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Spatio-temporal travelling waves are striking manifestations of predator±prey and host±parasite dynamics. However, few
systems are well enough documented both to detect repeated waves and to explain their interaction with spatio-temporal
variations in population structure and demography. Here, we demonstrate recurrent epidemic travelling waves in an exhaustive
spatio-temporal data set for measles in England and Wales. We use wavelet phase analysis, which allows for dynamical non-
stationarityÐa complication in interpreting spatio-temporal patterns in these and many other ecological time series. In the pre-
vaccination era, conspicuous hierarchical waves of infection moved regionally from large cities to small towns; the introduction of
measles vaccination restricted but did not eliminate this hierarchical contagion. A mechanistic stochastic model suggests a
dynamical explanation for the wavesÐspread via infective `sparks' from large `core' cities to smaller `satellite' towns. Thus, the
spatial hierarchy of host population structure is a prerequisite for these infection waves.

Travelling waves, arising essentially from activator±inhibitor
dynamics1±3, are predicted by theory in a range of host±natural
enemy systems1,4±8. However, except as the product of invasion
dynamics9, empirical observations of waves are comparatively
rareÐespecially repeated periodic waves associated with host±
natural enemy population cycles7,8,10±12. Even where waves are
dynamically possible, they may not be detected because of a lack
of spatio-temporal data at the appropriate resolution. More subtly,
spatial heterogeneities in population density or demography8,13 and
temporal changes in parameters (resulting, for example, from
vaccination against disease1,6), can signi®cantly alter the detection
and dynamics of spatio-temporal waves. The integration of models
and data to explore these interactions between spatial dynamics and
host demography is often prevented by a lack of demographic
information.

Childhood microparasitic infectionsÐin particular, historical
measles epidemics in developed countriesÐprovide suf®ciently
detailed spatio-temporal data on disease incidence and host
demography14,15 to address these issues. The task is aided by
epidemiological models16±21, which capture both the nonlinear
dynamics of childhood epidemics as a function of local population
size16 and the impact of signi®cant environmental forcing. This
forcing mainly comprises seasonality in transmission, due to school-
ing patterns17, and longer-term variations in susceptible recruitment,
due to birth-rate variations and the onset of vaccination20,22. Such
long-term temporal changes in dynamic rates give rise to non-
stationarity in the resulting ecological time series.

The detection of temporal and spatio-temporal oscillations in
time series is greatly complicated by non-stationary temporal
variations in dynamical behaviour (such as changes in mean,
variance, period of oscillations, and so on). In particular, trends
or sudden jumps in cycle period complicate the search for temporal
and spatial patterns, since conventional frequency-domain analyses
assume stationarity23,24. Figure 1a illustrates the periodic but non-
stationary dynamics of weekly measles noti®cations for London for
the period 1944±94. There are marked changes in epidemic period
between the 1940s and 1950s, as well as into the vaccine era (after
1968).

We apply wavelet time series analysis23±26 to describe the non-
stationarity in the period of recurrent epidemics of measles in
England and Wales. Wavelet phase angles also reveal rapid spatio-
temporal waves of infection, originating from regional centres.

Finally we use a re®ned epidemiological model to suggest how
such waves can arise in seasonal environments, and explore the role
of spatial heterogeneities in creating them.

Local measles dynamics
Measles epidemics in developed countries generally exhibit seasonal
cycles and longer-term (generally biennial) major epidemics18,19,27.
However, the relative importance of the seasonal versus multiannual
cycles varies with time. These features of the dynamics are clearly
seen from a wavelet spectral analysis of the time series of weekly
measles noti®cations for London from 1944 to 1994 (Box 1 and
Fig. 1). The local wavelet power spectrum (Fig. 1b) shows the
importance of the different oscillatory periods as a function of time.
The seasonal cycles and (in general) biennial major epidemics are
obvious, as also is the long-term non-stationarity in the period of
the major epidemic. The main long-term change in dynamics
accompanies the onset of vaccination in 1968 (Fig. 1b). After this,
the annual periodicity is less marked and the intervening major
epidemics (now of lower amplitude) gradually increase in period,
compared to the pre-vaccine era. This gradual transition coincides
with a steady increase in vaccine uptake from around 50% in the
1970s to around 90% in the late 80s (Fig. 1d). Theory predicts18,20,
and previous time-series analyses have con®rmed20,28, that vaccina-
tion should generate an increase in the epidemic period. Here we
use the temporal dimension of the wavelet analysis to reveal the
progressive nature of this increase (Fig. 1b).

