
  

 

 

 

 

 

 

 

 

 

 

 

 

Supplement A. The relationship of the proportion of populations that replaced themselves 

from year t-1 to year t with the respective population density in year t-1 (top graph) 

demonstrates the presence of both an Allee threshold (~17 moths/trap) and a carrying 

capacity (~687 moths/trap) in gypsy moth populations. The bottom graph better 

illustrates this relationship at low densities and more precisely estimates the Allee 

threshold. We defined the Allee threshold as the moth abundance in year t-1 at which half 

of the populations replaced themselves in year t, and the carrying capacity threshold as 

the abundance (in t-1) at which the replacement proportion decreased and dropped below 

0.5. These data were gathered from spatially-referenced pheromone-baited trap catches, 

which were part of the gypsy moth Slow-the-Spread (STS) project (Tobin et al. 2004).  
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These trap catch data were first used to interpolate male moth abundance using median 

indicator kriging (Isaaks and Srivastava 1989) over a network of 5×5 km cells in a grid 

that encompassed the states of West Virginia and Virginia. Interpolated grids were 

generated for each year from 1996 to 2004. We extracted the interpolated male moth 

density per trap at the center of each cell, and then paired each interpolated value in year 

t-1 with its respective value in year t. These pairs of trap counts from successive years 

(i.e., 1996 to 1997, 1997 to 1998, ... , 2003 to 2004) were then combined to form a single 

list of all pairs from the entire time interval. We omitted any cells whose value in year t-1 

was 0. Also, because some gypsy moth populations are targeted for eradication using 

chemical or biological pesticides, we excluded any cells that were within 1.5 km from an 

area treated for gypsy moth control. The final data set contained 20,339 pairs of moth 

counts in years t-1 and t. For estimation of carrying capacity, we condensed the counts 

into a series of bins with intervals of 6, (i.e., 1-6 moths, 7-12 moths/trap, etc), though we 

excluded bins > 700 because of the diminished pheromone trap efficiency that is known 

to occur as traps become saturated with moths (Elkinton 1987). Within each of these bins, 

the proportion of cells in which moth abundance either increased or stayed the same 

between years t-1 and t was calculated. The result was a bivariate relationship between 

abundance in year t-1and the proportion of cells where populations were replacing 

themselves (top figure). To pinpoint an estimate of the Allee threshold, we subset the data 

and used densities in year t-1 that were <30 moths per trap. In this case, the abundances 

in year t-1 were not placed into population bins; rather, we calculated replacement 

proportions at each integer density from 1 to 30 male moths/trap (bottom graph). 



Estimation of thresholds was done using lowess fits in R (R Development Core Team 

2004). 
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Supplement B.  Invasion rates and spectral analyses in simulations of a cyclical 

population with a 10-yr periodicity without an Allee effect (Figures A & B), without 

stratified diffusion (Figures C & D), and without both (Figures E & F).  Invasions were 

run in a one dimensional landscape of 1,000 cells.  The population size in the first (edge) 



cell was initiated at a non-zero value and population sizes in all other patches were 

initiated at zero.  The model used was that presented in the body of the article with the 

same parameter values, except in the cases where there was no Allee effect (c =0) and/or 

no stratified diffusion (φ = 0).   Significance in the spectrograms were calculated by 

comparing the maximum power of periodicity in the simulated time series of invasion 

rates to a distribution of maximum powers of periodicity in 1000 bootstrapped data sets 

created by resampling the simulated time series with replacement.  Invasion rates were 

not significant at a 95% confidence level in any of the three models; When the Allee 

effect was excluded (p = 0.99), when stratified diffusion was excluded (p = 0.14), and 

when both were excluded (p = 0.20).  The key observation here is that, in this model, 

both an Allee effect and stratified diffusion were necessary components to create periodic 

invasion pulses. 



