numerical dynamics of a population may be approxi-
mated by a model of the form

Ny=0O(N, ..., Ny y) e, (1)

where @ is some function—or model - (linear or
nonlinear) and ¢, is the effect of environmental or
demographic stochasticities. Classically, 4 is assumed to
be one, and the stochasticity is assumed negligible (see,
for example, May 1976; May & Oster 1976; Bellows
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1981). Only occasionally is stochasticity explicitly
incorporated in the models (Braumann 1983; Dennis
& Patil 1984 ; Dennis ef al. 1995). Higher dimensional
models (4 > 1), stochastic or deterministic, generally
arise for three biological reasons (Royama 1992; see
also Gilbert 1993): developmental delays (May 1981;
MacDonald 1989), age-size structure (Ebenman &
Persson 1988), and interspecific interactions (Maynard
Smith 1974; Maynard Smith & Slatkin 1978; Royama
1981; Stenseth 19954; Stenseth et al. 19965).

Ecologists attempt to infer the processes that control
the dynamics of populations. One approach may be to
try to reconstruct the model @(-) on the basis of time
series data (see, for example, Tong 1990; Royama
1992). In §3 we summarise studies on cyclic microtine
rodents taking such a statistical approach. A second
approach is to develop mathematical models for
population dynamics (see, for example, May 1973;
Maynard Smith 1974 ; Caswell 1989; Yodzis 1989). In
§4 we discuss this approach with reference to cyclic
microtine rodents. Despite both approaches relating to
the same phenomenon, their insights are only rarely
merged. With reference to cyclic microtine rodents, we
attempt such a synthesis in §5.

3. STATISTICAL MODELLING OF
MICROTINE TIME SERIES

Equation (1) is a nonlinear autoregressive model. A
sensible first step in reconstructing the underlying
model, @(-), is to estimate the ecological dimension
(or what the statisticians call the order of the process;
see, for example, Cheng & Tong 1992). This is a non-
trivial problem. A classical simplification is to assume
that @(:) [or O(:)/N,] is a linear function in
(N,.1, Ny, ..., N,_y) (Hurvich & Tsai 1989; Wei 1990;
Royama 1992; see also Lotka 1925; Volterra 1926;
May 1972, 1973, 1981; Maynard Smith 1974).
However, if we assume linearity in @ when the true
O-function is nonlinear, we often overestimate the
dimension of the dynamics (cf. Takens theorem:
Broomhead & Jones 1989). A frequently employed
alternative therefore is to assume that @ is a nonlinear
parametric function in N (see, for example, Hassell et
al. 1976; Berryman 1991; Turchin 1993; Turchin &

Table 2. Definition of the degree of the ecological interactions
in equation (9) at equilibrium
(The ‘other-than-vole’ trophic level is referred to as the ‘y-

level’ (interpreted in the conclusion of the paper as ‘specialist
vole predators’).)

type of ecological interaction symbol
Vole’s growth rate in absence of oy, = £(0,0)
self-regulation and the other trophic
level (a,,)
self-regulation in voles (a,,) o, = 9f/0x
effect of y-level on voles (a,,) a,, = 0f/0y

the y-level’s growth rate in absence of a,, = g(0,0)
self-regulation and voles (a,,)
self-regulation in the y-level (a,,)
effect of voles on the y-level (a,,)

oy, = 0g/0y
ay, = 0g/0x
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Table 3. The autoregressive parameters in the model defined by equation (3) as functions of the ecological parameters in the model

defined by equation (5)

autoregressive parameter ecological model

features of the Jacobian (J)
(mathematical interpretations)

4 Qgg* Xyp— Gyg %oy
a, Oy 0oy, +2
ay Oyg " Olyy — Olyy " Olyy — Oy —Olyy — 1

determining the equilibrium of x,
trace(J)
—determinant(]J)

Millstein 1993). Unfortunately, when our precon-
ception is in error our conclusion will, to some extent,
be an artefact of our prejudices rather than the truth
about nature. Hence, we should ideally use a non-
parametric model to estimate this dimension, d, of
population dynamics. In this way the error is likely to
be reduced (Cheng & Tong 1992). A suitable non-
parametric way of estimating @ () is to use a smoother
such as the weighted local linear regression of Fan
(1992; see also Yao & Tong 1994) with a product
Gaussian kernel (Tarter & Lock 1993).