To generate a synoptic picture of transitions in measles dynamics
across 354 administrative areas of England and Wales (see
Methods), we focus on changes through time in the dominant
epidemic period (Fig. 1d). The regional pattern is remarkably
consistent with the detailed analysis for London: biennial epidemics
before widespread vaccination are followed by epidemics of longer
period through the vaccine era. A second important feature of the
pre-vaccination era is the reduction in inter-epidemic interval (to
under 2 years) coinciding with the 1945±47 and 1962±65 `baby
booms'22. All these transitions in disease dynamics are driven by
`extrinsic' variations in recruitment rate of susceptibles20 (Fig. 1d)
through changes in birth rates (discounted by vaccine uptake in the
vaccination era). The analysis includes hundreds of locations,
ranging from large cities (where there are regular epidemics) to
small towns (where disease dynamics are strongly in¯uenced by
stochasticity27). Consequently, these results give an unusually
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Box 1
Wavelet time series analysis

We introduce the basic principles of the method23±26, as applied to
measles in London. Traditional Fourier analysis partitions the total power
(variance) of the time series between sinusoidal components at different
frequencies29. If we apply this approach to series with a marked change in
cycle period through time (such as Fig. 1a), the resulting spectrum
re¯ects both scales of variation, but tells us nothing about their sequence.
This is particularly problematic if the data show unusual `spikes' and
irruptions, or in the presence of smooth changes in periodicity23.

By contrast, the essence of the wavelet approach is locality in time as
well as frequency. Rather than a sinusoid, the method is based on a
wavelet function, which can explore local variations in frequency. The last
decade has seen an explosion of applications of wavelets in mathematics
and its applications25; this has led to a wide range of wavelet functions.

In this paper, we use the Morlet wavelet function23 (see Methods and
Fig. 1e). The Morlet function is essentially a damped complex exponen-
tial, which can capture local (in time) cyclical ¯uctuations in the time
series. As with all wavelets, the frequency±time range over which it does
this is set by a scale parameter, s. In general, wavelet scale is related to
the conventional Fourier period of oscillations (Methods).

A local wavelet power spectrum (LWPS; see Methods) of the weekly
London measles time series (Fig. 1a) is presented in Fig. 1b±d. Power is
colour-coded as shown. Seasonality in the epidemic generates a peak in
power at approximately one year. The major peak in power varies around
two years, as described in the text. The superimposed parabola is the
cone of in¯uence (see Methods), which measures the extent of edge
effects. Only signi®cant (P , 0:05) power is shown.
Time and scale averaging
A useful feature of the LWPS is that it can be averaged across both
frequency and time (Methods23). Figure 1c shows the global wavelet

spectrum, estimated by averaging the LWPS across time (the dotted line
is the lower limit of signi®cance). The global spectrum is analogous to the
traditional Fourier spectrum. We note the annual and roughly biennial
peaks of power. Other wavelet methods used here, such as the analysis
of phase differences and smoothing by reconstruction of important
frequencies, are discussed in the Methods.

As described in the text, Fig. 1d shows a synoptic summary across all
spatial locations in England and Wales of the period of major epidemics
(in the range 1.5±5 years). The blue line indicates the average of this
period across 354 spatial locations in England and Wales; the thickness
of the line represents 61 standard error of the mean, s.e.m. The red line
shows vaccination (p) rate. The black line is the effective recruitment rate
of susceptibles, B�1 2 p�, where B is the birth rate (the relevant axis is
suppressed: recruitment drops from a maximum of 0.021 per individual
in 1947 to near zero by 1994). Figure 1d shows the progressive change
from period 2 to period 3 dynamics over the 1970s and 80s. However,
the subsequent increase to 4 years in the late 1980s and 90s should be
interpreted cautiously, since it may re¯ect the secular decline at the end
of the time series, caused by the major increase in vaccination uptake
over this period.

Wavelet methods have considerable potential as tools for ecological
time series and spatial analyses38. However, like many `local' statistical
methods, they need a lot of dataÐfeatures can be detected only at a
given time and frequency if the underlying process is suf®ciently well
sampled. It is also important to try a variety of wavelet functions24. A
number of continuous and discrete functions can capture the basic
patterns shown here; however, the Morlet function gives the clearest
picture.

