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ABSTRACT Across the boreal forest of North America, lynx
populations undergo 10-year cycles. Analysis of 21 time series
from 1821 to the present demonstrates that these fluctuations
are generated by nonlinear processes with regulatory delays.
Trophic interactions between lynx and hares cause delayed
density-dependent regulation of lynx population growth. The
nonlinearity, in contrast, appears to arise from phase depen-
dencies in hunting success by lynx through the cycle. Using a
combined approach of empirical, statistical, and mathematical
modeling, we highlight how shifts in trophic interactions between
the lynx and the hare generate the nonlinear process primarily
by shifting functional response curves during the increase and
the decrease phases.

Periodic fluctuations in fur returns of the Canadian lynx (Lynx
canadensis) have influenced ecological theory profoundly (1–29):
these data have been used to examine concepts such as ‘‘the
balance of nature,’’ predator–prey fluctuations, food web dynam-
ics, chaos, and regional and community synchronization. The
enigma of the lynx cycle has challenged observational and ex-
perimental (6–13), mathematical (5, 14–18, 26, 27), and statistical
(25, 28, 29) ecology. Using a combined approach of empirical,
statistical, and mathematical modeling (30–35), we here provide
a comprehensive analysis of the lynx fur return data from the
Hudson Bay Company (1) and more recent data (36, 37) from all
of boreal Canada (Fig. 1 A and B). The resulting patterns are
interpreted on the basis of recent experimental field studies on
the snowshoe hare (Lepus americanus) and the lynx.

Earlier statistical analyses of the Canadian lynx cycle have
focused primarily on the MacKenzie River time series (series L3
of this paper; compare in Table 1). This series has been studied
by using a variety of parametric and nonparametric models,
including testing for the presence of nonlinearity, the determi-
nation of order and presence of significant lags, nonlinear pre-
diction, and noisy chaos. It has, therefore, formed a benchmark
data set for time series modeling (39, 45–57). Detailed scrutiny of
a threshold autoregressive model has revealed a particularly good
statistical fit to L3 (39, 49, 56–58).

We build on .40 years of statistical modeling of L3 to bridge
the gap between statistical modeling of lynx data, mathematical
modeling of the hare–lynx dynamics, and field studies on hares
and lynx. We do so by synthesizing available time series data on
the Canadian lynx within a nonlinear autoregressive statistical
framework that is interpreted on the basis of an ecological model

(Table 1). The statistical pattern engraved in these series is
consistent with detailed experimental data from the 10-year
‘‘Kluane Boreal Forest Ecosystem Project’’ in the Yukon (10–13).
This enables us to elaborate on the strengths and the functional
forms of the interactions in the processes underlying the cycle.
Earlier, Royama (25) discussed the monitoring data depicted in
Fig. 1. Here, we substantially extend his analysis both by using
more efficient statistical methods [the Threshold Auto-
Regressive modeling approach (39)] and by interpreting the
structure of the time series on the basis of new experimental
findings. Statistical checks (59) on the fitted residuals of Royama’s
model reveal that they cannot be seen as white noise. Thus,
Royama’s original reservation about his model was well founded.

The Data

Our core data (Fig. 1) come from the Hudson Bay Company (1)
and Statistics Canada (36, 37). They represent good proxies for
the actual population abundances (Fig. 2). We estimate1that, in
peak years, trappers caught '5% of the total lynx population
across Canada and, in trough years, '9%.

Statistical Modeling

Previous statistical analyses have demonstrated that L3 (on a
logarithmic scale2)may be adequately fitted by a nonlinear au-
toregressive process of order two (28, 29, 42–46, 49, 51). The
nonlinearity can be modeled as a threshold process of the form
(42):

yt 5 Hb1,0 1 b1,1 yt21 1 b1,2 yt22 1 e1,t yt2d # u
b2,0 1 b2,1 yt21 1 b2,2 yt22 1 e2,t yt2d . u

[1]

where yt is the log-transformed abundance of the lynx at year
t [i.e., yt 5ln(Yt)], bi,j are statistical parameters that determine
the dynamic properties of the system (i 5 1 and 2 correspond
to the lower and the upper regimes of the model; j 5 0, 1, and
2 correspond to the constant term and the lag-1 and lag-2
coefficients, respectively), u is the threshold applicable to the
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kWe assume that the average lynx density per 100 km2 varies over the
hare cycle as given in Fig. 2, that the lynx removals are as given by the
fur return records summarized in Fig. 1, and that the size of the boreal
forest in Canada is '2.5 million km2.

