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Spatial autocorrelation techniques are commonly used to describe genetic and ecological patterns.

To improve statistical inference about spatial covariance, we propose a continuous nonparametric

estimator of the covariance function in place of the spatial correlogram. The spline correlogram is

an adaptation of a recent development in spatial statistics and is a generalization of the commonly

used correlogram. We propose a bootstrap algorithm to erect a con®dence envelope around the

entire covariance function. The meaning of this envelope is discussed. Not all functions that can be

drawn inside the envelope are candidate covariance functions, as they may not be positive

semide®nite. However, covariance functions that do not ®t, are not supported by the data. A direct

estimate of the L0 spatial correlation length with associated con®dence interval is offered and its

interpretation is discussed. The spline correlogram is found to have high precision when applied to

synthetic data. For illustration, the method is applied to electrophoretic data of an alpine grass (Poa
alpina).

Keywords: bootstrapping dependent data, correlogram, geostatistis, nonparametric regression,

population genetics, smoothing spline, spatial autocorrelation
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1. Introduction

Spatial autocorrelation techniques are commonly used in population biological inference.

It was ®rst introduced in population genetics (Sokal and Oden, 1978a, b), and has recently

been used extensively both in genetic and ecological studies (Epperson, 1993a; Epperson

and Li, 1997; Bjùrnstad et al., 1999a; Koenig, 1999). Theory predicts that the covariance

in the genetic makeup of individuals (Lande, 1991) or in the growth of populations

(Bjùrnstad et al., 1999a) may be a function of the spatial distance separating the sampling

units. However, since theory is incomplete, researchers are rarely willing to assume

speci®c functional forms (such as the exponential or the Gaussian). The reason is that quite
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diverse forms are possible. The most commonly used method to estimate the relationship

between covariance and distance is therefore one that is nonparametric: the spatial

correlogram. The spatial correlogram may be interpreted as attaining this by providing an

estimate of the spatial autocorrelation function within discretized distance classes.

Throughout the text we mean nonparametric in the regression sense, i.e., a method that

does not assume speci®c functional forms for the relation. Correlograms have proved very

valuable for biological inference. There are, however, two issues for which improvement

may be desired: (1) the correlogram approximates the underlying continuous spatial

covariance function by a discrete function. The estimator itself is not a valid covariance

function, since it is not positive semide®nite. (2) Error bounds for the correlogram are not

easily obtained. We introduce and investigate a modi®ed version of the recently developed

nonparametric covariance function (NCF; Hall et al., 1994) that may improve on these

issues. We call the modi®cation the spline correlogram.

In population genetics, spatial covariance denotes the way the genetic composition

covaries among individuals distributed through space. Different models predicts this

covariance to drop according to an exponential, a Bessel or a Gaussian model (e.g., Lande,

1991). Similar predictions can be made in population ecology from simple models for how

abundances covary because of movement of individuals (Bjùrnstad and Bolker, 2000).

These are all functions that can be routinely ®tted with geostatistical software (Deutsch and

Journel, 1992). Such predictions are extremely simplistic, however. Genetic covariance in

plants, for instance, is generated by two different processes that may have unrelated

dispersal distance distributions: dispersal of pollen and dispersal of seeds. In the absence of

other structuring forces, the ®nal covariance function will be the convolution of the seed

dispersal distribution with the pollen dispersal distribution (see, e.g., Bjùrnstad and Bolker,

2000). The resultant function will often diverge quantitatively from those routinely used in

geostatistics. Population ecological theory also offers interesting complications. Spatially

extended predator-prey interactions can result in traveling waves in abundance. The

covariance function will in such cases be cyclic (Bjùrnstad et al., 1999a).

The way the spatial covariance declines with distance is an important probe for testing

hypotheses about which processes are involved in shaping spatial patterns in biological

populations. This is well illustrated by the mass of studies on genetic microdifferentiation

in plants (McGraw, 1995; Linhart and Grant, 1996). Local genetic similarity may arise

both as a consequence of adaptation to the local environment (Linhart and Grant, 1996)

and as a consequence of constraints on gene dispersal (Epperson and Li, 1997). Patterns of

spatial covariance are commonly studied in population biology because different

processes may lead to different patterns (Lande, 1991; Epperson, 1993a; Epperson and

Li, 1997). Genetic drift (stochastic divergence of local populations) coupled with local

dispersal leads to local positive autocorrelation that decrease with distances (Sokal and

Wartenberg, 1983; Lande, 1991; Epperson and Li, 1997). Models incorporating these traits

are called isolation-by-distance models. Such models predict similar patterns of spatial

covariance in different genetic markers sampled from a set of individuals (Sokal and

Wartenberg, 1983; Sokal and Jacquez, 1991). The scale of the processes generating

microdifferentiation may be re¯ected in the pattern of spatial covariance (e.g., Epperson

and Li, 1997). The ``x-intercept'' is a frequently employed measure of the scale of pattern

in genetic (e.g., Sokal and Wartenberg, 1983; Epperson, 1993a) and ecological studies