Figure 1 Wavelet time series analysis for the log-transformed weekly London measles

time series (see Box 1 for details). a, The time series. b, Local wavelet power spectrum

(LWPS); power is colour coded as shown on the key at top right. c, Global wavelet

spectrum. d, Summary of temporal changes in the dominant epidemic period, averaged

across towns and cities in England and Wales. e, Shape of the Morlet wavelet used in the

analysis.
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detailed picture of the in¯uence of changes in host demography on
epidemic dynamics.

Travelling waves and wavelet phase angles
We investigate spatio-temporal patterns by calculating the phase
difference between epidemics at different locations. For cycles with a
given period, the wavelet analysis generates a phase angle at each
time step (Methods)23. This contrasts with standard multivariate
spectral analysis, which can capture phase relationships at different
periods29, but does not allow a description of how they change with
time. Because the raw phase spectrum is de®ned at each time step
and period, it is dif®cult to interpret directly. We therefore focus on
the phase of the relatively well de®ned (generally biennial) major
epidemics, using wavelet reconstruction23 (see Methods). We inves-
tigate the wavelet phases for periods between 1.5 and 3 years, using
the wavelet reconstruction to calculate the average cycle and
associated phase across these periods at each time step. This
procedure allows naturally for observed spatio-temporal variations
in major epidemic period and phase (Box 1).

The phase analysis is well illustrated by the pre-vaccination
records for Norwich and Cambridge, because epidemics in these
relatively close cities (90 km apart) were out of phase during the
1950s (ref. 30, Fig. 2). We also include results for London for
comparison. The raw series (Fig. 2a) shows that major epidemics in
Cambridge were aligned with London (and the national pattern)
and occurred in odd years (1951, 1953, 1955, and so on). Norwich,
by contrast, had epidemics that peaked in even years for the 15 years
following World War Two. Figure 2c shows the major epidemic
pattern for the three cities as revealed by the wavelet reconstruction.
This con®rms that the main epidemic period in London was
predominantly biennial from around 1950; before that, epidemics
tended to be more annual (Fig. 1a, b). More dramatically, the

analysis highlights the early phase difference between Cambridge
and Norwich (Fig. 2c±e), followed by the change in Norwich's
epidemic phase from odd to even years in the late 1950s (we return
below to the cause of Norwich's unusual even-year major epidemic
timing). The analysis indicates that the biennial cycles of Cambridge
and Norwich were 100 to 1608 (7±11 months) out of phase for 16
years (Fig. 2e), after which they locked more closely into phase.
Figure 2e also shows that major epidemics in Cambridge lagged
several weeks behind those in London.

We observe from Fig. 2 that the phase difference between major
epidemics changes relatively smoothly through time. This advances
our objective of interpreting the complex spatio-temporal pattern
of measles epidemics in terms of the spatial pattern of phase
differences. For instance, phase-locked ¯uctuations (for example,
refs 7 and 3) should result in zero phase-difference across the map,
whereas travelling waves1,4,5 should generate a phase difference that
increases with distance.

We focus ®rst on the 1950±66 periodÐafter the 1947 baby boom
but before vaccinationÐwhen the 2-year epidemic cycle was
particularly pronounced (Fig. 1a). Figure 3a maps the average
phase difference relative to London for the whole urban pre-
vaccination data set (954 locations). Most, though not all, places
lag behind London (88% have negative phase difference). Concen-
trating on the London region (Fig. 3c), there is a clear wave of
infection moving away from the capital city. The wave is particularly
well de®ned up to 30 km from London (Fig. 3c) with a wave speed of
around 5 km per week. Figure 3d reveals the existence of a similar
wave around Manchester. (We note that the focus of this wave is less
well de®ned because there are several large citiesÐsuch as Leeds
and LiverpoolÐthat feed into the epidemic dynamics of North-
western England.) The measles waves are illustrated dynamically in
the Supplementary Information: the movie shows the raw incidence
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Figure 2 Wavelet phase analysis of weekly measles reports for Cambridge, Norwich and

London in the pre-vaccine era. a, Pattern of weekly case reports. b, Logarithmic values of

number of cases reported: log�x � 1�. c, Major epidemic (mainly biennial) component of

the three series, reconstructed from wavelet spectral analysis (Box 1); the series were

reconstructed from components in the period range 1.5 to 3 years, to allow for a ¯exible

period (`multiannual' is probably therefore a better term than biennial, though the

predominant variation is over 2 years). d, Average phase angles of the reconstructions in

c. e, Phase difference between Cambridge and the other two cities, based on the phase

angles in d; to remove spurious `jumps in phase difference, the raw phase difference (v) is

constrained within 61808, by the transformation: mod�v � 540; 360�2 180, where

mod�x ; y � is x modulo y .
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and phase analysis for the whole of England and Wales across seven
epidemic cycles.