lCommonly, log-transformation of abundance data stabilizes the vari-
ance (62). Because population dynamics relate to multiplicative
processes, a log-transformation is also appropriate (63).
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density d years earlier, and «i,t are noise-terms with indepen-
dent and normal distributions, N(0, si

2); this model is a
SETAR(2;2, 2) model (39, 49–57), i.e., a self-exciting threshold
autoregressive model. [The notation SETAR(m;p1,p2,. . . ,pm)
stands for a SETAR model with m regimes, and the order of
the jth regime equals pj]. As a form of local function approx-
imation, SETAR modeling is a computationally efficient way
of approximating complex and nonlinear structures, and its
statistical properties are well documented (28, 29, 39). Several
nonlinear ecological models can be approximated by a SETAR
model on log-scale (64) and are characterized by the entire
spectrum of dynamic behavior commonly found in ecological
models (65).

The optimal thresholding lag, dopt, can be investigated statis-
tically; Table 1 shows that dopt 5 2 is the most parsimonious
choice. The lag-2 is consistent with 16 of 21 series whereas lag-1
is consistent for 11 of 21 series. Furthermore, dopt 5 2 is in
agreement with the earlier reported approximate additive struc-
ture for these time series (28, 29). Analyzing the residuals
demonstrates that a SETAR(2;2, 2) model provides an appro-
priate description of the datam.

Adopting the approach of empirical Bayes (43), and assuming
a random coefficient model that specifies that the SETAR
coefficients of each series are drawn randomly from a super-
populationn, we may pool information across all of the older series
(L1-L14), all of the modern series (L15-L22), and all series

altogether (L1-L22). The empirical Bayes estimates are generally
close to those obtained from simple weighted averaging (Table 1).
However, for the modern series, there are some differences
between the empirical Bayes estimates and the weighted average
estimates of the lag-1 coefficient in the lower regime and the lag-2
coefficient in the upper regime. The between-region standard
deviations of the upper regime of the older series are quite close
to zero, suggesting common structure in that part of the modelo.

The ecological machinery behind the threshold structure of the
lynx time series may be sought in the hare–lynx interaction. Fig.
3 depicts the hare–lynx cycle at Rochester, Alberta (Fig. 3A) and
at Kluane Lake, Yukon (Fig. 3B); a more stylized hare–lynx cycle
together with the threshold level separating the two regimes also
is shown (Fig. 3C). The lower regime applies during the lynx
increase, and the upper regime applies during the lynx (and hare)
decrease. As a result, we call the lower regime the ‘‘increase
phase’’ and the upper regime the ‘‘decline phase.’’

Fitting the SETAR model to all time series, we obtain (Table
1): (i) b1,0, measuring the average log-transformed abundance in
the lower regime, is marginally smaller than or equal to b2,0; (ii)
b1,1, measuring the lag-1 coefficient [sometimes called the coef-
ficient of statistical direct density dependence (25)], is smaller
than or equal to b2,1; and (iii) b1,2 is consistently greater than b2,2

(both negative). In absolute value, this implies a significantly
weaker lag-2 effect (statistical delayed density dependence) dur-
ing the increase phase than during the decrease phase. The
bi,2yt-2-functions for regimes 1 and 2 are depicted in Fig. 3C. This
is the component in which the major phase shift is located.

The full model (Eq. 1) is a density-dependent model because
the lag-1 coefficient bi,1 and the lag-2 coefficient bi,2 are signif-
icantly different from 1 and 0, respectively (68–71). The fitted
model is phase-dependent because the pattern of density depen-
dence (b1,. and b2,.) varies across the cycle. The consistency across
all panels of time series is conspicuous and indicates that the

mCumulative periodograms of residuals and the Ljung–Box test for
whiteness (39) generally confirm that only white noise is left. Testing
for linear trends in the normalized residuals, assuming the fitted
SETAR model (Table 1), further shows that we may conclude safely
that the fitted models have no residual linear trends; hence, the fitted
models essentially have captured the temporal patterns in the data.
This is supported further by the common structure of the series from
the regions with temporally noncontinuous series (L1 and L2; L4 and
L5; L6 and L7; unpublished results).

