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SUMMARY

The dominant Lyapunov exponent, as estimated from time series using the Jacobian-based method, is
often used for indicating whether the underlying dynamic system is chaotic or not. The Jacobian-based
method together with Response Surface Methodology has been suggested as a method for detecting
chaotic dynamics in ecological time series. Besides pointing out that this may not be an appropriate
method, we report on estimates of the uncertainty in the estimates of the dominant Lyapunov exponent.
For this purpose, we have used time series data on Holarctic microtines. On the basis of our analyses, we
are unable to find general evidence for chaotic dynamics in northern microtine populations (north of
60° N) as recently suggested in the ecological literature. It seems, however, that the dynamic properties
of the northern and southern populations are different. These patterns are supported by testing for

nonlinearity.

1. INTRODUCTION

The periodic fluctuations commonly seen in northern
microtines (see, for example, Hansson & Henttonen
1985; Hanski et al. 1991; Stenseth & Ims 1993) have
recently been claimed to be chaotic (Hanski et al. 1993 ;
Turchin 1993) as a result of nonlinear ecological
interactions (Hanski et al. 1993). To demonstrate the
existence of chaotic behaviour, Turchin (1993) used
Response Surface Methodology (rsm) (Box & Draper
1987) in combination with the Jacobian-based method
(Ellner et al. 1991; Nychka et al. 1992) —as imple-
mented in the program EcoDyn/rsMm (Turchin &
Millstein 1993) — to estimate the dominant Lyapunov
exponent of 34 time series, representing seven Holarctic
microtine species from a total of 12 locations. The
studied time series were from populations located along
a latitudinal gradient between 39° N and 71° N (in our
analyses we use the same data files as used by Turchin
(1993)). Both Hanski et al. (1993) and Turchin (1993)
concluded that populations south of 60° N are charac-
terized by stable one-dimensional processes, whereas
populations further north may be characterized by
chaotic dynamics resulting from nonlinear processes.

Deterministic chaos is characterized by sensitivity to
initial conditions (Eckmann & Ruelle 1985). The
dominant Lyapunov exponent, A, measures the rate of
divergence between two nearby trajectories resulting
from the same dynamical process. A positive A
indicates chaos whereas a negative A indicates non-
chaotic dynamics.

Ecological time series, such as those analysed by
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Turchin (1993), can hardly be considered the result of
any deterministic process. They are inflated both by
observational noise and environmental and demo-
graphic stochastisity (Nisbet & Gurney 1982). In
ecology, therefore, care must be exercised when
adopting deterministic based definitions of chaos (Tong
1994; Yao & Tong 1994aq).

Assuming that ecological time series is generated by
a deterministic process coupled with (exogenous) noise,
the dominant Lyapunov exponent reveals whether the
underlying deterministic model amplifies (A > 0) or
dampens (A < 0) exogenous perturbations (see, for
example, Hastings ¢t al. 1993 ; Ellner & Turchin 1995).
Hence, A, may be taken as an indication of whether
the underlying deterministic process is chaotic or not.
It is crucial, however, to realize that A in such a
stochastic system measures the average rate of tra-
jectory divergence caused by the deterministic com-
ponent, using two trajectories that start near each
other and being affected by an identical sequence of
random shocks (see, for example, Hastings et al. 1993).

A shortcoming of ecological studies (Hanski et al.
1993; Turchin 1993; Hastings ef al. 1993) using the
dominant Lyapunov exponent for drawing inferences
about chaos, is that no measure of uncertainty is
provided for the point estimate of A. This is, however,
a drawback common to all algorithms proposed this far
for estimating Lyapunov exponents from time series
(Gershenfeld & Weigend 1994 ; Parlitz 1992). Without
a solid theory for the derivation of such uncertainty
measures, any interpretation of its meaning should be
done with great care (Ellner et al. 1995).

In this paper we utilize bootstrapping theory to
provide confidence intervals for the Lyapunov
exponents as found by EcoDyn/rsM (see §2).
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Specifically we calculate Bias Corrected Confidence
(Bcc) intervals (Efron 1982; Dixon 1993) for the 34 As
reported by Turchin (1993). We compare these
confidence intervals with the point estimates provided
by Turchin (1993) and discuss to what extent our
refined analyses support his published conclusions. It
should be noted that Turchin (1993) did not use the
EcoDyn/rsM package as described by Turchin &
Millstein (1993). The methodology applied by Turchin
(1993) 1is, however, essentially identical to the one
implemented in EcoDyn/rsM (P. Turchin, personal
communication).