The appropriate dimension of the population dy-
namics, may be seen as that of the model that predicts
the dynamics the best (Stone 1977). We use the ‘leave-
one-out’ cross validation method for estimating d (see,
for example, Stone 1977; Cheng & Tong 1992; Efron
& Tibshirani 1993). The idea is to remove one data-
point from the time series and estimate the model
based on the remaining observations. A regression
model will then be used to predict the deleted point.
The process is repeated for all data points in the time
series. The mean sum of squared differences, is the CV-
value for the dimension of the non-parametric model.
We repeat this for each dimension {1, ...,d,,.}. The d
that minimizes the CV| is the parsimonious dimension
estimate of Cheng & Tong (1992). A word of caution
is in order, however: typically an ecological time series
is short. Any estimate is therefore going to be associated
with substantial uncertainty (Falck et al. 19954, b).

Table 1 summarizes the analysis of the available
Fennoscandian time series with respect to dimen-
sionality, both assuming a non-parametric nonlinear
autoregressive model (table 14) and a linear auto-
regressive model (table 15). The original time series
data were in both cases log-transformed to stabilize the
variance (for examples, see Sen & Srivastava 1990;
Bjornstad e al. 1995) ; that is, we use x, = In (N, +small
constant). This transformation is furthermore bio-
logically sensible because of the multiplicative nature
of birth and death processes (for examples, see Lebreton
1989; Broekhuizen & McKenzie 1995). The log-
transformed series have been scaled to have zero mean
and variance equal to one. To avoid spurious results
caused by trends in time series, all log-transformed
series were detrended using a scatterplot smoother
(LOWESS; Statistical Sciences 1993) with band width
equal to six (being just longer than the longest period
reported for microtine cycles).

Using non-parametric regression (table 1a), it can
be seen that most (609,) of the northern time series
were estimated to have dimension of two. A total of five
of the series which were not estimated to have
dimension two, gave only a negligible less fit (5%,) by
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assuming dimension two: thus 859, of the northern
time series on microtine rodents have approximately
dimension two. The only exceptions from this two-
dimensional structure are Clethrionomys rufocanus at
Kilpisjarvi in the series after 1970 (a series which is
considered non-stationary and non-cyclic by Hent-
tonen (personal communication) and Hanski & Hent-
tonen (1996)), Microtus agrestis outside Umed (both of
which were found to have dimension four), and
Clethrionomys rufocanus from Kola. Cross-validating the
linear model, slightly more series are found to have
dimension larger than two as their overall best estimate
(table 14). However, this may be expected in the
presence of nonlinearities. Nevertheless, using the 5 9%,
criterion, 14 (709,) are consistent with 4= 2. In
conclusion, considering the innate uncertainty in our
data, dimension two is the most appropriate dimension
for the northern microtine time series. This has also
been found in previous studies (Turchin 1993 ; Turchin
et al. 1993 ; Bjornstad et al. 1995). (For the Kilpisjarvi
series, it is worth noticing that analysing the latter part
of the series only till 1988, gives an optimal dimension
equal to two both when assuming a linear and a
nonlinear model.)

Assuming a two dimensional structure, we may
describe these time series data, using delay coordinates,
by the following model:

%, = D(x,_4,%_,) + 6. (2)

The @-function may take on a variety of forms, but for
the purpose of studying patterns of statistical density
dependence, we may specify the @-function as a log-
linear function of abundances (see, for example,
Royama 1992; Bjernstad et al. 1995):

X = ay+a, %, +ay x,_o+E€,. (3)

The coeflicients, 4, (1 = 0, 1,2), can be estimated from
time series data (table 1). Notice that only the
autoregressive parameters a; and a, will influence the
dynamics of the second order log-linear model
(Royama 1981, 1992).