nThe series are individually normalized so that their 30 and 70
percentiles are 0 and 1, respectively, before doing the empirical Bayes
pooling. This rescaling does not change the lag-1 and lag-2 coeffi-
cients, but other coefficients are affected. We set the super-
population of the vector SETAR parameters (b1 5 (b1,0,b1,1,b1,2), b2
5 (b2,0,b2,1,b2,2), u, s1

2, s2
2) to be the improper product distribution

N(b1*,S1*)xN(b2*,S2*)xU(0, 1)xU(0,`)xU(0, `), where N(..,) de-
notes a Normal distribution and U(v, w) denotes a uniform distribu-
tion over the interval [v, w]. The maximum likelihood estimates of
these super-population parameters are estimated by using the expec-
tation–maximization algorithm (44). The uniform distribution on the

threshold reflects a partial belief that the threshold is distributed
uniformly over the 30 to the 70 percentiles, at the original scale.

oIt is an interesting question to quantify the evidence for (partial)
common dynamic structure across some series by testing whether
some superparameters are nonrandom (or, equivalently, whether
their marginal super-population distribution degenerates to a point
probability mass). We may test for common structure by testing
whether the standard deviations of the super-population distribution
are zero. This problem requires a careful and extensive treatment,
which is beyond the scope of this paper.

FIG. 1. The time series of fur returns of lynx (given on arithmetic scale) from the Canadian boreal forest (see Table 1). (A) The series L1-L12 and
L14 represent the pelt counts between 1820 and 1940, as compiled by Elton and Nicholson (1). The borders on the map represent the demarcations of
the regions. (B) The series L15-L22 represent data between 1920 and 1994 summarized by Statistics Canada (36, 37) for which the demarcation is given
by the Canadian provincial borders. For the modern series (L15-L22), there were occasional zeros. We added one to the modern series before
log-transformation.
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underlying ecological processes change through the cycle. This
may be taken as a demonstration, based on time series analysis,
of phase dependency in the population dynamics of the lynx;
another form of phase dependency earlier has been demon-
strated in the Norwegian lemming (Lemmus lemmus) (65, 72).

Mathematical Modeling

To interpret the statistical models (Table 1), we consider a
predator–prey model for the lynx [Pt; yt 5 ln(Pt)] and the
snowshoe hare [Ht; xt 5 ln(Ht)]. The following model may be

Table 1. Nonlinear autoregressive structure of old and modern time series on lynx in the Canadian boreal forest

No.
remaining Time series Years

Threshold, u

NAIC

dopt optimal Overall u d’s Lag-2d 5 1 d 5 2

L1 West 1825–1856 20.493 20.606 2 2 5.64 (0.56)
L2† West 1897–1934 21.789 21.892 2 2 6.56 (0.28)
L3* MacKenzie River 1821–1934 21.416 21.472 2 2 7.62 (0.29)
L4 Athabasca Basin 1821–1891 20.367 20.198 1 1 4.98 (0.67)
L5† Athabasca Basin 1897–1934 21.455 21.356 1 1 7.54 (0.45)
L6 West Central 1821–1891 21.621 21.717 2 2 6.18 (0.43)
L7† West Central 1897–1934 21.360 21.127 1 1 7.02 (0.36)
L8 Upper Saskatchewan 1821–1891 20.602 20.639 2 2 6.19 (0.75)
L9 Winnipeg Basin 1821–1891 21.656 21.709 2 2 8.26 (0.36)
L10 North Central 1821–1891 21.231 20.911 1 1 5.00 (0.33)
L11† James Bay 1895–1939 22.190 22.143 1 2 (1) 6.55 (0.41)
L12† Lakes 1897–1939 21.890 21.978 2 2 6.59 (0.26)
L13† James Bay and Lakes 1897–1939 22.291 22.364 2 2 6.68 (0.32)
L14† Gulf 1897–1939 21.334 21.292 1 1 6.22 (0.40)

Overall weighted estimates for the Hudson Bay series§ 6.646 (0.10)
Deduced phase dependency: b1,0 # b2,0 b1,1 # b2,1 b1,2 . b2,2

Empirical Bayesian estimates for the Hudson Bay series¶

Deduced phase dependency: b1,1 # b2,1 b1,2 . b2,2

L15 British Columbia 1920–1994 21.330 21.417 2 2 7.38 (0.26)
L16 Yukon Territory 1920–1994 21.084 21.188 2 2 7.25 (0.23)
L17 Northwest Territory 1920–1994 21.462 21.460 1 2 (1) 7.13 (0.33)
L18 Alberta 1920–1994 21.161 21.134 1 2 (1) 8.01 (0.43)
L19 Saskatchewan 1920–1994 20.646 20.697 2 2 6.51 (0.45)
L20 Manitoba 1920–1994 21.105 21.085 1 2 (1) 6.39 (0.51)
L21 Ontario 1920–1994 21.960 21.928 1 2 (1) 6.65 (0.29)
L22 Quebec 1920–1994 22.390 22.385 1 2 (1) 7.19 (0.27)