It should be kept in mind that there arc several
alternatives to the rRsm approach (for example, Ellner
& Turchin 1995). We have chosen to focus on the rsm
as implemented by the EcoDyn/rsm-software, because
this is gaining popularity within microtine biology for
the purpose of estimating the Lyapunov exponent (see,
for example, Turchin 1993; Ellner & Turchin 1995).
We urge, however, the investigation of the usefulness of
alternative approaches.

2. THE ECODYN/RSM APPROACH

The approach used in EcoDyn/rsm (Turchin &
Millstein 1993) is to represent a time series by a model
for the growth rate, 7, as a function of previous
densities: that is,

r,=logN,/N, y=f(N, \,...,N,_,) +e, (1)

where N, is the density at time ¢, f{*) is a function of
densities, and ¢, is an exogenous noise term. The
function f{-) is called ‘the skeleton’.

Here, we define the data set X = [x;,%y,...,%,],
where x, is the observed density at time ¢ corresponding
to the variable N, in model (1). The length of the time
series is denoted by m.

In EcoDyn/Rrsum the skeleton is a polynomial function
of at most order two and dimension (i.c. number of
lags) three with Box-Cox transformed densities
(Turchin & Millstein 1993). The appropriate skeleton
is selected through cross validation done by omitting
one point in the data set X, fitting the polynomial using
Ordinary Least Squares mecthods (ors) and then
predicting the omitted point. Such cross validation is
done for all data points in turn. Comparing the
predicted and obscrved values, a measure for the
accuracy of prediction is calculated. The skeleton
model providing the best prediction is chosen. Using
the chosen model, the dominant Lyapunov exponent,
is estimated using a Jacobian-based mecthod (Ellner et
al. 1991; Nychka et al. 1992; Ellner & Turchin 1995).
For further details, scc Turchin & Millstein (1993).

Fitting the skeleton model to data by oLs, implicitly
assumes the noise-term to be time-invariant, state-
independent and additive (cf. Chan & Tong 1994).
This is a critical assumption if statistical inference is to
be attempted. This property of the noise-term is used in
the bootstrapping approach adopted in this study.

3. BOOTSTRAPPING

The basic idea is to use the f-function given by
equation (1) for the purpose of generating bootstrap
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replicates of the original time series and use EcoDyn/
RsM to cstimate A for cach bootstrapped time series.
For this purpose we use the discrete time simulation
model defined by

N, =N_,exp(fIN_,-. ., Ny) te). (2)

The first d observations from the original time series X
are used as initial values when generating the simulated
data series. A single bootstrap replicate (pseudo-
replicate) ¢ from the original time series X is denoted
X;.
The generation of pscudoreplicated time series
proceeds as follows (cf. Hjort 1994).

1. EcoDyn/rsm is treated as a ‘black box’ to, for
each original time series X, produce an ‘optimal’
skeleton model, f(+), and a dominant Lyapunov
exponent, A.

2. We generate pscudoreplicated time series X,, by
simulating cquation (2) using the ‘optimal’ skeleton
function, f{-). The noisc is approximated by random
sampling with replacement from the empirical dis-
tribution of oLs residuals, {é,}.

3. We proceced until we have a time series with as
many simulated data points as the original series.

Step two and threc are repeated until we have n
pscudoreplicated time series; i.e. Xw wherez=1,...,n.

For each time series, we created n (= 500; but see
below) bootstrap series and used EcoDyn/rsm to
estimate the dominant Lyapunov exponent, A,, for
each X,(i=1,...,n). It is important to note that we
treat the EcoDyn/rsm package as a black-box es-
timator. This means that the EcoDyn/rsm package
may sclect different skeleton models f;(+) for the
various time series replicates X,. The distribution of the
Lyapunov exponents thus obtained is for each original
time series used to calculate Bias Corrected Confidence
intervals (Bcc) (Efron 1982). The bias correction is
done by calculating the fraction of bootstrap replicated
Lyapunov exponents that are smaller than the point
estimate, and using this fraction to adjust the upper
and lower percentile of the confidence interval for the
given data set.

One problem with the polynomial skeleton models
underlying the EcoDyn/rsm approach is that its
resulting dynamics may be unstable (i.e. diverge to
infinity, cf. Cox 1977; Turchin & Taylor 1992; Perry
et al. 1993; Chan & Tong 1994) if the trajectories

jumps outside the range of observed values. In such

divergent time scries (determined by an excessive
growth rate somewhat arbitrarily defined as », > 10)
floating point errors quickly occurred in the simu-
lations. These pscudoreplicates were therefore dis-
carded and new time series produced. This causes an
unavoidable bias in our results.