4. MATHEMATICAL MODELLING OF
MICROTINE POPULATION DYNAMICS

Many, but far from all, hypotheses for the rodent
cycle (Stenseth & Ims 19934) are consistent with the
two dimensional structure of the data. For instance, the
multifactorial hypothesis (Lidicker 1988; see also
Gaines ef al. 1991; Lidicker 1991) assuming cascades of
interacting processes will result in higher-than-two
dimensional dynamics. This expectation is not borne
out in the available data (table 1). Similarly, the food
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Figure 1. The ‘microtine rodent cycle’. (a) The density cycles at Kilpisjarvi, Finland (Laine & Henttonen 1987,
figure adapted from Hanski ¢t al. 1993) are a typical example of the 3-5 year microtine density cycle. Solid circles
represent spring, open circles represent fall. The period length for this very northern population is approximately 5
years. (b) Empirically, the cycles in Fennoscandia is produced by a narrow range of coefficients of delayed (vertical
axis) and direct (horizontal axis) density dependence (adapted from Bjernstad et al. 1995). The parameters in the
population dynamic model (see text) represent the ecological interactions among the voles («,;) and between the voles
and their specialist predators (a,, and a,,). These parameters are, as indicated on the axes, related to the statistical
coefficients. The sign of the parameters can be illustrated from three recent studies: (¢) Boonstra (1978) demonstrated
experimentally the presence of intrinsic regulation (e,,) in Townsend’s vole (Microtus townsendiz). (d) Reid et al. (1995)
demonstrated experimentally strong effects of predators on the demography of collared lemming (Dicrostonyx
groenlandicus) (ot,). (¢) The relation between the clutch size of the Tengmalm’s owl (degolius funereus) and vole
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chain hypothesis of Oksanen and coworkers (for
examples, see Oksanen et al. 1981; Oksanen 1990,
1991; Oksanen & Oksanen 1992), predicting a
dimension of three or more, may be concluded
inconsistent with available data on northern microtine
rodents. Henceforth, we may narrow the search to
models (or hypotheses) with no more than two dynamic
variables. Following the synoptic review we have
provided in the introduction to this paper, we are lead
to consider a trophic model. Because, density de-
pendence in the voles appears common (Hornfeldt
1994; Bjornstad et al. 1995; Ostfeld & Canham 1995;
Saitoh et al. 1996; Stenseth et al. 19964), we should
allow for self-regulation.

Let X, be the abundance of voles at time ¢. Let ¥, be
the abundance of a species either being a food resource
for the rodent or a predator on the rodent species. A
general population dynamics model for this trophic
system is (see, for example, Maynard Smith 1974):

X =X F(X, T, et(z))

w (4)
Y=Y G(X, Y, ¢e"),

where F and G are functions describing the ecological
interactions in the system, and €% and ¢, are
sequences of state independent random variables with
zero mean. We may write F(-) and G(-) as exponential
functions (see, for example, Stenseth et al. 19964):

X1 = X, exp (f(x,, ) +€)

(5)
Y= Y exp(g(xyy,) +ez(y))>

where f and g are functions in x, and y, and
x, =log (X,) and y, =log(Y); essentially this is a
general Gompertz model (Gompertz 1825; see also
Lebreton 1989).

Table 2 summarises the ecological interpretation of
the partial differentials of f and g around the
equilibrium (denoted by a,; which represent the
influence of species j on species i; May 1973). The
functions f and g (as well as F and G, etc.) are the
biological functions; their parameters are referred to as
the biological parameters of the system. The results of
the statistical modelling (see §3) constrain these
functions to identify permissible ranges of values for the
interaction coeflicients o, (see table 3).