(Bjùrnstad et al., 1999a). Improved methodology to address spatial covariance without

assuming a priori functional forms will thus help biological inference.
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The outline of the paper is as follows: After a very brief preamble pertaining to spatial

covariance in population genetics and ecology, we introduce the nonparametric covariance

function (NCF) and the related spline correlogram and describe its relationship to the

traditional spatial correlogram. Then we describe a bootstrap algorithm to provide a

con®dence envelope for the entire estimator and its derived statistics. We investigate

through Monte Carlo simulations the precision of the spline correlogram and the coverage

of the bootstrap con®dence envelope. We further discuss how the method can be extended

to vectorial data (e.g., multiple genetic markers or time series). We apply the method to

synthetic data with known spatial covariance. For illustration we also analyze genetic data

on an alpine meadow grass, Poa alpina L.

2. Methods and analyses

2.1 Preamble

Because of the theoretically diverse predictions about functional forms (see Introduction),

this paper will concern itself with nonparametric estimators. That is not to belittle the large

and important theory pertaining to parametric covariance functions as developed in

geostatistics (e.g., Deutsch and Journel, 1992; Cressie, 1993). It is rather a re¯ection of the

goals being different; in geostatistics modeling the covariance is typically just a small step

towards the ®nal objective of spatial prediction and interpolation. In population biology, in

contrast, the covariance function isÐas detailed in the introductionÐa goal in itself

because it provides a bridge between the theory of biological processes and data. In this

respect, the most relevant result from geostatistical theory pertains to permissible models

for covariance (e.g., Zimmerman, 1989): To qualify, a potential function has to be positive

semide®nite. We return to this below. In the development on the methodology and in the

discussion we will, throughout, assume that data to come from a second order stationary

®eld (Cressie, 1993). That is, we assume the expectation, and the covariance function to be

unchanging through space. We will further assume the ®eld to be isotropic, so that the

covariance only depends on distance and not direction. Unless otherwise stated we assume

the data to be Gaussian. However, in the cases where we discuss the covariance in the

genotype of individuals (see also Epperson, 1995), we work with spatially distributed

categorical variables. The notion of covariance functions is more complicated in such

systems. We implicitly treat these as hidden Markov random ®elds (e.g., MacDonald and

Zucchini, 1997), realized according to a binomial or multinomial ®lter. The covariance we

estimate is thus that of the underlying ®eld (see also Albert and McShane, 1995). Whether

this is a useful heuristic for speci®c genetic systems is a discussion outside the scope of the

current study.

2.2 Nonparametric covariance functions: the spline correlogram

Consider the measurement zi on an individual i at coordinate fxi; yig. Assume that there are

n individuals, and that the pairwise spatial covariance is a function, r�d�, of the distance, d,

separating the individuals. The geographic distance, dij, between individuals i and j is:
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dji �
�������������������������������������������
�xi ÿ xj�2 � �yi ÿ yj�2

q
: �1�

The sample autocovariance between the two is:

Cov�zi; zj� � �zi ÿ z��zj ÿ z�; �2�
where z � 1=n

Pn
l� 1 zl is the sample mean. (Note that this measure is a consistent

estimator of the population mean, but it may for a given sampling design be biased in the

presence of spatial dependence). The sample autocorrelation between individuals i and j is

then estimated as:

r̂ij � r̂�zi; zj� �
�zi ÿ z��zj ÿ z�

1=n
Pn

l� 1�zl ÿ z�2 : �3�

Among n individuals there are n�nÿ 1�=2 unique pairwise autocorrelations, corre-

sponding to the upper (or lower) triangle of the sample autocorrelation matrix (that is, r̂ij

for i � 1; . . . ; n; j � i� 1; . . . ; n).

Hall and Patil's (1994, Equation (2.1)) kernel estimator of autocorrelation as a function

of geographic distance is given by:

~r�d� �
Pn

i� 1

Pn
j� 1 K�dij=h��r̂ij�Pn

i� 1

Pn
j� 1 K�dij=h� ; �4�

where K is a kernel function (e.g., HaÈrdle, 1990) and h�40� is the bandwidth. The

bandwidth is the parameter that adjusts the smoothness of the ®tted curve. This parameter

is analogous to the distance-class width in the spatial correlogram (see below). The

estimate ~r�d� will be a function that is nonparametric in the sense of not assuming any

speci®c class of parametric models for the relation (e.g., HaÈrdle, 1990). Hall and Patil

(1994) proved that the kernel estimator (4) can be tuned (by tuning h) so that ~r�d�?r�d�
as n?? for any smooth functional form of r�d�. That is, as long as the true covariance

function is C2-differentiable (has continuous 1st and 2nd derivatives), the kernel estimator

is a consistent estimator. Note, though, that discontinuity of the derivatives may be

permitted at the boundary d � 0. We use a cubic B-spline as an equivalent kernel smoother

(Nychka, 1995) because this adapts better to irregularly spaced data than many regression

kernels (see, for example, Jones et al., 1994) and is known to provide consistent estimates

of the covariance function (Hyndman and Wand, 1997). The asymptotic kernel function

for the cubic B-spline (Green and Silverman, 1994) is:

K�u� � 1

2
exp ÿ juj���

2
p

� �
sin ÿ juj���

2
p � p

4

� �
; �5�

where u is the argument: i.e., d=h in our case. This asymptotic kernel (5) is nearly bell-

shaped (except for having sinusoidal tails that vanish rapidly). Note, that we use standard

techniques for ®tting the spline function (e.g., Green and Silverman, 1994), and that the

asymptotic kernel (5) is presented to clarify the link between the NCF and the spline

correlogram.