-1 -0.5 0
0

0.5

1
Basic model

-1 -0.5 0
0

0.5

1
Stratified diffusion

-1 -0.5 0
0

0.5

1
Allee effect

p-
va

lu
e

-1 -0.5 0
0

0.2

0.4
Allee effect and stratified diffusion

dispersal parameter  

Supplement C.  A continuous-space model was approximated by increasing the dispersal 

parameter (τ) to near zero in the discrete model.  Increasing the dispersal parameter (τ) to 

near zero approximates continuous space because, in effect, it is equivalent to decreasing 

the scale of cells because they both result in an increase in dispersal distance relative to 

the number of cells. The purpose of this analysis is to test whether the periodicity, or lack 

of periodicity, in each of the models is an artifact of using a discrete-space model to 

model a continuous process.  The four models tested were the basic model, the model 

with stratified diffusion, the model with an Allee effect, and the model with both 

stratified diffusion and an Allee effect. At the greatest dispersal values, local invasion 

proceeded at rates of approximately 100 to 200 cells/generation.  In all analyses, the 

mean jump dispersal was held constant at approximately 8 times the local invasion 

distance.  The p-values were calculated by comparing the maximum power of periodicity 



of the simulated time series of invasion rates to a distribution of maximum powers of 

periodicity calculated from 10,000 resamplings of the time series, with replacement, from 

the simulated time series.  While there was high variation in the p-values across values of 

τ, the significance of periodicity was not a function of τ in any of the models.  Periodicity 

in the model with an Allee effect and stratified diffusion was nearly always significant at 

p < 0.05, while periodicity in the other models were generally not significant across the 

full range of dispersal values.  These results indicate that the observed periodic pulses of 

invasion are not artifacts of modeling in discrete space.



 

Supplement D.  A continuous-space point-process based simulator.  The number of new 

colonies (proxy for invasion rate) against time in the continous-space simulator for three 

different values of the Allee threshold. Left panels shows the time series, right panels 

show the associated periodograms.  We used a continuous-space point-process simulator 

to check that our conclusions regarding pulsed invasions and Allee effects also hold in 

continuous space. Simulating these point-process models was computationally very 

demanding (simulating 200 generations with a ‘basic reproductive ratio’ of 10 took 2.5 
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hours and <20GB of memory), so we were unable to use the full stochastic, Allee’d, log-

linear AR-2 model. Instead, we used the simpler deterministic Allee’d logistic model 

with stochastic spatial dynamics. The determinism with respect to local growth gave 

reasonable precision on the basis of single replicate simulations. 

The local colony growth was according to Liebhold and Bascompte’s (2003) 

model: 
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where C is the Allee threshold and K is the carrying capacity. We started with a single 

colony at the origin. Each colony was assumed to give rise to a Poisson number of 

‘offspring’ colonies (arbitrarily set to have expectation 10) that were initiated with a 

fraction d of the parent’s abundance. Each is seeded at a new location away from the 

parent according to a diffusion process (i.e. 2D Gaussian kernel with scale da) that we 

took to represent the long-distance dispersal of the stratified diffusion; local dispersal is, 

here, subsumed in the local population growth. Colony initiation success depends on 

local density of colonies (so that there can’t be an infinite number of colonies in an 

infinitely small area; this is essentially equivalent of ‘space-filling’) according to a 

Gaussian ‘competition’ kernel, κ, with some scale, dc. The rate of ‘competition for space’ 

at a candidate location j is ∫ Ω∈
−=

kj kjm |)(|κθ , where |j-k| is the distance between 

location j and a previously established colony k, so that the probability of successful 

initiation is jme−−1 .  

 The simulation is run with growth followed by colony seeding (i.e. discrete time 

but continuous space), and with parameters arbitrarily fixed at r = 1.5, K = 100, da = 10, 



dc = 2, θ = 10 and C varying between 0.01 (virtually no Allee effect) to 2 (very high 