5. LINKING MATHEMATICAL MODELS AND
STATISTICAL AUTOREGRESSIVE MODELS

The ecological model discussed in §4 may be linked
directly with the statistical models of table 1 (§3). In
the case of log-linearity in f(-) and g(-), the partial
differentials (table 2) will uniquely define the para-
meters of the log-linear autoregressive model (equation

(3))-
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As can be seen from table 3a, the first order
autoregressive parameter (a,) is solely determined by
the self-regulating processes (of which there is a whole
array in rodents such as territoriality, density de-
pendent maturation, and density dependent dispersal;
see §1) in the two interacting species. Notice that a,;
even include mortality caused by an instantaneous
functional response of generalist predators (Hassell &
May 1986; Bjornstad et al. 1995). The second order
autoregressive (a,) parameter is a compound function
of different processes in the ecological system. As a
result, a, may take on a variety of values (positive as
well as negative). The value of a, depends upon the
relative strength of trophic interaction (ot;, ;) versus
self-regulation (a;; and a,,).

Bjornstad et al. (1995) show that for cyclic Fenno-
scandian microtines, ¢, vary between —0.6 and 0.3
(southern cyclic populations being approximately
equal to —0.6 and northern populations being approxi-
mately equal to 0.3), and a, is approximately constant
at —0.6. The parameter estimates for these, as well as
a few series more recently brought to our attention, are
given in table 1 (note that the exact estimates varies
slightly from those of Bjernstad et al. (1995) because a
different statistical program was used; S-plus, version
3.2; Statistical Sciences 1993). The results imply (table
1), that:

—2.6 <oy tay, <—1.7, (6)
and
Olyg* Olyy — Gy " Olgy — Oty — Ay = 0.4 (7)

Substituting the relations in equation (6) into equation
(7) yield:

—2.2 < 0yt Oy —0yy Olgy < — 1.3, (8)

To simplify the argument, let us first assume negligible
self-regulation in the other trophic level (i.e. oy, & 0);
below we relax this assumption. With the assumed
simplification, the above statistically derived con-
straints imply:

—26<a,; <—1.6, 9)
and
=22 <oy <—1.4. (10)

Equation (9) is consistent with a fairly strong degree
of self-regulation (a,;) in the vole populations. Thus,
the analysis of available long-term time series on
northern microtine populations in Fennoscandia (as
exemplified by figure 1a) support the conclusion of the
population intrinsic hypotheses: self-regulatory pro-
cesses (including spacing behaviour) are important.
Certainly, all studies on spacing behaviour in micro-
tines (cf. §1) imply a,; to be negative (figure 1¢).

abundance showing a clear effect of voles on the predators (e,,) (reanalysis of data presented in table 1 of Korpimaki
& Hakkarainen (1991)). The figure depicts the generalised additive (non-parametric) regression model (Hastie &
Tibshirani 1990; Statistical Sciences 1993) using a spline smoother with 2 degrees of freedom, identity link and quasi-
Poisson variance function for number of eggs versus vole index (p = 0.07); the upper and lower 959, confidence
interval is shown. The relation has been corrected for laying date. (Similar observations are provided by Korpimaki

& Lagerstrom (1988) and Hoérnfeldt ef al. (1990).)
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Equation (10), furthermore, is consistent with a
specialist predator influencing the dynamics of the
voles: for specialist predators, both the influence of
voles on the predators growth rate (e,,) and the effect
of the predators on the voles growth rate (e;,) are
strong, one being negative (a,,) and one being positive
(ety;) rendering the product strongly negative.

Another trophic candidate would be a plant-
herbivore interaction. However, the little relevant
evidence that exist (Batzli 1983, 1992; Laine &
Henttonen 1983, 1987; Seldal et al. 1994) does not
indicate @, @;, to be sufficiently negative in such
interactions: this needs further testing, though. On the
basis of available observational and experimental data,
we are lead to conclude that the time series of northern
microtines are consistent with the ‘community-level
position’. This is particularly so because of the recent
field studies on vole predation (Steen 1995; Norrdahl
& Korpimiki 1995a; Reid et al. 1995) demonstrating
that a,, is negative (figure 1d; that is, predatory
induced mortality is not compensatory in voles). By
definition, a,; will be positive for specialist predators
(figure le), but approximately zero for generalists.