A standardized way to report the degree of smoothing of a spline ®t is to calculate the

equivalent degrees of freedom (edf ) (Green and Silverman, 1994). The equivalent df

measures the number of effective parameters (in a multiple regression or polynomial

regression sense) that are used in the ®t. This number is de®ned as the trace of �I ÿ S�,
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where I is the identity matrix and S is the smoother matrix associated with the spline ®t

(e.g., Green and Silverman, 1994: chapter 3). In the analyses below we report the edf

rather than the bandwidth unless otherwise stated.

The above discussion ensures pointwise consistency of ~r�d�. The estimator may

still violate the basic requirement of positive semide®niteness, however. Positive

semide®niteness implies (by Bochner's theorem) that the Fourier transformed function

is strictly nonnegative (Hall et al., 1994). This is not guaranteed by Equation (4). We

use Hall et al., (1994) Fourier-®lter method to ensure positive semide®niteness. We

®rst obtain the Fourier transform ~r. Prior to back-transformation, we ensure

nonnegativity by setting all negative excursions of the transformed function to zero.

We call the resultant nonparametric estimate of the spatial covariance the spline
correlogram.

To illustrate the method, we apply it to synthetic data with different but known

functional forms for the covariance. We let the covariance, rij, between the random

variables zi and zj be a function of the distance, dij, separating the two. We assume that the

covariance follows one of three functional forms in the synthetic data. The exponential

(1st order autoregressive) (Fig. 1B)

r�d� � exp�ÿ d=a�; �6�

where, the parameter a controls the rate of decay in covariance with distance. The

Gaussian (Fig. 1C)

r�d� � exp�ÿ d2=a2�; �7�

And the second order spatial process (Fig. 1D and Fig. 1 legend). Note that the ``second

order'' in this context refers to a spatial process that is governed by dependence at two

different spatial scales. (It is not to be confused with the order of stationarity of the ®eldÐ

it is still second order stationary).

Data from spatial maps with prespeci®ed spatial covariance structure were generated

by drawing (without replacement) n random locations on a 100-by-100 grid. A target

covariance matrix A between the n units (individuals) was generated by calculating the

distances between the locations and thereafter evaluating the covariance function (e.g.,

Equation (1)) in each given pairwise distance. A vector, Z, of multivariate normal data

with the target covariance was subsequently generated using the eigendecomposition

method (see Ripley, 1987, for details). A mean of zero and a variance of one was used

in all cases. Fig. 1 depicts surfaces from realizations of multivariate random processes

with the three types of covariance structures. Data on the genotype of individuals is

usually categorical, representing presence or absence of electrophoretic bands or DNA

bases. We therefore also converted the synthetic data into multivariate binomial data

(through a sign transformation; setting negative values to zero and positive values to

one).

Spline correlograms for data with the different covariance structures are shown in Fig.

1. The spline correlogram generally adapts well to the different underlying covariance

structures. The underlying covariance function is also recovered with reasonable accuracy

when the data are binary (Fig. 1 insets). Complete spatial randomness generates a ¯at

covariance function that is centered on zero (Fig. 1A).
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Figure 1. Spatial correlation function (left panels) of four synthetic data sets with known

covariance (dotted lines in right panels). The sample size is 400 in each case. The surfaces

are interpolations between the 400 observations to visualize the autocorrelated random

variables. The spatial correlation is estimated using a spline correlogram (full line) with 40

equivalent degrees-of-freedom, and the spatial correlogram (open circles) with class width

of 8. Estimates based on binary data are presented as insets. See text for details on the

methods. A. Independent data (no spatial covariance). B. Data from a map with

exponential covariance (Equation (6)) with parameter a � 5. C. Data from a map with

Gaussian covariance (Equation (7)) with parameter a � 5. D. Data from a map with 2nd

order spatial covariance (see text) with parameters a1 � 1:8 and a2 � ÿ0:85 for which the

theoretical covariance function is r�dja1 � 1:8; a2 � ÿ 0:9� � �ÿ a2�d=2
sin�ed� F�=

sin�F� where, e � arccos�1a11=2
���������ÿ a2

p �, F � arctan�tan�e��1ÿ a2�=�1� a2��. See, for

example Box and Jenkins (1970) and Cressie (1993) for details on the covariance

functions.
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2.3 The spatial correlogram