Allee threshold). A sensitivity analysis with respect to the growth rate revealed a trivial 

effect (higher growth yields faster pulses) for low values of r (the discrete logistic 

bifurcates at r >2.5). All simulations result in an essentially exponential growth of the 

number of colonies. The following figures show the number of successful new colonies 

through time (the proxy for range expansion) for the range in Allee threshold with 

associated spectra: Conspicuous pulses appear as the Allee threshold increases. We 

conclude that the pulses in the gypsy moth lattice model are not an artifact of the 

discretization of space.  
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Supplement E.  Sensitivity analysis of the effects of variation in model parameters to 

length, coefficients of variance, and significance of periodicity in invasion pulses.  The 

coefficient of variance is indicative of the magnitude of invasion pulses independent of 

scale of the discrete model.  In each set of three graphs, horizontal red lines in the first 

two graphs indicate the periodicity and coefficient of variance observed in the gypsy 

moth data illustrated in Figure 3 of the article, and indicates a p-value of 0.05 in the third 

graph.  Methods were the same as those used for analyses illustrated in Figure 4.  With 

the exception of the exponential dispersal parameter (τ) (Figure G), periodicity over most 

of the parameter ranges was significant at p < 0.05, indicating that periodicity in invasion 

pulses in the model is robust to variation in parameters.  All measures of periodicity 

varied somewhat due to stochasticity (u) in the model (except for when u = 0 in Figure 

E).  Increasing the value of the population growth parameter (a) from 21 to 31 resulted in 

a decrease in the periodicity and coefficient of variance of invasion pulses (Figure A).  In 

the sensitivity analysis, the first-order density-dependence parameter (α) was varied from 

-0.15 to 0.85.  As α was increased from -0.15, the dominant periodicity and coefficient of 

variance rapidly decreased from approximately 6 years to near 2 years at α = 0.  Between 

α values of 0 and 0.85, neither the dominant periodicity and coefficient of variance 

showed any apparent trend.  Periodicity was not significant at α values below -0.15.  The 

rate of invasion is clearly affected by interactions between factors, thus, these sensitivity 

analyses do not suggest that, for example, a certain value for α will always result in a 

given periodicity of invasion.  Instead, a given combination of parameters results in 

specific model dynamics.  So, with values of α < -0.15, we could possibly vary other 



parameters in the model to allow invasion to occur.  However, doing this for all 

parameters would entail a sensitivity analysis in 7 dimensions of parameter space, which 

is beyond the scope of this project.  Pulses were not periodic for values of the second-

order density-dependent parameter β < -0.5.  As β was increased from -0.4 to -0.1, the 

dominant periodicity decreased from approximately 4 years to 2 years, and the coefficient 

of variance decreased (Figure C).  Between β values of -0.1 and 0.55, the dominant 

periodicity increased up to approximately 3.5 years and the coefficient of variance 

increased as well.  Periodicity increases from approximately 3.3 years to 4 years and the 

coefficient of variance increased moderately as regional synchrony was increased from a 

proportion of 0 to 1 (Figure D).  An increase in stochasticity (u) from 0 to 1 resulted in a 

decrease in dominant periodicity from 4 years to approximately 2 years and an increase in 

the coefficient of variance (Figure E).  When the model lacks stochasticity (u = 0) the 

populations do not cycle – instead settling at carrying capacity – yet periodic invasion 

pulses remain, illustrating that population cycles are not a necessary ingredient in pulsed 

invasion dynamics. Increasing the value of the Allee threshold parameter (c) from 10 to 

42 caused a linear increase in dominant periodicity from 2 to 4 years and a corresponding 

increase in the coefficient of variance (Figure F).  Between c = 42 to 52, variation in the 

estimation of dominant periodicity fluctuated between 2 and 4 years and the coefficient 

of variance leveled off.  Between c = 52 to 70, the dominant periodicity was at 2 years 

and the coefficient of variance decreased slightly.  The sensitivity of periodicity in pulses 

of invasion to variation in dispersal was tested between dispersal parameter values 

between τ = -5 and -0.1.  Periodicities were only significant for values of τ = -2.  As τ was 

increased from -2 to -0.01, the dominant periodicity decreased from approximately 7.5 to 



3 years and the coefficient of variance also decreased.  In summary, the periodic pulses of 

invasion are robust to moderate variation in model parameters. 

 

 

 