The time-averaged phase map (Fig. 3a) highlights the hierarchical
nature of the waves, which move from large population centres to
the surrounding hinterland throughout the 1950s and 60s. During
this era, several hierarchical waves have their foci in large cities and
spread progressively to more distant small towns (see also ref. 14).
The dominant waves are those associated with London (Fig. 3c) and
the northwestern industrial centre (Fig. 3d), but the hierarchical
spread of infection is a consistent feature of the phase map, as is
re¯ected in its spatial correlation structure (Fig. 4a, b; see below). An
interesting feature of the pattern is that, although LondonÐthe
biggest cityÐleads the epidemics in surrounding areas (Fig. 3a, c),
the major epidemic appears on average 4±6 weeks before London in
the urban northwest (Fig. 3a, d), moving from Liverpool and
Manchester into the north Midlands. We speculate that this may
arise from the unusual annual dynamics of Liverpool (which are due
to high local birth rates30), effectively `subsidizing' the growth of the
epidemic in Manchester and Leeds and thereby sparking off early
hierarchical waves in this region. Such regional heterogeneities are
likely to be an interesting line of inquiry in future work. A second
notable feature is the distinct pattern during the 1950s of even-year
epidemics in the cities and villages of East Anglia, centred on
Norwich (Fig. 3a, b). We speculate on the origin of this pattern in
Box 2.

To quantify the geographic extent of the epidemic waves, we use
spatial phase coherency functions (PCF)Ðcalculated as the (non-
parametric) spatial correlation function7 of the major epidemic
phases (Fig. 4a; see Methods). These functions express the correla-
tion in phase angles at different locations as a function of interven-
ing distance. During the pre-vaccination era, phases in nearby

locations are generally found to be highly correlated. The correla-
tion declines with distance to a distinct minimum at around
250 km, which possibly crudely re¯ects the spatial extent of the
two dominant hierarchical waves. The PCF reveals that the local
phase coherence was signi®cantly higher than the regional average
to a distance of around 100 km (Fig. 4a). In the vaccine era (Fig. 4a),
the PCF resembles the pre-vaccination function in shape, but the
average coherence is consistently and signi®cantly lower. The extent
of signi®cant local phase coherence dropped to around 75 km
during the 1970s. Extensions of the phase analysis (not shown)
indicate that the hierarchical waves moving from large centres
persist through the 1980s. However, the spatial extent of the
waves dropped further (local coherence is only signi®cant to
35 km), as high vaccination rates induced irregular epidemics
later in the vaccine era32.

Phase coherence effectively measures the relative timing of epi-
demics. A complementary approach is to consider the synchrony7 of
the epidemic time series (see Methods), which also re¯ects how
their relative amplitudes covary. The pattern of synchrony in
measles (Fig. 4b) follows the qualitative pattern of the phase
coherency: declining with distance and with a lower mean in the
vaccine era. However, the synchrony of epidemics is signi®cantly
less than their phase coherence, especially in the vaccine era. This
indicates that vaccination induces stronger variations in the ampli-
tude of epidemics than in their relative phase. Previous studies32±34

have documented reductions in synchrony of measles epidemics as a
result of vaccination. The present analysis reveals the detailed
architecture of the change (Fig. 4b).

A `forced forest ®re' model for measles waves
The measles waves depart from the assumptions of classical theo-
retical models predicting travelling waves in two important ways.
First, local transmission is strongly seasonally forced; second, the
spatial distribution of the host is inherently very heterogeneous. We
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focus on the relatively simple spatial hierarchy surrounding London
in the pre-vaccination era (Figs 3c and 4c), in order to understand
the essence of the epidemic waves. In this region, the wave moves
fairly uniformly away from London (Fig. 3c). However, there is
evidence that, in addition to distance, the local population size is
importantÐsmaller centres lag more than larger ones (Fig. 4c).
Further analysis shows that both distance from London and
population size contribute signi®cantly to the epidemic lag (Fig. 4
legend).