The traditional nonparametric method to measure how covariance is a function of spatial

distance uses the spatial correlogram, C�d�. It is therefore of interest to consider how C�d�
relates to ~r�d�. The spatial correlogram attains a model-free ®t of r�d� as a function of d,

by quantifying the spatial covariance function at a set of discrete focal distances. In order

to see the link between the spatial correlogram and the spline correlogram, we will use a

slightly unusual interpretation. We will consider the spatial correlogram as a k-step

function, Ck�d�, approximating the underlying continuous function r�d�. The traditional

spatial correlogram based on Moran's I is then the step function obtained through local

averaging of r̂ij (as de®ned in Equation (3)) around the k focal distance d1; . . . ; dk (Cressie,

1993, chapter 2.4):

Ck�dkjk � 1; . . . ; kmax� �
1

jIk�d�j
X
ik�d�

�zi ÿ �z��zj ÿ �z�
1=n

Pn
i� 1�zi ÿ �z�2 �

1

jIk�d�j
X
Ik�d�

r̂ij; �8a�

where Ik�d� indicates all pairs fi; jg for which the geographic distance, dij, is within a

tolerance region of dk, and jIk�d�j is the number of distinct pairs in Ik�d�. The spatial

correlogram can thus be written as a sequence of local averages of r̂ij:

Ck�dk� � meank�r̂ijjLk5dij � Uk�; �8b�
where Lk and Uk signify the lower and upper tolerance limits (usually set such that each

pairwise similarity is only used once) around the focal distances. The distance class width,

given by lk � Uk ÿ Lk, controls the resolution and complexity of the k-step function.

Note, that this interpretation of the spatial correlogram as a step function for the

covariance is a heuristic; Equation (8) is not itself a covariance function since it is not

positive semide®nite.

There is a dependence of the shape of the correlogram on the centering of the focal

distances; Choosing L1 � 0, produces a different result than centering the ®rst bin on 0

(i.e., L1 � ÿl1=2) (see Scott, 1992, chapter 5). One may thus consider a sequence of

different correlograms for a data set, each differing in the location of the target distances,

dk's, and then average across these. Assume that m such correlograms are calculated by

®xing L1 between 0 and lÿ 1=m (i.e., L1 � fsl=mg, where s � 0; . . . ;mÿ 1g. The

distance classes of each step function will partly overlap, so that an ``average shifted''

correlogram (cf. Scott, 1992, chapter 5.3) may be obtained as the average across the

sequence according to:

Ck0 � 1=m
Xm

i� 1
Ck: �9�

If each individual correlogram is evaluated at k locations, then the average shifted

correlogram will be evaluated at k0 � km locations (m locations within each original

distance class). For in®nitesimally small shifts, Equation (9) is equivalent to (4) because:

lim
m??

Ck0 �dk0 �?~r�d�; �10�

where ~r�d� is the particular kernel estimator with a triangular kernel of bandwidth l (Scott,

1992). There is hence an asymptotic equivalence between the spline correlogram and the

spatial correlogram.
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2.4 Estimation uncertainty

The sampling variability of the spline correlogram can be found by Monte Carlo

simulations (e.g., Manly, 1997) on data for which the true covariance function is known.

That is, repeated estimation from a large number of synthetic data sets all with the same

covariance structure. Fig. 2 shows the variability of the spline correlogram for exponential

and Gaussian covariance functions with different parameters. The variability is calculated

from 1000 simulated data sets (generated as outlined above) with 250 observations in

each. The estimated spline correlograms are usually close to the true covariance function.

The mean correlation between the estimate and the true function are generally around 0.95

for these data sets (exponential a � 5: mean � 0:94; sd � 0:03; exponential

a � 10: mean � 0:94; sd � 0:03; Gaussian a � 5: mean � 0:96; sd � 0:02; Gaussian

a � 10: mean � 0:95; sd � 0:02). The results indicate relatively high precision of the

Figure 2. Spline correlograms (25 edf ) was applied to 1000 data sets with one of four

covariance structures to quantify the estimation uncertainty. The sample size was 250 in

each case. The hatched regions represent the empirical 95% distribution based on

estimates for 1000 data sets for each covariance function. The light shaded area represents

all the 1000 estimates. The broken lines represent the true covariance functions. Thick

lines represent the estimate and the 95% con®dence envelopes on the basis of

bootstrapping from a single data set (using 1000 bootstrap resamples). A and B are data

from maps with exponential covariance (see Equation (6); A with parameter a � 5 and B

with parameter a � 10). C and D are data from maps with Gaussian covariance (see

Equation (7); C with parameter a � 5 and D with parameter a � 10). Estimates based on

binary data are presented as small insets.
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method in the sense that the estimated functions are closely correlated to the true

functions. The precision is marginally reduced when the data are binary (insets in Fig. 2).