Overall weighted estimates for the modern series§ 7.128 (0.11)
Deduced phase dependency: b1,0 ' b2,0 b1,1 , b2,1 b1,2 . b2,2

Empirical Bayesian estimates for the modern series¶

Deduced phase dependency: b1,1 , b2,1 b1,2 . b2,2

Grand total weighted estimates for all series§ 6.858 (0.07)
Deduced phase dependency: b1,0 H b2,0 b1,1 , b2,1 1,2 . b2,2

Empirical Bayesian estimates for all series¶

Deduced phase dependency: b1,1 , b2,1 b1,2 . b2,2

Assuming a SETAR(2;2,2) model, the NAIC [NAIC being AIC 5 22ln(max likelihood) 1 2(number of parameters) normalized by the effective
number of observations] values for d 5 1 and d 5 2 are given together with the optimal d value, dopt, defined as the one minimizing the NAIC
over d 5 1 and d 5 2; in cases that the NAIC values for d 5 1 and d 5 2 are insignificantly different {defined by [(NAIC(d2)2NAIC(dopt)]y[2NAIC(dopt)]
, 0.025}, where d2 is the nonoptimal d, both 1 and 2 are listed; d 5 2 is given in bold because this is the overall most appropriate delay. The estimated
parameters in the SETAR model (Eq. 1) for the lynx time series from Canada are provided by Elton and Nicholson (1) [L1-L14] and the time series
provided by Dominion Bureau of Statistics and Statistics Canada (36, 37) [L15-L22]. Analyses are based on the original and not detrended data, for which
the thresholds are estimated on the basis of the NAIC criterion; the same conclusions emerge if detrended data are analyzed. Detrending was done in
S-plus by subtracting a fitted cubic B-spline with 4 degrees of freedom (38). The optimal threshold, u, assuming a lag (d) equal to 2, was determined by
NAIC (Ref. 39; p. 379); the threshold estimate is given together with the estimated bootstrap SE (40, 41). The column ‘‘Any trend’’ summarizes the results
of testing the null hypothesis of a SETAR(2;2,2) model against the alternative of a ‘‘SETAR(2;2,2) 1 linear time trend’’ model. ‘‘No’’ indicates a rejection
of the alternative at 5% level and hence suggests the adequacy of a SETAR model. The test is implemented via the method of Lagrange multiplier, also
known as the score method (42). The overall weighted estimates were calculated as weighted means, S(mtwi)ySwi, where mi are the estimated parameters
for series i and wi 5 1y(SEi)2. The overall SE is given as (1ySwi)1/2. The empirical Bayes estimation (43) is done via the EM-algorithm (44). All series
first are normalized (linearly) so that the 30 (70) percentiles become 0 (1). Only the mean lag-1 and lag-2 coefficient estimates are given in the table because
the other parameters are not invariant under the scale change.
SE, standard error; NAIC, normalized kaike information criterion; DD, density dependent.
*This series was analyzed by Tong (39).
†Series has been interpolated for the missing observation in year 1914.
‡This combined series was studied by Stenseth et al. (28, 29) because this most closely corresponded to the snowshoe hare series they studied; this
combined series is included here for comparative reasons but is excluded from the both sets of pooled estimates.

§The weighted estimates are computed under the framework that the SETAR coefficients are the same for the all of the series in a particular panel
of lynx data. The numbers in parentheses are the standard errors of the weighted estimates.