This set of observations prompts the following conceptual model
for the generation of travelling waves in childhood epidemics.
Consider two epidemiologically coupled towns, with biennial
measles cycles that are roughly in phase (for example, see Fig. 5a).
Assume further that one town is largeÐabove the critical commu-
nity size (CCS) for measles persistence of around 300,000 (ref. 35)Ð

and that the other town is below the CCS:
(1) After a large epidemic, susceptible densities build up to

the deterministic threshold, above which another epidemic can
happen18.

(2) In the large town, measles is endemic throughout the inter-
epidemic trough, so that a new epidemic occurs as soon as the
effective reproductive ratio of infection exceeds unity18; this thresh-
old is determined by the accumulation of susceptible children,
modi®ed by seasonally varying transmission rates associated with
the school year.

(3) By contrast, in the small town, infection goes extinct locally
after an epidemic; therefore, another epidemic cannot happen until
an infective `spark' is received, generally originating in a larger
(endemic) community.

This reasoning prompts the following hypotheses:
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Box 2
Making waves

We investigated several different spatially coupled models for measles
dynamics to understand the nature and cause of the hierarchical
epidemic waves revealed by the wavelet analysis. Our most successful
modelling framework to date builds on Bartlett's chain models16, as
re®ned in the time series SIR (TSIR) model21,22,49. The empirical waves are
characterized by certain large cities (London and Manchester/Leeds)
leading their local environs by a few to several weeks (Fig. 3c), with more
complex relationships in more distant local areas. On the basis of the
TSIR framework, we set up a simple coupled-map lattice, where at time
n � 1 the epidemic intensity, ln�1, is given as:

ln�1 � bnSn�In � vn�
a

�1�

Here, bn is a seasonal transmission rate, a is the mixing rate21, Sn and In
are respectively the number of local susceptible and infectious individuals
in the previous characteristic time step (equal to 2 weeks, the approx-
imate generation time for measles infection); vn is the (stochastic) contact
rate with infectives, In, in the neighbouring populations in the previous
characteristic time step. We assume this rate to be Poisson distributed,
vn is distributed as Po�mIn�, where m is the spatial coupling rate.
According to the TSIR model, the epidemic birth-and-death process is
realized according to a negative-binomial distribution49 so that

In�1 is distributed as NegBin�ln�1; In� �2�

The balance equation for the susceptibilities is Sn�1 � Sn � B 2 In�1,
where B is the birth rate. The parameter values closely match the best
estimates for London and the estimated laws for how transmission scales
with community size49 (see Methods).

We envisage a human population distributed between a central city,
composed of more tightly linked boroughs, and peripheral towns. Fig. 5a
and b is generated from a linear map of a city with nine boroughs (shaded;
for which m is arbitrarily set at 0.2) surrounded by the ten peripheral
towns (for which m is set at 0.1):

In the above map, we assume that the population size is the same at all
locationsÐthis is not critical, but it makes interpretation easier. We
contrast three situations.

In the ®rst (Fig. 5a), each location is assumed to be below the CCS with
200,000 inhabitants. In an isolated town of this size, we would expect
Type II dynamics27Ðregular biennial outbreaks, but with occasional local
extinctions in the troughs. The dynamics from our spatial model show:

(1) High correlations between the tightly coupled boroughs (marked by
black circles); the mean correlation is 0.79.

(2) Epidemics in the periphery lag behind those of the centre; the
lag depends on the distance from the core (so that the mean correlations

of the ®rst through ®fth periphery are 0.72, 0.63, 0.54, 0.50 and
0.45 respectively).

(3) The drop in correlation across the periphery is associated with a
progressive time delay in peak incidence (by 1, 1.5, 2, 2.5 and 4 biweeks
as we move from the nearest to the furthest peripheral town). This phase
lag corresponds crudely to that seen in the data.

Figure 5a±c shows the mean of 10 biennia. Raw epidemic time series
from the model give qualitatively similar results, as do the associated
wavelet phases of the simulations (see the Supplementary Information).
We stress that, whereas spatial coupling rates have been chosen
somewhat arbitrarily and for illustrative purposes, all other parameters are
estimated from data49.