The estimated spline correlograms estimated from the binary data are still close to the true

covariance function. The mean correlation between estimate and true function is a little

below 0.95 (exponential a � 5: mean � 0:92, sd � 0:04; exponential a � 10: mean �
0:93, sd � 0:04; Gaussian a � 5: mean � 0:95, sd � 0:03; Gaussian a � 10: mean �
0:95, sd � 0:02). Note, though, that there is a negative bias of the local autocorrelation

when the data is binary (the estimates are biased towards zero, for local distances). This

effect is previously documented and was discussed by Epperson (1995) for the spatial

correlogram.

2.5 Con®dence regions

For real data it is necessary to obtain a measure of estimation uncertainty from a single

realization of the sampling process. We use a dedicated bootstrap algorithm to generate a

con®dence envelope for the nonparametric covariance function. We will discuss the

interpretation of the con®dence envelope in the discussion. The bootstrap algorithm

proceeds as follows (see also Efron and Tibshirani, 1993): ®rst, bootstrap data sets are

generated by sampling (with replacement) from the individual observationsÐthat is,

sampling among the tuples consisting of the spatial coordinates (x and y) and the genetic

score �z�. We draw n observations from the original n observations fx; y; zgi, where

i � 1; . . . ; n. The spline correlogram is subsequently calculated from the bootstrap data

set. Pairs of distances fdii; r̂iig between one individual with itself (due to the sampling with

replacement) are discarded prior to calculations to avoid bias for short distances. The

whole process is repeated to give a bootstrap sampling distribution for the spatial

covariance function. A con®dence envelope is erected by the quantile method (Efron and

Tibshirani, 1993), where the a%-level con®dence envelope of the estimator is given by the

a/2% and �100ÿ a=2�% quantiles of the bootstrap distribution.

Since the spline correlogram is a relatively complicated estimator, we need to study how

the bootstrap performs numerically (Young, 1994). This is a large task to do properly. Here

we report on a preliminary study. We thus assessed the success of the bootstrap through

Monte Carlo simulations by comparing con®dence envelopes estimated by bootstrapping

single realizations with the sampling variability found by Monte Carlo methods (Fig. 2).

The typical 95% con®dence interval should correspond to the 95% estimation variability

of the estimator (e.g., Efron and Tibshirani, 1993). Con®dence envelopes from boot-

strapping single data sets are shown in Fig. 2. The envelopes generally relate well to the

sampling variability of the estimator. The correlation between the 95% con®dence interval

and the 95% sampling distribution is generally higher than 0.9 for the type of synthetic

data depicted in Fig. 1 (exponential a � 5: correlation � 0:9; exponential a � 10:

correlation � 0:93; Gaussian a � 5: correlation � 0:95; Gaussian a � 10: correlation �
0:98). At a ®rst glance, bootstrapping thus appears to give a reasonable estimate of the

sampling variability. The correspondence is also good for the binary data. The

performance is, however, reduced somewhat due to the nominal nature of the data. Hall

et al. (1994; see also Hall, 1993) also discusses the use of the bootstrap for the NCF.
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2.6 The correlation length

The L0 correlation length is calculated from the spline correlogram as the smallest value

for d such that ~r�d� � 0. We investigate this measure because it is frequently used in

population biology. We will brie¯y discuss its meaning (if any) in the discussion. To

investigate this statistic we resort to caricatured binary (0/1) maps with idealized patch

structure (Bjùrnstad and Falck, 1997). A pattern of constant sized patches (with radius r)

separated by r units was generated to form a checkerboard. In this way any two randomly

chosen points that are less than the distance r away from each other are likely to have the

same value. Thus, the correlation length is r in these data sets. (Note that these maps are

not meant to have arisen from any population biological process. The maps are designed to

give a clearly de®ned correlation length.) A random sample of 250 points was selected

from the maps. For the data sampled from patchy binary maps �n � 250� with different

patch con®guration ( patch radius: 2, 5, 10, 15 and 25), the point estimates agree well with

the true correlation length (Table 1). An exception is in the case where the patch size is

small relative to the grain (resolution) of the sampling grid. The correspondence between

the empirical sampling variability and the bootstrap con®dence interval is satisfactory

(Table 1).

In summary, these preliminary analyses of synthetic data indicate that the spline

correlogram is capable of recovering functionally very different covariance structures. The

bootstrap appear to give reasonable estimates of the sampling variability and appears to

provide con®dence envelopes with appropriate coverage. For illustration we now analyze

a real set of spatial genetic data.

2.7 Data on Poa alpina

This data set is based on previously published ecological and genetic data (Nordal and

Iversen, 1993; Bjùrnstad et al., 1995). Two-hundred-and-forty-nine individuals were

sampled within 15 quadrats �10610 m�. The quadrats were unevenly distributed along

Table 1. The estimated L0 correlation lengths (x-intercept) estimated from binary maps

with known correlation lengths. The estimates are based on spline correlograms with 25

equivalent df applied to data sets with 250 observations. The results are given for 5

different patch radii �r�. The interpatch distance is set to r in all cases so as to give maps

with theoretical L0 correlation lengths equal to r. Monte Carlo summarizes the mean (2.5-

and 97.5-percentiles) estimates across 1000 Monte Carlo runs. Bootstrap 1±3 report the

estimate and 95% bootstrap con®dence intervals (1000 bootstrap resamples) estimated

from individuals realizations of each con®guration.

