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NONLINEAR STOCHASTIC DYNAMICS: 
INTERACTING FORCES 
The emergent consensus -- that both biotic 
interactions and abiotic random forcing are crucial -
- adds a second challenge to theoretical ecology: 
understanding the interaction of noise and 
nonlinearity. We let the diversity of advances in 
nonlinear-stochastic ecological dynamics testify to 
the current level of activity and excitement in this 
new field. 
 
Stochastic excitation 
Higgins et al. (1) studied cyclic variability in the 
abundance of the Dungeness crab. They 
parameterized an age-structured model involving 
competitive and cannibalistic interactions between 
individual crabs. The resultant model predicted 
asymptotically stable dynamics of the stock. This 
contrasts starkly with the violent 10-year 
fluctuations observed in time series. However, 
when the highly variable survival of the planktonic 
larvae, due to starvation and expatriation of young 
(1), is incorporated as stochastic variability between 
years, the abundance of adults is predicted to 
undergo cyclic fluctuations, comparable to those 
seen in nature. This effect -- cyclic stochastic 
excitation of monostable systems -- was extensively 
described by Nisbet and Gurney (2). It has since 
been repeatedly rediscovered for a variety of 
ecological systems (3, 4). These testify to how 
many asymptotically stable ecological systems will 
exhibit statistically predictable cycles in the 
presence of environmental or demographic 
stochasticity. 

Reppellors and saddles 
As indicated in the text, the dynamic attractors that 
arise from nonlinear interactions between 
individuals may take a variety of forms -- the well 
known fixed point equilibria, stable cycles, and 
quasiperiodic or chaotic attractors. However, there 
is also the possibility of multiple coexisting 
attractors (5-7) and unstable equilibria (‘saddles’) 
(Fig. 3e) (8) or unstable invariant sets (‘repellors’) 
(9). Attractors and saddles can be depicted 
geometrically in phase-space (Fig 3; supplemental 
figure). The geometry of these attractors is a key to 
understanding the interactions between noise and 
nonlinearity. A saddle is an equilibrium that is 
attracting in one dimension, but repelling in the 

other (supplemental figure); The Lotka-volterra 
competition model provide a classical example 
(10). Invariant sets -- other than point equilibria -- 
can also be unstable (attracting in some directions 
in phace-space and repelling in others). These are 
called ‘repellors’ (9). In deterministic systems, the 
actions of saddles and repellors are not seen. 
However, in the presence of even modest 
demographic stochasticity, saddles or repellors may 
have a paramount influence. Cushing et al. (8) 
tested this conjecture after having uncovered an 
unstable equilibrium in the theoretical dynamics of 
the flour beetle (Fig 3e-g). During stochastic 
excursions, populations are observed to linger close 
to the unstable equilibrium. Populations thereby 
alternate between the influence of the stable 
attractor (in this case a two-cycle) and the unstable 
saddle. In ecological epidemiology, small stochastic 
disturbances have further been found to be greatly 
transformed through the action of more complex 
unstable invariant sets (9).  

Cohort resonance 
A further way in which nonlinear interactions 
interact with noise is illustrated by the age-
structured dynamics of coastal populations of 
Atlantic cod (Gadus morhua), which exhibits both 
low- and high-frequency oscillations in abundance 
in the wild (Fig. 1). Coastal cod populations exhibit 
density-dependence competition, m, and 
cannibalism, c, within and between the two juvenile 
cohorts (the 0-group, Xt, and the 1-group, Yt). The 
reproduction, rt, undertaken by the stock is 
notoriously stochastic between years as it is 
affected by climatic forces directly and indirectly 
through the relative timing of hatching and plakton 
blooms (11, 12). The dynamics can be modeled 
using a stochastic age-structured model (13, 14): 
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where, rt is a random variable, and s represents the 
adult survival (13, 14). We can rewrite the model in 
delay-coordinates according to (O.N. Bjørnstad and 
R.M. Nisbet, unpublished manuscript): 
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where xt=lnXt and r’t=lnrt. From eqn (2) it can be 
seen that the density-dependent interactions induces 
delays in regulation. The inter-cohort interaction, c, 
further echoes the random recruitment r in time. 
The deterministic dynamics of eqn (1) -- assuming 



a constant reproductive rate -- give rise to a stable 
point attractor or a limit cycle, depending on the 
strength of the inter- and intracohort interaction 
(13). In the presence of stochastic reproduction, 
however, the dynamics exhibits cycles 
superimposed on long-term trends. The complex 
power spectrum results directly from the ‘echoing’ 
of the stochasticity by the life-cycle interactions -- 
according to 1'' −+ tt crr (‘the cohort resonance 
effect’).  

Stochastic divergence 
As reviewed in the text, ecological systems have 
the potential to exhibit chaotic dynamics and 
sensitivity to initial conditions (15, 16). 
Theoretically, initially nearby trajectories will 
diverge exponentially until they are no more 
correlated than expected from the invariant 

distribution of the dynamical process. Deterministic 
systems that exhibit sensitivity to initial conditions 
have the ‘stochastic property’ that forecasting 
ability is very restricted, since the prediction error 
increases with prediction interval, closely 
mimicking the prediction profiles of truly stochastic 
models (Fig 2). The sensitivity to initial conditions 
of determinsitic systems is usually measured by the 
dominant Lyapunov exponent (16). LE quantifies 
the average divergence/convergence of nearby 
trajectories across the deterministic attractor. Ellner 
and co-workers (16-18) developed a nonparametric 
method to estimate the LE directly on the basis of 
time series of abundance. When applied to 
stochastic systems, this will measure the average 
divergence in two nearby trajectories exposed to the 
same realization of the stochastic term. However, 
since real populations are not subject to the same 
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Supplemental figure: The geometry of phase-space. A. The stable point and B. the limit cycle attractor
represents that is well known from, for example, predator-prey theory. C. Coexisting attractors give rise to
multiple equilibria that have different domains of attraction, a system may for some period be trapped in
local attractors (e.g., the stable point). D. A saddle represents an equilibrium point that is attracting in one
direction and repelling in the other. 



perturbation, and the phase-space may contain 
multiple interacting attractors, saddles, and 
repellors, the current focus is on using local 
Lyapunov exponents to understand the interaction 
between noise and nonlinearity at particular 
locations in phase-space (19, 20). 
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