In the second case (Fig. 5b), each unit is above the CCS, with 3 million
inhabitants. Consequently, each location exhibits persistent (Type I)
biennial dynamics27. With local persistence at all locations, all are locked
onto much more synchronized attractors than in Fig. 5a. The mean
correlation between the boroughs is 0.98, and that between the
boroughs and the periphery is 0.97. (A strictly deterministic model also
generates similar results.) This relative phase locking contrasts markedly
with the wave in Fig. 5a. See the Supplementary Information for a wavelet
phase analysis of the model output.

Wave-like spatio-temporal behaviour might also result if there were a
hierarchical trend of reduced infection rate as we move from large cities to
smaller centres15,50. However, in practice, the basic reproductive ratio of
measles infection, R0, was relatively constant across the towns and cities
of England and Wales49, contradicting this alternative explanation. In fact,
our simple coupling assumptions caused a slight increase in R0 in the
central city compared to the periphery, but its effect is small compared to
the hierarchical invasion waves. The Supplementary Information explores
these issues in more detail.

Finally, when we increase the arena of Fig. 5a to encompass a greater
periphery (more small towns), we occasionally obtain travelling waves
across the whole arena, as before. However, frequently we see a more
complicated picture in which the more distant locations lock onto the
other coexisting attractor (if the core peaked in even years, the periphery
would peak in odd years, and vice versa). This is illustrated in Fig. 5c,
where we use nine peripheral towns on either side of the city, rather than
®ve. The simulation illustrates a very similar wave to Fig. 5a in the ®ve inner
towns of the periphery. By contrast, the outer four towns fall onto the
opposite biennial attractor in this simulation. Such a reversal of phase can
be stable for several epidemics and may give a qualitative explanation of
the behaviour of Norwich and its environs (Fig. 1); isolationÐand being
near an edge (here the coast; see Supplementary Information)Ðincrease
the tendency for such jumps. Of course, towns are not connected only
locally in terms of the movement of infection: an important area for future
work is to consider how long-range `jumps' of infection6 obscure local
waves and move the system closer to mean-®eld behaviour. We shall
also consider how regional spatial structure interacts with population size
and birth rate to in¯uence the hierarchical pattern of waves.
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(1) The spatial mosaic of large and small places is responsible for
the lag in epidemicsÐwe propose that having a group of small
towns surrounding a large conurbation generates the hierarchical
epidemic waves.

(2) As a corollary, coupling large centres (all above the CCS)
should generate highly synchronized epidemics (as a result of
nonlinear phase locking of seasonally forced oscillators)31.

(3) Finally, weakly coupled or distant centres should have a
stronger tendency than nearer towns to move onto the `opposite'
biennial attractor from the main conurbation.

We tested these conjectures using a mechanistic model for the
spread of measles across a linear array of locally coupled sites
(Box 2). The model generates a picture in tight agreement with
our conceptual scenario. First, if we couple a central large city to an
array of outlying towns below the CCS, we observe a spatio-
temporal wave of infection. Epidemics in the outlying towns lag
progressively behind those in the city (Fig. 5a). Note that dividing
the city into tightly coupled `boroughs' does not generate a lag
within the large centre. Second, if we repeat the analysis by coupling
a series of large communities all above the CCS, the result is near-
perfect coherence, with no evidence of epidemic waves (Fig. 5b).
Because epidemics do not suffer local extinction, and because all the
cities experience the same seasonal forcing, no lags are generated.
Thus, the observed travelling waves are best seen as repeated and
very fast invasion waves, extending from endemic core areas into
epidemic satellite regions.

Third, we examine the effects of relative epidemiological isolation
by extending the array of distant, more loosely coupled commu-
nities (Fig. 5c). As before, synchronized major epidemics with
superimposed spatio-temporal waves appear for small communities
close to the large one. However, epidemics in more distant towns
can drop onto the opposite biennial attractor. This is preliminary
evidence that relative isolation may be a source of the unusual `even
year' behaviour of pre-vaccination measles epidemics in Norwich
and its environs (Fig. 2), during parts of the pre-vaccination era.