Monte Carlo Bootstrap 1 Bootstrap 2 Bootstrap 3

r � 2 3.2 (0, 17.4) 13.9 (0, 25.1) 9.5 (0, 19.7) 0 (0, 23.2)

r � 5 5.5 (4.8, 6.3)) 4.8 (3.3, 6.2) 5.1 (4, 6.1) 5.2 (4.3, 6.1)

r � 10 10.8 (9.8, 11.9) 11 (9.6, 12.3) 11.6 (10.4, 12.9) 10.9 (9.5, 12.4)

r � 15 16.6 (15, 18.6) 17.8 (15.5, 20.6) 16.6 (15.1, 18.4) 17.6 (15.1, 19.9)

r � 25 27.7 (23.4, 32.7) 30.2 (22.1, 36) 28.5 (24.3, 31.5) 28.3 (25.5, 31.9)
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three transects, each covering a gradient from sheltered snow beds to exposed ridge

habitat. The median distance between neighboring quadrats is 30 m (range: f10 m, 90 mg).
The three transects had roughly the same bearing and were 250 m, 800 m, and 1200 m

apart, respectively. The entire study area extends across 1.5 km of alpine vegetation.

Within each quadrat, the exact location of individuals was not recorded. The individual

may nevertheless be used as the statistical unit (Epperson, 1995). The distance between

individuals within the same plot is arbitrarily set to zero, so that zero-distance covariance

represented within-quadrat similarity. Each individual was screened for genetic

composition at 4 polymorphic isozyme loci (three of which had one variable band and

one with three variable bands giving a total of 6 variable bands) using enzyme

electrophoresis (see Nordal and Iversen, 1993, for details). Several aspects of the

relationship between genetic similarity and spatial distance are of particular interest: (1)

Evidence of microdifferentiation through signi®cantly positive autocorrelation of

individuals close in space; (2) The L0 correlation length; (3) The overall shape of the

covariance function; (4) The uncertainty associated with the estimated covariances; and

(5) Whether there are signi®cant differences between different isozyme systems.

Spatial covariance functions were estimated for the 6 polymorphic alleles using the

spline correlogram (with 25 edf and 1000 bootstrap resamples). The within-quadrat

autocorrelation, ~r�0�, and the L0 correlation length are tabulated in Table 2. The within-

quadrat autocorrelation is signi®cantly positive for all systems, indicating non-random

local structuring. The within-quadrat autocorrelation is not signi®cantly different for the

six systems at a Bonferroni-corrected 5% level (Table 2). The estimated correlation length

range from 20±100 m. Most systems have similar estimates. However, SKD1 has a shorter

correlation length than the other allele systems. The difference is statistically signi®cant at

a Bonferroni corrected 5% level against 2 (SKD67, SKD100) of the other 5 (Table 2). The

spline correlograms (Fig. 3) are more complicated than predicted by simple theoretical

models. Although, all systems exhibit a covariance that drops with distance initially, there

is evidence of signi®cant negative autocorrelation in four of them (Fig. 3). Superimposing

the con®dence envelopes of the covariance function reveal no signi®cant differences

between the spatial covariances of most systems. The spatial covariance function of

SKD1, however, drops signi®cantly (at the 5% level) more quickly than that of all the

other systems (Fig. 3).

Table 2. Estimates based on spline correlograms (25 equivalent df ) of the 6 allele systems

of Poa alpina. The x-intercept, L0, is the estimate of the distance at which the genetic

similarity of two individuals is no different that expected by chance alone within the

sample. The estimated within-quadrat similarity is given by ~r�0�. The 95% con®dence

intervals (CI) are estimated using bootstrapping based on 1000 bootstrap samples. Letters

in bold (A and B) identify groups of estimates that are signi®cantly different at a

Bonferroni-corrected 5%-level.

GPI SKD1 SKD67 SKD100 MDH PGM

L0 108.6 20.0 65.0 88.9 50.4 37.3

(18.1, 131.3) (16.7, 23.5)A (55.0, 82.3)B (32.8, 116.8)B (16.8, 67.8) (21.5, 81.6)

~r�0� 0.26 0.55 0.42 0.47 0.18 0.44

(0.14, 0.42) (0.41, 0.71) (0.24, 0.68) (0.34, 0.64) (0.08, 0.31) (0.20, 0.80)
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3. Discussion

In this paper we introduced the spline correlogram to estimate the spatial covariance

function nonparametrically. The motivation for a nonparametric estimator is two-fold.