¶The empirical Bayesian estimates are computed based on a random coefficient model that for each series the SETAR coefficients are drawn from a
super-population. The numbers in parentheses are the corresponding (between-region) standard deviations of the super-population (see main text).
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seen as a Taylor-approximation to various, more specific
model formulation (29) and is defined (26, 28, 29) as:

Ht11 5 Htexp@ai,0 2 ai,1xt 2 ai,2yt#
Pt11 5 Ptexp@bi,0 2 bi,1yt 1 bi,2xt#, [2]

where ai,1 and bi,1 determine the degree of intraspecific regulation
in the hare and the lynx (within phase or regime i), respectively;
ai,2 and bi,2 determine the strength of the trophic interaction
between the two species; and ai,0 and bi,0 represent the ‘‘intrinsic
growth rate’’ (corresponding to conditions without any significant
intraspecific interactions and in the absence of other species).
Taking logs on both sides of Eq. 2, we may, under reasonable
biological assumptions (K.-S.C., H.T., and N.C.S., unpublished
work), write

yt 5 ~ai,0bi,2 1 ai,1bi,0! 1 ~2-ai,1-bi,1!yt-1

1 ~ai,1 1 bi,1 2 ai,1bi,1 2 ai,2bi,2 2 1!yt-2, [3]

which is equivalent to the statistical model given by Eq. 1. This
allows us to relate the ecological parameters of Eq. 2 to the
autoregressive parameters of Eq. 1. The first-order autoregressive
parameter, bi,1 5 2 2 ai,1 2 bi,1, is a function of the ecological
density dependence in both the hare and the lynx (ai,1 and bi,1).
The second-order autoregressive parameter, bi,2 5 ai,1 1 bi,1 2
ai,1bi,1 2 ai,2bi,2 2 1, incorporates the strength of the trophic
interaction (i.e., ai,2bi,2). Note that the second-order coefficient

bi,2 also may be represented as bi,2 5 1 2 ( bi,1 1 ‘‘intra’’i) 2
‘‘inter’’i, where intrai and interi signify the strength of the multi-
plicative intra- and interspecific (trophic) interactions in the
system. Thus, the second-order autoregressive parameter is in-
fluenced by trophic interactions as well as the ecological density
dependencies within the interacting species. Assuming that the
trophic model is appropriate, this suggests that the ecological
mechanism underlying the observed nonlinearity is likely to be
related to the interaction between the hare and the lynx.

Models and Field Observations

The ecological model allows a link between the population-level
pattern and the mechanistic processes by putting constraints on
permissible ecological interactions. We need to account for the
following important patterns of density and phase dependence
(Table 1): (i) The lag-1 coefficient is significantly positive, but less
so during the increase phase; and (ii) the lag-2 coefficient is
significantly negative, and more so during the decline phase. On
the basis of Eq. 3, the pattern in the lag-1 coefficient (Table 1)
implies that the sum of the strengths of intraspecific interactions
(ai,1 1 bi,1) is somewhat stronger during the increase phase than
during the decline phase.

During the increase phase of the hare cycle, lynx appear to be
territorial (60, 61, 74–76). This intraspecific regulation disappears
as territoriality within the lynx population breaks down 2–3 years
after the hare peak (76). Hares exhibit a dominance hierarchy;
however, the only aggressive interactions apart from those related

Table 1. Continued

The lower regime of the SETAR model,
increase phase

The upper regime of the SETAR model,
decline phase

Any trendb1,0 (6SE)
b1,1 (6SE),
direct DD

b1,2 (6SE),
delayed DD b2,0 (6SE)

b2,1 (6SE)
direct DD

b2,2 (6SE)
delayed DD

1.30 (1.07) 1.02 (0.17) 20.20 (0.30) 5.83 (2.27) 1.16 (0.25) 21.04 (0.36) No
1.03 (1.09) 0.91 (0.16) 20.03 (0.24) 2.54 (1.37) 1.71 (0.18) 21.08 (0.26) No
1.35 (0.31) 1.27 (0.06) 20.43 (0.07) 2.68 (2.37) 1.60 (0.13) 21.01 (0.31) No
3.10 (2.30) 0.53 (0.30) 20.05 (0.44) 3.52 (0.64) 1.33 (0.10) 20.86 (0.12) No
4.10 (1.08) 1.36 (0.16) 20.94 (0.18) 5.39 (1.39) 1.34 (0.16) 20.99 (0.22) No
1.13 (0.62) 1.28 (0.08) 20.35 (0.13) 1.71 (0.59) 1.52 (0.08) 20.81 (0.10) No
4.59 (1.73) 0.80 (0.25) 20.51 (0.26) 3.97 (2.00) 1.31 (0.19) 20.83 (0.28) No