Our study raises a number of issues. We illustrate how wavelets
can be used for analysing both non-stationary time series and
spatio-temporal patterns in ecology and population biology. Spatial
and temporal non-stationarity is the norm in ecology. It may be
caused by a number of factors, including anthropogenic in¯uences
and biological evolution, as well as more esoteric dynamical effects,
such as coexisting attractors20,36 and intermittent periodicity in
chaos37. Wavelets are emerging as essential tools in the study of
intermittent processes in the physical sciences and experimental
biology26. Here we have illustrated a basic application of wavelet
analysis in population dynamics, complementing previous applica-
tions to spatial transect patterns38; there should be signi®cant scope
for further careful ecological application of wavelets. The wavelet
phase analysis also provides an unusual method for analysing
ecological travelling waves. Although other statistical models have
been successfully developed11,39, wavelet phase angles are naturally
suited to allowing for variations in cycle period and amplitude.

In addition, the non-stationarity that we demonstrate in
the measles series is due mainly to variations in the recruitment
of susceptible individuals, driven by birth rates and especially by
the onset of vaccination22,32. Mass immunization caused a dramatic
fall in susceptible recruitment rates and a marked reduction in
the spatial correlation and coherence of epidemics: this may
have important consequences for the design of vaccination
programmes19,32. The implications of hierarchical (`core±satellite')
epidemic dynamics for the control of established and emergent
diseases are important areas for future research.

Finally, our analysis demonstrates prominent repeated spatio-
temporal waves, superimposed on the well-known epidemic time
series of measles in England and Wales. This echoes, on a more
extensive spatio-temporal scale, seminal work on the hierarchical
spatial diffusion of measles epidemics14. The simplicity of the

measles dynamical `clockwork' and the intricacy of the human
demographic record allow us this unusual opportunity to quantify
the impact of spatio-temporal heterogeneities on epidemic
dynamics. The clearest temporal transition is the effect of mass
vaccination. On a shorter timescale, seasonal variation in infection
rate is a major driver of the dynamics40,41. Classical reaction±
diffusion models of host±natural enemy systems often predict
recurring travelling waves in homogeneous (non-hierarchical)
systems1. However, such waves are precluded for measles, because
of the strongly synchronizing effect of seasonally forced
transmission31. Previous theory31,33,42 indicates that seasonally
driven epidemics will either be completely synchronized across
large coupled centres or more irregular in small centres buffeted
by demographic noise.

This prediction is at odds with the observed waves (Figs 3 and 4),
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Figure 5 Average biennial behaviour of a spatially coupled measles model (see Box 2 for

details). a, Coupling relatively small peripheral population units (below the critical

community size, CCS, for measles persistence) to a central `city'. b, Coupling larger

populations (each above the CCS) to the city. c, As in a, but extending the size of the linear

array of populations.
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leading us to propose a different underlying mechanismÐmeasles
waves arise as repeated invasions from endemic core areas to the
periphery. The coupling of large and small centres may thus be the
critical feature that generates waves in these seasonally forced
systems. This mechanism has analogies with the operation of the
`rescue effect' in core±satellite metapopulations43 and also with
forest ®re dynamics44. Forest-®re-like epidemic dynamics have
previously been explored in the irregular, epidemic measles out-
breaks observed on isolated small islands45. This work provides
evidence of such phenomena in an endemic epidemiological
context. M

Methods
The data

We use weekly of®cial measles noti®cations and associated demographic data for England
and Wales15,19,46. For the pre-vaccination era, before 1966, weekly measles case data are
available for 945 cities and towns and 457 rural districts; these data sets are the basis of the
pre-vaccination wavelet analysis (Figs 2, 3a, b and 4c). In 1974, boundary changes
agglomerated the spatial data into 354 administrative areas. To achieve consistent time series
across both pre-vaccination and vaccine era, we have therefore binned the pre-vaccination
data into the post-1974 boundaries (Figs 1 and 4a, b).

Wavelet time series analysis

See Box 1. All series are logarithm transformed (after adding a constant of one) to make
them more sinusoidal, and subsequently scaled to zero mean and unit variance. Assume
that we have a time series, In ; n � 0;¼;T 2 1 (for consistency, n is used as the time index
throughout the paper). We analyse temporal changes in the distribution of power at
different scales s (approximately periods) using a Morlet wavelet function,
w0�h� � p21=4 exp�iq0h� exp� 2h2=2�, where q0 is the non-dimensional frequency here
taken to be 6 (ref. 23) and h � n=s. The Morlet wavelet, w0, is a damped complex
exponential (Box 1).