Firstly, current population biological theory suggests that plausible spatial processes may

give rise to functionally diverse patterns of covariance. The class of plausible functional

forms is wider than that commonly used in geostatistics. Secondly, the nonparametric

estimator may provide a complementary way of assessing how closely data match our

preconceptions about functional forms. A con®dence envelope for the entire covariance

function is calculated through bootstrapping. Through the spline correlogram we obtain a

direct estimate of the spatial correlation length. In the following discussion we ®rst focus

on the technical issues and subsequently brie¯y discuss the genetic inference with respect

to the sample data.

Figure 3. Spline correlograms (25 edf ) with 95% bootstrap con®dence envelope for the

covariance function (shaded regions) of the 6 polymorphic isozyme bands of P. alpina.

Signi®cant positive spatial autocorrelation at short distances is evident for all systems.

Several systems exhibit signi®cantly negative autocorrelation for distant individuals. The

con®dence envelope of SKD1 (the two black lines represent the upper and the lower

con®dence envelope) are superimposed on the other 5 correlograms illustrating how SKD1

has a spatial covariance pro®le that drops signi®cantly more quickly than all the other

allele systems.
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3.1 Con®dence envelope

Our Monte Carlo study of the bootstrap estimator of the con®dence envelope is

preliminary. The numerical simulations suggest, nevertheless, that the envelopes have the

appropriate coverage. Ultimately, a much more extensive investigation must be

undertaken. Our main purpose here is to introduce the main idea. The meaning of the

envelope deserves some discussion. In order to qualify as a covariance function, a

candidate has to be positive semide®nite. It will, however, always be possible to draw

curves inside the envelope that fail to ful®ll this. So not all functions that ®t inside the

envelope are permissible functions. A more important property for inference, however, is

that candidate covariance functions that do not ®t inside the envelope, are not supported by

with the data. In this way, the envelopes provides a method for model checking (see Tsay,

1992, for a related discussion). A corollary is that data with non-overlapping con®dence

envelopes must come from random ®elds with different underlying covariance structure.

By construction, the con®dence envelope is a point-wise con®dence interval. The

curvewise error rate is therefore likely to be larger than the nominal 5% level. The

Bonferroni correction has been used to control the correlogram-wise error rate of the

traditional correlogram (Oden, 1984). This may be advised against in the spline

correlogram because the class of Bonferroni corrections fails to make use of the large

positive correlation between nearby points of the curve (HaÈrdle, 1990: chapter 4). For the

present we resort to treating the signi®cance level of any contrast with caution.

3.2 Correlation length

Different measures and interpretations of the spatial correlation length can be found in the

literature. In population biology, it has been common to use the x-interceptÐthat is, to use

r�d� � 0 as the reference lineÐand estimate the distance d̂0 such that E�rjd � d̂0� � 0

(Sokal and Wartenberg, 1983; Epperson, 1993a). To use the zero-covariance as the

reference line is however not trivial, since many theoretical covariance functions (e.g., the

exponential and the Gaussian) tend only asymptotically to zero. With some hesitation we

therefore employ the slightly modi®ed de®nition: the distance at which the covariance is

not signi®cantly different from 0. A common alternative in other disciplines is the L1=e

correlation length (Myers et al., 1995; Hilgers et al., 1996), for which r�zi; zj� �
eÿ 1&0:37 represents the reference line. L1=e will be an estimate of the fundamental

parameter if the underlying covariance function is exponential (Equation (6)). A

disadvantage of this reference point is that it may not have any particular interpretation for

other covariance functions. One useful interpretation of the x-intercept arise when the

sample average is used to center the covariances (as in Equation (2)). In such a case, the

sample L0 correlation length is an estimate of the distance across which two measurements

is no more similar than the average sample similarity. It should be stressed that, as for all

statistical parameters, there may be a bias between the sample measure and the true

population property. The ``average similarity'' is a function of the sample mean (cf.

Equations (2) and (3)). The sample correlation length is therefore a function of the sample

average, and will thus depend on the scaling of the study relative to the correlation length

in the ®eld. The dependence is weak when the extent (size of the study area) is reasonably
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large relative to the correlation length of the processes (because the sample average

quickly converges on the population mean). However, for long correlation lengths, there

will be a negative bias in the estimate that can be severe (sometimes called the ``volume

effect'', Bayly et al., 1993). A second bias occurs when the correlation length is short

relative to the grain (resolution) of the study (see Table 1). As long as the spatial design is

the same, biases will be similar so that contrasts between different systems should be

relatively robust. Comparisons of spatial covariance of different loci screened from the

same individuals should therefore be meaningful (see Bjùrnstad et al., 1999b, for an

example from population ecology).

3.3 A multivariate covariance function

Multivariate genetic data is increasingly common. DNA sequencing generates series of

variables in the form of presence or absence of base pairs (Bertorelle and Barbujani, 1995).