20.05 (1.36) 1.08 (0.17) 0.10 (0.92) 2.90 (0.81) 1.40 (0.10) 20.81 (0.13) No
2.42 (0.80) 1.37 (0.09) 20.64 (0.13) 1.91 (1.53) 1.42 (0.13) 20.67 (0.19) No
2.98 (1.31) 0.76 (0.19) 20.31 (0.25) 0.48 (0.83) 1.44 (0.11) 20.59 (0.15) No
1.65 (0.46) 1.45 (0.09) 20.70 (0.11) 1.60 (1.88) 1.44 (0.18) 20.73 (0.30) No
2.79 (0.95) 1.29 (0.16) 20.75 (0.20) 4.79 (1.86) 1.33 (0.19) 20.99 (0.28) No
3.30 (1.02) 1.30 (0.12) 20.80 (0.18) 3.68 (1.06) 1.56 (0.14) 21.05 (0.17) No
0.97 (1.07) 1.05 (0.18) 20.23 (0.23) 2.09 (2.44) 0.92 (0.24) 20.31 (0.40) No
1.70 (0.19) 1.24 (0.03) 20.50 (0.04) 2.63 (0.29) 1.43 (0.04) 20.82 (0.05)

1.25 (0.11) 20.54 (0.13) 1.40 (0.05) 20.79 (0.07)

21.15 (2.21) 0.17 (0.17) 0.76 (0.29) 1.81 (1.28) 0.96 (0.15) 20.20 (0.20) No
3.20 (1.23) 0.79 (0.16) 20.26 (0.21) 2.19 (1.82) 1.25 (0.13) 20.58 (0.26) No
6.32 (3.58) 0.53 (0.28) 20.42 (0.43) 4.29 (0.98) 1.07 (0.12) 20.63 (0.15) No
1.97 (1.10) 0.88 (0.16) 20.14 (0.18) 3.52 (1.18) 1.45 (0.13) 20.86 (0.17) No
4.90 (1.66) 0.27 (0.22) 20.11 (0.23) 1.75 (0.63) 1.27 (0.13) 20.51 (0.14) No
2.86 (1.32) 0.76 (0.22) 20.27 (0.24) 2.09 (0.60) 1.29 (0.12) 20.58 (0.13) No
5.76 (3.35) 0.51 (0.28) 20.40 (0.41) 2.88 (0.67) 1.26 (0.11) 20.65 (0.13) (,0.10)
2.67 (1.33) 1.31 (0.16) 20.70 (0.22) 4.13 (0.90) 1.30 (0.11) 20.83 (0.14) No
2.80 (0.54) 0.75 (0.07) 20.20 (0.09) 2.66 (0.30) 1.24 (0.04) 20.63 (0.05)

0.92 (0.17) 20.15 (0.12) 1.21 (0.13) 20.47 (0.20)

1.83 (0.18) 1.15 (0.03) 20.45 (0.04) 2.64 (0.20) 1.36 (0.03) 20.73 (0.04)

1.10 (0.20) 20.37 (0.22) 1.32 (0.12) 20.66 (0.17)
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to breeding have been observed around concentrated food
sources (77–81). Given that hares browse on widely distributed
shrubs during the winter when food is most scarce, it is unlikely
that individual hares effectively could be excluded from food. It
is known that the reproductive rate of hares starts to fall in the late
increase and reaches its lowest level in the decline and low (7–10).
Thus, we can account for some, but not very strong, phase
dependency in the intraspecific component of the dynamics of the
two interacting species (i.e., as expressed in the statistical param-
eters, bi,1 and, as a result, in the ecological parameters, ai,1 and
bi,1).

Turning to the trophic interaction, the phase dependency in the
snowshoe hare is likely to arise from at least two biological
processes: the hare’s change in habitat selection, which is itself a
function of predation risk (82, 83), and the hare’s intrinsic
responses either to predator-induced stress (10–13, 82–84) or to
changes in its food supply (7–13). In lynx, it is likely to result from
at least two biological processes: (i) changes in the foraging
behavior of lynx as the relative abundances of hares and alter-

native prey fluctuate (60, 61), and (ii) shifts in the demographic
structure of the lynx population. Reproductive output by lynx also
declines rapidly to low levels after the hare peak (9, 10, 13),
resulting in a gradual upward shift in the mean age of lynx as hares
decline, and this is reversed only in the early increase (60, 61,
74–76, 85–89).