If the pscudoreplicated time series had an r, < —10
at any given point we sat 7, = —10. This could be
considered as local extinction. Stochastic processes (i.e.
the noise term) may then be seen as preventing the
time series from converging to zero.

With these constraints we produced, for all the 34
time series, 500 non-divergent bootstrap time series. A
surnmary of the data used in this paper is provided in
table 1.
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Table 1. The Holarctic microtine rodent data set

(Characteristics of the time series data used in the analysis: all series are provided by Peter Turchin and are the same as those
listed in Turchin (1993: table 1); original sources to the data are given in Turchin (1993). The series are numbered for
convenience of reference; no. 1-23 are those north of 60° N (called the ‘northern microtine populations’), whereas the
remaining are those south of 60° N (called the ‘southern microtine populations’). Latitude is given as °N. Asterisk denotes time
series of which we have not been able to reproduce the results reported by (Turchin 1993); see the main text. Season refers
to the time of the year from which the samples are taken and is given as: S, spring or early summer; I, autumn or late summer;
W, winter; A, single annual sample, or annual averages of several samples (see Turchin 1993). Failures is the number of
(divergent) discarded simulations. Qualitatively evaluated goodness of fit indicates how well the pseudoreplicated time series
compares with the original time series, 4 indicate good fit, — denotes poor fit and + denotes intermediate fit (see figure 3).
The reported scores are the median scores of the three authors. Test for nonlinearity indicates whether the null hypothesis of
linearity was rejected + or not — (based on O. N. Bjernstad ef al., unpublished data).)

qualitatively
years of evaluated test for
no. species location latitude observation  season  failures goodness of fit nonlinearity
1 Lemmus trimucronatus Point Barrow 71 1946-66 A 164 + +
2 Lemmus trimucronatus Point Barrow 71 1955-72 S 7118 + +
3 Lemmus trimucronatus Point Barrow 71 1955-72 F 15 =+ +
4 all species Kilpisjarvi 69 1964-86 S 0 + +
5  all species Kilpisjarvi 69 1964-86 F 6 + +
6  Clethrionomys glareolus Pallasjdrvi 68 1970-85 S 0 + +
7 Clethrionomys glareolus Pallasjarvi 68 1970-85 F 0 + -
8  Clethrionomys rutilus Pallasjdrvi 68 1970-85 S 0 + +
9 Clethrionomys rutilus Pallasjarvi 68 1970-85 F 105 + -
10*  Clethrionomys rufocanus Pallasjdrvi 68 1970-85 S 2649 + —
11 Clethrionomys rufocanus Pallasjarvi 68 1970-85 F 125 + -
12%  Microtus agrestis Pallasjarvi 68 1970-85 S (U +
13 Microtus agrestis Pallasjarvi 68 1970-85 F 299 + —
14 Microtus oeconomus Pallasjarvi 68 1970-85 S 20665 - -
15 Microtus oeconomus Pallasjirvi 68 1970-85 F 11446 + —
16 Clethrionomys rufocanus Kola 67 194664 F 66 + +
17 Clethrionomys glareolus Kola 67 194664 F 338 - +
18  Clethrionomys glareolus Umea 64 1971-88 S 56 + -
19 Clethrionomys glareolus Umea 64 1971-88 F 554 + +
20*  Clethrionomys rufocanus Umea 64 1971-88 S 307 + +
21 Clethrionomys rufocanus Umed 64 1971-88 F 320 - +
22 Microtus agrestis Umed 64 1971-88 S 9119 + +
23 Mucrotus agrestis Umea 64 1971-88 F 578 + +
24 Clethrionomys glareolus Tataria 56 1936-58 A 0 + -
25 Clethrionomys glareolus Serpukhov 55 1936-58 A 351 + -
26 Clethrionomys glareolus Tula 54 1936-58 A 4 + —
27 Clethrionomys glareolus Wytham Wood 51 1948-70 S 0 + -
28 Clethrionomys glareolus Wytham Wood 51 1948-70 A 0 + -
29 Clethrionomys rufocanus Hokkaido 45 1961-85 S 0 + -
30  Clethrionomys rufocanus Hokkaido 45 1961-85 S 1533 + -
31 Clethrionomys rufocanus Hokkaido 45 1961-85 F 0 + —
32 Microtus montanus Wyoming 43 1969-87 F 0 - +
33 Microtus californicus California 39 1959-77 A 0 — —
34 Microtus californicus California 39 1959-77 A 0 — —