Also isozyme data may require multivariate techniques. When microdifferentiation is due

to drift and local dispersal, for instance, the spatial covariance will be similar for all loci

(Sokal and Wartenberg, 1983; Sokal and Jacquez, 1991; Epperson, 1993b). Increased

accuracy may be gained through a multivariate covariance function that summarizes the

pattern across the different descriptors. The classical multivariate method to estimate

spatial covariance is the Mantel correlogram (Oden and Sokal, 1986; Legendre and Fortin,

1989). The Mantel correlogram R�d� corresponds to a spatial correlogram (cf. Equation

(8a)), in which the observation z is vectorial. Replacing the scalar product by the vector

product in Equations (4) and (8) we may de®ne:

Rij � Rji � ~zT
i ~zj; �11�

where T denotes matrix transposition, and ~z is the matrix where each column (allozyme

band; m � 1; . . ., M), zm has been rescaled (normalized) according to

~zm �
zm ÿ zm�������������������������������Pn

l� 1

�zl ÿ zm�2=n

s :

The Mantel correlogram may be written as the sequence of local averages of Rij against the

Euclidean spatial distance (as in Equation (8b)). Thus, replacing the sample covariance r̂ij,

with the multivariate analogue, Rij, the multivariate covariance function may be estimated

as:

~R�d� �
Pn

i� 1

Pn
j� 1 K�dij=h��Rij ÿ R�Pn

i� 1

Pn
j� 1 K�dij=h� ; �12�

where Rij is de®ned in (11), R is the sample average of the Rij's and all other symbols and

functions are as in (6). Bjùrnstad et al. (1999b) illustrates the use of the multivariate spline

correlogram to estimate spatial covariance in ecological data. We provide an example for

genetic data below. A possible extension of the estimator (12) for multivariate data is that

obtained through centering the components in (11) row-wise. The resultant model may

prove to be interesting as an estimator of a generalized covariance function (i.e., one in
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which the spatial expectation is allowed to vary between locations). A discussion of this is

however outside the scope of the current discussion.

3.4 Model complexity

A choice has to be made with respect to complexity of the model used to estimate the

spatial covariance function. This complexity is controlled by the width of the distance

classes in the spatial correlogram, and by the bandwidth (or equivalent degrees-of-

freedom) of the spline correlogram. The choice of complexity is nontrivial since the data

are non-independent. This topic will require future study. Currently we will just point out

an interesting level of robustness of the spline correlogram relative to the spatial

correlogram. For the spatial correlogram, narrow distance classes give high resolution but

low precision. Wide distance classes give stable estimates but low resolution. The

nonparametric covariance function, in contrast, appears relatively robust with respect to

the complexity because the bandwidth and local resolution are less closely linked.

Unpublished numerical experiments (Bjùrnstad and Falck, 1997) testify that overly

restrictive models (10 df or less) appear biased. The x-intercept, for example, over-

estimated the correlation length and gave unstable inference for a number of spatial

con®gurations (see also Table 1); A range of more complex models, however, appear to

exhibit low bias. Of course, excessively complicated models tend to have in¯ated variance.

3.5 Genetic inference for Poa alpina

Applying the spline correlogram to the data set of P. alpina give correlation lengths
around 50 m (varying between 25 and 100 m). The multivariate spline correlogram for the

allozyme bands of P. alpina (except SKD1) estimate the L0 correlation length at 57.4 m

f48.7, 69.2g. The spatial covariance functions of one of the six variable isozyme bands

(SKD1) drops signi®cantly faster than the others do. The remaining ®ve bands have

covariance functions that decrease at similar rates with distance. A process of isolation-by-

distance may be seen as consistent with such similarity. Because the reproduction of P.
alpina is partly asexual (apomictic), this pattern of spatial covariance may re¯ect the bulbil

(``seed'') dispersal distances (Bjùrnstad et al., 1995). The divergence in SKD1, and the

presence of negative autocorrelation in several of the isozyme bands is, however, contrary

to an isolation-by-distance model (Sokal and Jacquez, 1991; Epperson, 1993a). From a

theoretical point of view, such patterns of covariation are expected from clinal selection.

The scale of the dissimilarity corresponds loosely to the length of the three transects

spanning the snowbed-ridge gradient (above). These environmental features may thus

offer selection gradients of the right type. Bjùrnstad et al. (1995) discusses the system in

more detail.

3.6 Nonparametric variography

Beside the spatial correlogram, the variogram is a frequently used method to quantify

spatial pattern (Cressie, 1993). The scaled variogram may be represented as a step function
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(like the correlogram) that locally averages the Geary distance (a scaled Euclidean

distance) instead of the sample autocorrelation (in the fashion outlined in Equation (8b)).

Since the variogram has certain advantages over the correlogram (e.g., Cressie, 1993), it

may be worthwhile to investigate the possibility of extending the continuous

nonparametric regression setting to such an estimator. Technically speaking, such an

extension is easily implemented by replacing r̂ij with the Geary distance in Equation (4).

Future theoretical developments may show whether this is a fruitful line of inquiry.

A main strength of the spline correlogram is its use to draw statistical inference about

differences and similarities in the spatial covariance of different genetic or ecological

systems. The bootstrap con®dence regions allow formal testing of differences among

different measures. Through this we believe we open for a more rigorous testing of the

expanding body of theory pertaining to genetic and ecological differentiation.
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