The continuous wavelet transform (CWT), Wn(s), of the time series In�n � 0; 1; 2¼� is
calculated as the convolution of In with a scaled and translated version of w0 (ref. 23). For
the Morlet wavelet, scale is approximately equal to the Fourier period, so that the lowest
scale, s0, roughly corresponds to the maximum (Nyquist) frequency of 0.5 cycles per time
step. The local wavelet power spectrum (Box 1), at time point n and scale s is then given by
jW n�s�j

2.
To minimize biases due to edge effects, the data were padded with zeros, up to the next-

highest power of two23. The `cone of in¯uence' (the parabola in Fig. 1b) is a re¯ection of a
consequent loss in statistical power near the start and end of the series; the area below the
parabola in Fig. 1b should be interpreted cautiously. The width of the cone also gives a
rough lower limit for how wide a feature needs to be at a given scale for it to represent
genuine cyclical behaviour, rather than a spike. We conduct signi®cance tests using
methods described and discussed in ref. 23.

To isolate the major biennial epidemics for the phase analysis, we use wavelet
reconstruction23 to partition the original series, in terms of the contribution of variation at
different frequencies.

Phase relationships between time series

A wavelet transform based on a complex wavelet, such as the Morlet wavelet, has a phase
angle, de®ned by

£n�s� � arctan{Im�W n�s��=Re�W n�s��}

where Re[Wn(s)] is the real, and Im[Wn(s)] the imaginary part of W n�s�. In practice, we use
this formula to calculate the time series of phase angles (vn) associated with the wavelet
transform of the reconstructed major epidemic cycle for each time series. These can be
used as absolute phases (Fig. 2d) or phase differences (Fig. 2e); phases and phase
differences are restricted to the range 61808 (see Fig. 2, legend).

Algorithms

The algorithms and notation used here are based on a practical guide to meteorological
wavelet analysis23. See also http://paos.colorado.edu/research/wavelets/ for more back-
ground information. The website also includes a set of wavelet algorithms in Matlab, on
which the analyses shown here are based.

Phase coherency and correlation functions

We calculate the phase coherency, ci,j , between two cities, i and j, by considering the
correlation between the time series of phase angles, vi,n and vj,n:

cij �

n̂

�vi;n 2 vÅi��vj;n 2 vÅj�=jijj

where vÅ represents the respective mean phases, and j the respective standard deviation of
the phases. We further de®ne the phase coherency function, h(d), which governs how the
phase coherency relates to the distance, d, separating any two cities. Assuming that the
phase coherency forms a stationary random ®eld, then the phase coherency function
(PCF) represents the spatial correlation function of that ®eld. We estimate the PCF,

without making a priori assumptions about the functional form, by using the nonpara-
metric covariance function (NCF)7,47,48. The NCF uses either a kernel function or (as in our
case) a cubic B-spline to estimate the underlying correlation function. We use a smoothing
spline with 25 equivalent degrees of freedom (e.d.f.), and quantify the con®dence
envelopes for the functions using 500 bootstrap iterations (see ref. 48 for details of
estimation and testing).

We measure epidemic synchrony between two populations as the Pearson correlation
coef®cient between the two variance-stabilized (square-root transformed) time series of
incidence. We calculate the spatial correlation functions governing how this synchrony
depends on distanceÐagain, using the nonparametric spline covariance function.
Separate phase coherency and spatial correlation functions are calculated for the pre-
vaccination (1954±64) and vaccination (1970±80) data, based on the 354 time series that
span both eras.

The spatial TSIR model

We used the following parameters for the model in Box 2: a � 0:97, and {bn} is an
annually periodic function with the following values for the 26 biweeks of the year:
1:11 3 1025, 1:11 3 1025, 1:10 3 1025, 1:09 3 1025, 1:06 3 1025, 1:03 3 1025,
1:01 3 1025, 9:84 3 1026, 9:63 3 1026, 9:40 3 1026, 9:10 3 1026, 8:71 3 1026,
8:29 3 1026, 7:89 3 1026, 7:60 3 1026, 7:49 3 1026, 7:60 3 1026, 7:93 3 1026,
8:42 3 1026, 8:95 3 1026, 9:43 3 1026, 9:80 3 1026, 1:01 3 1025, 1:03 3 1025,
1:05 3 1025, 1:08 3 1025. These values are a smoothed version of the estimated param-
eters for the London time series49. The biweekly birth rate, B, is set at 100 for small
population units (Fig. 5a) and 2,000 for large ones (Fig. 5b).
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