The problem of unstable dynamics could have been
avoided by using surrogate methods (Theiler et al.
1992). The close link with the underlying model
would, then, have been lost. Obviously much methodo-
logical work remains to be done at this point. We have
no reason, however, to believe that the main conclusion
reached in this paper rests on the problem of unstable
time series. Indeed we feel confident that the pseudo-
replicated time series used in our analysis reflect those

problem we share with Turchin and others estimating
dominant Lyapunov exponents, etc., on the basis of
rodent time series.

4. BIAS-CORRECTED CONFIDENCE
INTERVALS FOR HOLARCTIC
MICROTINES

Figure 1 depicts the Bccs and point estimates for all

of the original time series. This is so because we
compared the power spectra of the bootstrapped and
the original time series (cf. Tsay 1992) (see below). A
remaining problem with our analysis is, nevertheless,
the shortness of the original time series. This is a
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34 time series. The width of the confidence intervals for
the 34 series are rather variable. The bias of the
estimates also vary substantially between the series.
Figure 2 depicts typical bootstrap distributions of the
estimated dominant Lyapunov exponents for four time
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dominant Lyapunov exponent
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Figure 1. The 809, Bcc intervals for the estimated dominant Lyapunov exponent for 34 time series located along a
latitudinal gradient between 39° N and 71° N (see table 1). Filled circles represent the point estimates provided by

the EcoDyn/RrsM package.
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Figure 2. Four representative bootstrap distributions of Lyapunov exponents. These are time series () no. 12, point
estimate —0.35, (b) no. 19, point estimate 0.17, (¢) no. 28, point estimate —0.79, (d) no. 34, point estimate —0.99,
chosen to demonstrate the various shapes of distributions which we obtain.

series with 500 replicates. As can be seen, these
distributions have long negative tails. With such
skewed distributions and only 500 pseudoreplicates,
809, confidence intervals are used to reduce the
impact of negative extreme values.

For some of the series we had to discard a high
number of time series before obtaining 500 non-
divergent series (cf. table 1). Two of the series of root
vole (Microtus oeconomus) from Pallasjdrvi (Finland) are
the most extreme ones with 20665 and 11 446 discarded
time series.

For three time series (marked with an asterisk in
table 1) we have not been able to reproduce the same
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point estimate for the Lyapunov exponent as reported
by Turchin (1993). This is due to the fact that Turchin
(1993) did not use the EcoDyn/rsM package to estimate
the reported Lyapunov exponent for these time series
(P. Turchin, personal communication). Following
Peter Turchin’s (personal communication) suggestion,
we have used the EcoDyn/rsm estimate for these time
series as well. It is worth noting though that the
‘evidence’ for chaotic dynamics in northern microtine
populations is based on the mean Lyapunov exponent
of the 23 northern populations being 0.2 (40.09)
(Turchin 1993). Using the EcoDyn/rsm estimates of
the Lyapunov exponents for all time series (also for the
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Figure. 3. ‘Goodness of fit’ of the pseudoreplicated time
series: solid line = observed spectral density; solid line plus
star = median; dashed line = 909, probability interval. (a)
A good fit (in table 1 denoted as +) for a time series. (6) A
poor fit (in table 1 denoted as —) for a time series. A good fit
is defined as one for which EcoDyn/rsm provides a skeleton
model from which we can generate pseudoreplicates corre-
sponding well to the original time series. For a specific time
series this is evaluated by calculating the spectral density
(using the Parzen window with a truncation point M = 3)
for 1000 simulations of the skeleton model provided by
EcoDyn/rsMm. At each fixed frequency the 59, and 959,
quantiles are selected to form a 909, probability interval.
The median is the 509, quantile. If the estimated spectral
density calculated for the original time series falls largely in
the 90 9, probability interval we conclude that there is a good
fit.

three time series which Turchin did not use the
EcoDyn/rsM estimate), this average is reduced to 0.1
(£0.09). The estimated mean and standard error
remained unchanged for the southern populations
(—0.9340.20). These numbers should be interpreted
with great care, which certainly is done by Turchin. It
should also be noted that many of the populations
cannot be considered as independent. Several popu-
lations are either different species in the same rodent
community, or spring and fall samples of the same
population.