If we relax the assumption of &y, &0 (no self-
regulation in the predator), we see (equation 6) that
the self-regulation in the vole population need not be as
strong, nor need the interaction between the trophic
levels (o, 0ty;) be as strong. Thus, if both trophic levels
are self-regulated, equation (8) might be satisfied even
for a;, oy, not highly different from zero (which could
be the case for generalist predation or plant-herbivore
interactions). This will need further investigation (but
see Lockie 1961 ; King 1989).

6. ASYNTHETIC HYPOTHESIS

In summary, we argue that all currently available
empirical information, both from experimental studies
like those reviewed by Krebs (1978, 1993, 1996) and
analysis of population trajectories (Bjernstad et al.
1995: figure 15), are consistent with the microtine
cycle resulting from both trophic interactions and self-
regulation. The microtine density cycle seems to be
caused by the combination of self-regulation (such as
spacing behaviour) and predation by rodent specialists.
We conclude the following.

1. Some degree of self-regulation («;; < 0; figure
l¢) (mediated by factors such as spacing behaviour)
seems necessary to obtain the observed microtine cycle.
Population-intrinsic mechanisms are demonstrably
essential for the cycles to occur. Self-regulation must
not be too strong, though.

2. Small rodent specialist predators (e.g. mustelids
and some owl species) are likely candidates for the
other necessary factor (figure 14, ¢). Generalist pred-
ators will result in (voles’ effect on predator) x (pred-
ator’s effect on voles) being approximately equal to
zero, violating the statistical results of available long-
term data.

3. Thus, specialist predation and self-regulation
appears necessary and may be sufficient for generating
the microtine cycle.
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Our hypothesis is consistent with the pattern in the
available time series data on cyclic microtine rodents
from Fennoscandia; most importantly (a) their two
dimensional structure and (4) the permissible range of
the ecological parameter values. It should be empha-
sized though, that our hypothesis by no means has
been tested: neither has its components been indis-
putably demonstrated. In much current literature on
cyclic small rodents (see, for example, Hanski et al.
1993; Hanski & Korpimiki 1995; Norrdahl 1995;
Turchin & Hanski 1996), the impression is often given
that the puzzle of the ‘microtine cycle’ is solved. The
empirical basis of such a conclusion is indeed very
weak. Figure 1 summarises some experimental results,
but more experimental data as well as further analyses
of available data is required before we can conclude
causation and not only consistence.

7. CONCLUSION

To suggest that both population-intrinsic processes
and community-level processes are essential for gen-
erating periodic fluctuations in rodents, is not new. For
instance, Taitt & Krebs (1985: p. 611) suggest that a
‘synthesis could be based on the premise that both
extrinsic and intrinsic factors are involved in Microtus
population fluctuations’ (see also Krebs 1996). How-
ever, the empirical support for such a synthetic view
has not yet been put together. Unfortunately, pro-
ponents of one or the other view, generally focus on one
factor as the single most important key factor. For
instance, Hanski et al. (1993) concluded that ‘the 3-5-
year small mammal cycle...is generated by delayed
density dependence as a result of specialist predators’
despite their model incorporating both intrinsic and
extrinsic factors. This misses the critical fact that
microtine rodent density cycles appears to be locked in
the tension between stabilizing self-regulation and
destabilising trophic interactions (May 1972; Stenseth
1986; Framstad et al. 1996). We differ from Hanski &
Turchin and others (see, for example, Hanski et al.
1991, 1993; Hanski & Korpimiki 1995; Turchin &
Hanski 1996) in not only emphasising specialist
predation. We maintain that we need to emphasise both
intrinsic processes and the extrinsic trophic processes;
and that we need to understand the balance between
these two classes of processes.

The jigsaw pieces seem to be on the table, and we
believe we are close to putting them together to solve
the puzzle that has troubled ecologists for more than 70
years. The results reported in this paper demonstrate
the necessity of merging the views of the different
schools of thought. It appears that in concert, both
schools of microtine population dynamics is right, but
missing the critical fact that the effects of self-regulation
and the trophic interaction are inextricably inter-
twined.
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