The phase dependency in the lag-2 coefficient (b1,2 . b2,2;
Table 1) suggests that ai,2bi,2 is largest in absolute value during the
decline phase (Eq. 3). New field observations (66) show that the
kill rate per lynx at a given hare density is greater during the
decline than during the increase (Fig. 3D). The functional re-
sponses of lynx were calculated based on measurements of kill
ratesykilometer along lynx trails in snow, travel rates, and activity
budgets (66). The probability that the four increase years all fall
below the four decrease years, at given densities, is 0.014 (one-
sided hypergeometric test). Separate functional response models
for the increase and decrease phase also fit the data the best (see
legend to Fig. 3D). This phase dependency may be caused by
behavioral responses of lynx because lynx surviving into the low
phase of the cycle switch to alternative prey and may have
changed hunting tactics during the decrease phase. This behav-
ioral change is known to persist into the subsequent early cyclic
increase (60, 61, 77). Phase dependency in the kill rate also occurs
in coyotes preying on hares (60) and thus may be a general feature
of this predator–prey system. The inferred changes in ai,1, bi,1, ai,2,
and bi,2 are all consistent with the estimated differences in bi,0

between the two regimes (Table 1).
By combining field observations with statistical and mathe-

matical modeling, we have been able to detect and interpret new
patterns within the boreal ecosystem. The interplay between
theory and analyses of time series data (refs. 28 and 29, and this
study) has shed light on a 25-year-old prediction of May (73) and
suggests that, even though we need to consider both vegetation
and the predators to understand the dynamics of the hare (10, 28,
29), we need only consider the hare to understand the dynamics
of the lynx. In a community context, this makes the boreal forest

FIG. 2. The relationship between lynx fur returns and lynx density
estimates obtained from intensive field studies in Alberta [1964–74;
from Keith and colleague (7–9)] and in Yukon [1987–94; from
O’Donoghue et al. (60, 61)]. Provincial fur returns from Statistics
Canada (37).

FIG. 3. The pattern of fluctuation in the snowshoe hare (L. americanus Erxleben, 1777) and the Canadian lynx (L. canadensis Kerr, 1792) as recorded
at Rochester, Alberta, from 1964 to 1974 (7–9) (A) and as recorded at Kluane Lake, Yukon, from 1986 to 1995 (10–13) (B). (C) The idealized pattern
from the data in A and B with a schematic depiction of the phase dependency in b2,2yt22 (see text) resulting from the predator–prey interaction. (D) The
functional response curve of lynx feeding on snowshoe hares for Kluane Lake from O’Donoghue (60) and O’Donoghue et al. (66). Increase years (1987,
1988, 1989, and 1994) have a different functional response than decrease years (1990, 1991, 1992, and 1993), thus explaining the phase dependency in
this system: the log likelihood increases by 9.19 when fitting two curves as compared with one common curve (the critical value being 3.00, i.e., 0.5*x2

0.95(2);
see ref. 67). The common model for the functional response curve {kill rate 5 s [hare density]y[1 1 h (hare density)]} is given by the parameters s 5
3.11 (60.28) and h 5 2.35 (60.29) (RSS 5 0.1937; 6 d.f.); for the decrease phase, the corresponding estimates are 3.92 (60.38) and 2.47 (60.36) (RSS 5
0.01218; 2 d.f.) and, for the increase phase, they are 1.26 (60.16) and 0.66 (60.16) (RSS 5 0.0073; 2 d.f.).
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ecosystem—within which the hare and the lynx are main ac-
tors—a particularly interesting system to study.

Conclusion

By combining statistical modeling of 21 time series spanning 175
years with mathematical and statistical modeling and experimen-
tal data, we have demonstrated: (i) The dynamic patterns (or
structure) of the Canadian lynx is both phase- and density-
dependent. The density dependence involves both direct and
delayed effects. The structure of the dynamics is broadly similar
over time (from the early part of the 19th century until the
present) and space (the entire Canadian boreal forest region). (ii)
The density-dependent structure of the lynx time series is con-
sistent with the proposition that the dynamics in the Canadian
lynx is governed by processes involved in the trophic interactions
between the snowshoe hare. (iii) The phase-dependent structure
of the lynx time series is primarily a result of the strength of the
trophic interaction between snowshoe hare and lynx changing
during the cycle. And, (iv), density dependence induces the
regulatory delays whereas phase dependence induces the non-
linearity. The two act in concert to produce the observed lynx
cycle. Altogether, we have clarified a long-lasting controversy in
the ecology of cyclic vertebrates of the North, namely that
concerning phase dependence and density dependence (6). For
the Canadian lynx, it is clearly not a matter of one or the other,
but both.
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