Within the set of northern populations, we have
searched for trends in the estimated Lyapunov
exponents using linear regression (both with and
without various types of weightings): no significant
trends has thus been detected. If anything, a tendency
towards larger positive Lyapunov exponents for the
southernmost populations within the northern set are
found, not the opposite.

Using the bootstrap procedure as described above,
we calculated bootstrap distributions of the spectral
density for each of the 34 time series. To indicate how
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well properties of the original time series are preserved
in the pseudoreplicated time series we compared the
spectral density of each of the original time series with
the median and the 90 9%, probability interval from the
empirical bootstrap distribution (cf. Tsay 1992). All
three authors of this report have independently scored
the series as good, intermediate or poor. Figure 3
exemplifies a ‘good’ and a ‘poor fit’. The result of the
subjective evaluations for all 34 time series are
summarized in table 1. Any conclusion based on the
Jacobian method is critically dependent on the skeleton
model capturing the essence of the dynamical features
of the time series. Conclusions based on pseudo-
replicated time series with poor fit should be treated
with caution. From the studied time series, 7 out of 34
series provided poor fit, whereas 16 out of 34 series
provided good fit; 11 of 34 provided intermediate fit.

We have been unable to find any relation between
the failures due to unstability of the bootstrapped time
series and the quality of fit between the pseudo-
replicated and the original time series.

5. DISCUSSION

The Lyapunov exponent as a measure of sensitivity
to initial conditions (i.e. chaos) originates from
deterministic dynamical system theory (see, for
example, Schuster 1988). Recently Tong and co-
workers (Chan & Tong 1994; Tong 1995) have
demonstrated that the Lyapunov exponent as a
measure of sensitivity to initial conditions has severe
limitations in any stochastic system. Indeed, they
question whether the estimation of the Lyapunov
exponent (as done by packages such as EcoDyn/rsm)
has any clear interpretation in stochastic systems. The
Jacobian method works well in the deterministic case.
However, if this method is to be applied to stochastic
systems, restrictive assumptions have to be made (Tong
1995): in estimating the divergence of two nearby
trajectories one has to assume that they are exposed to
exactly the same sequence of noise (the ‘identical noise
assumption’). Without this assumption, the estimated
value provided by packages such as EcoDyn/Rrsm has
no clear interpretation as a Lyapunov exponent similar
to the one used in deterministic systems. The reason for
making the ‘identical noise assumption’ is due to the
fact that two nearby trajectories of a stochastic dynamic
system will always diverge if they are influenced by
different sequences of random perturbations. Ellner &
Turchin (1995, pp. 348-350) provide a very relevant
and important discussion. Yao and Tong (Tong 1995;
Yao & Tong 19944, ) are currently developing a
different way of handling chaos in a stochastic
environment. Their approach is based on stochastic
process theory and may therefore avoid assumptions
such as the ‘identical noise assumption’.)

Consistent with Turchin (1993) and Hastings et al.
(1993) we have, however, in this paper assumed that
the estimated Lyapunov exponent indicates the under-
lying dynamic sensitivity to initial conditions. On this
basis, figure 1 may be taken to indicate that the
southern and northern populations of microtines have
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qualitatively different dynamics, a conclusion which
compares favourably with earlier conclusions (see, for
example, Hansson & Henttonen 1985; Stenseth et al.
1985; Hanski et al. 1991, 1993; Turchin 1993; for a
review, see Stenseth & Ims 1993). When interpreting
figure 1, it is important to keep in mind that the
southern and northern time series are in general taken
from widely different geographic regions (the northern
populations are mainly from the Fennoscandian
peninsula, whereas the southern populations are from
North America and Japan). Eight out of 11 southern
time series have confidence intervals which do not
include positive values. The remaining four have
confidence intervals containing zero. For the northern
populations, most of the confidence intervals are either
strictly or partly positive. However, because only six of
23 have a confidence interval which is strictly positive,
we caution against concluding that the northern
populations in general exhibit chaotic behaviour.

From some studies of chaos in noisy time series, it is
indicated by numerical experiments that estimating the
sign of the dominant Lyapunov exponent from time
series, using assumption free-methods, requires 200-500
or more data points (depending on the method used;
see Nychka et al. 1992; Wilson & Rand 1993).
Somewhat less data may be required if we know the
models describing the ecological processes to the extent
that only one or two free parameters in the dynamic
equations remains to be estimated from the time series
(T. Schreiber, personal communication). Having as
few as 16 to 28 data points per time series, as Turchin
(1993), is far below what would, in general, be
required. It should be noted though that EcoDyn/rsm
does attempt to reduce the model uncertainty through
specifying, and thereby restricting the possible models.
Nevertheless, the EcoDyn/rms-model with maximal
model complexity, still contain ten free parameters
with an addition of three parameters due to the Box-
Cox transformation. We are convinced that approaches
like the one taken by EcoDyn/rsm would have been
much better if we, somehow, could restrict the number
of unknown parameters more than is currently done.
We have difficulties, though, in seeing how this could
be done with any degree of certainty for microtine
rodents dynamics.

Until approaches like EcoDyn/rRsM have been
refined so as to incorporate statistical properties, a
better approach for short time series could be to ask a
more fundamental question: can we reject the hy-
pothesis of linearity ? Nonlinearity is after all necessary,
but of course not sufficient, for producing chaotic
dynamics (Schuster 1988). If we do not find support for
nonlinearity in a time series, it does not make sense to
search for chaos.

Recently statistical methods with known properties
have been developed to test for nonlinearity (Chan &
Tong 1990; Tong 1990; Brock & Potter 1992; Theiler
et al. 1992; Hjellvik & Tjestheim 1995; Terdsvirta
1994; Tjestheim 1994). Using a nonlinearity test
developed by Chan & Tong (1990) confirm what
has been found in the above reported analysis
(O. N. Bjornstad ¢t al. unpublished data). As sum-
marized in table 1, O. N. Bjornstad et al. (unpublished
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results) found that for 14 out of 23 northern time series,
the null-hypotheses of linearity was rejected. For the
southern time series the null hypothesis of linearity was
rejected for one out of eleven. In short, this suggests
that the northern time series may be more nonlinear
than the southern time series. It is, however, important
to realize that evidence for nonlinearity in the northern
time series is not sufficient for concluding that the
dynamics is chaotic (see, for example, Subba Rao
1992). The existence of nonlinearity only implies that
currently we are unable to rule out the possibility that
the underlying dynamics of these time series may be
chaotic. Therefore, concluding that the northern
microtine time series are chaotic seems (at present)
unwarranted. It is, for example, worrying that the
three most northern time series with strictly positive
confidence intervals are all concluded to be linear.
However, as nonlinearity is a necessary condition for
chaotic dynamics, we may infer that the southern time
series are non-chaotic.

6. CONCLUSION

On the basis of our analysis, we conclude the
following.

1. Our analyses based on the EcoDyn/rsm package
show no convincing and general evidence for chaos in
northern microtine populations. There are, however,
some indications of chaos in some populations, and
some support for presence of nonlinearity. We have,
however, found some indications that the more
southern populations (south of 60° N) exhibit stable
non-chaotic dynamics.

2. Packages such as EcoDyn/rsm may be useful, but
would need to include statistical properties if viable
conclusions about ecological dynamics are to be
derived.

3. If we are to explore complex behaviour in
ecological time series as short as the one discussed in
this paper, it may be more rewarding to test for
nonlinearities than to provide point estimates for
Lyapunov exponents, the meaning of which is very
unclear indeed.
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study. We thank Mark Boyce, Erik Bolviken, Thomas F.
Hansen, Ilkka Hanski, Thomas Schreiber, Howell Tong,
Peter Turchin and two anonymous referees for valuable
suggestions and comments on the work reported in this
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ERRATA

Proc. R. Soc. Lond. B 260, 257-264 (1995)

Experimental evidence for habitat dependent selection in a Bombina hybrid zone

By C.J. MacCarrum, B. NURNBERGER AND N. H. BARTON

During field work in Croatia earlier this summer, we became aware of the close similarity between Bombina bombina
eggs and those of Hyla arborea: they are indistinguishable except for a difference in average egg size (with
overlapping distributions) and in the compactness of the egg cluster. Although fresh eggs had been taken from the
immediate vicinity of B. bombina choruses, contamination of our samples with H. arborea appeared likely. Close re-
examination of our frozen tadpole samples has confirmed this concern. We therefore wish to retract this paper.
Proc. R. Soc. Lond. B 261, 159-165 (1995)

Bootstrap estimated uncertainty of the dominant Lyapunov exponent for Holarctic microtine rodents

By W. Farck, O. N. BjorNsTAD AND N. C. STENSETH

In Falck ef al. (1995, table 1), the years of observation should have been listed as 1951-1975 for Serpukhov,
1949-1976 for Tula, and 1948-1969 for Wytham Wood.
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