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SUMMARY

Ever since Elton, the 3-5 year density cycles in lemmings (and other micratines) in Fennoscandia have
troubled scientists. Explanations have involved intrinsic regulation and trophic interactions. We have
analysed yearly changes in fall abundances for lemmings over 25 years from two local mountain sites in
South Norway. These time series appear to have an underlying nonlinear structure of order two. Fitung
a plece-wise linear threshold model of maximum order two, the most parsimonious model was, however,
of first order for both series. The resulting dynamics from this model is a limit cycle. Reformulating the
model in terms of abundances yields 2 madel which combines {delayed) density-dependent effects and the
influence of the cyclic phase. The delayed density-dependence of one part of the model is consistent with
an effect of specialist predators during the peak and crash phases of the cycle, although other trophic

interactions cannot he excluded.,

1. INTRODUCTION

The 3-5 year density fluctuations in lemmings are well
known ta scientists and laymen alike {cf. Finerty 1980;
Stenseth & Ims 1993 4). In modern ecological research,
these density cycles have troubled biologists since
Elton’s pioneering work (Elton 1924, 1942; see also
Shelford 1943 ; Krebs 1964, 1993 ; Pitelka 1973; Pitelka
& Batzli 1993; for reviews, see Stenseth & Ims 1993 ¢,
b). One dominating view has been that lemmings (and
other microtines} are regulated hy intrinsic factors
(Chitty 1960; Krebs 1964, 1973; Charnov & Finerty
1980}, in effect resulung in dynamics which depend on
the population cyclic phase rather than the population
density per se (hereafter referred to as ‘phase-dependent
dynanics’).

Trophic interactions have also heen suggested to
play key roles in the generation and maintenance of
microtine population cycles: Lack {1934) suggested
that they resulted from interactions with the food
supply (see, for example, Batzli (1992) for a recent
review). Mare recently, several authors have argued
that predation is the key factor (Hanski 2 of 1991,
1993; Hanski & Korpimiki 1995; Norrdahl 1995;
Norrdahl & Korpimiki 1995). May (1972} suggested,
on the basis of available evidence, that trophic
interactions could easily give rise to stable imit cycles.
However, this has never been demanstrated empiri-
cally for microtines (cf. Gilhert 1984). The mere
existence of nonlinearity has in fact been demonstrated
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for anly ane microtine (Ondatra zibeihica; Tong 1983 —
otherwise it has only been assumed or concluded from
theoretical models {e.g. May 1972; Hanski ¢f af. 1993,
Turchin 1993, 1995).

Here we show, by employing the threshold auto-
regressive models of Tong (1993}, that Norwegian
lemmings (Lemmus lemmus) exhibit nonlinear dynamics,
that the dynamics are both phase- and density-
dependent, and that they may adequately he described
as a limit cycle. On the basis of these results we suggest
that both intrinsic processes and a trophic interaction
are essential i the generation of the lemming cycle.

2. THE SPECIES AND THE DATA

We have studied Norweglan lemmings (Lemmus
lemmus (L.)) on two permanent | ha grids, 2.3 km
apart, in the alpine zane {ca. 1250 m above sea level} at
the mountain site of Finse in southern Norway (607
35" N, 7° 30" E) (Framstad et af. 1993 ¢, 4) (figure 1).
The vegetation of the trapping grids is considered to be
of moderately high {grid H} and medium (grid M}
productivity for this area, and is characterized by
various mixes of dwarf shrubs, herbs, grasses, sedges,
lichens, and mosses. The climate is alpine {@stbye et al.
1975} with a short {2.5-3.3 months), cool growing
season (mean July temperature of +8.0°C), with
heavy snow cover in winter often exceeding 4 m in
depth, and with a mean annual temperature of

—2.1 °C {1961-1990; Aune 1993).
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Figure 1. () Location of the study site at Finse, South Norway (60°36" N, 7°30° E). The zone of strongly cyclic rodent
population fluctuations in Fennoscandia is indicated by dark shading (redrawn from Hansson & Henttonen (1988)).
{#) Time trajectories of the ln-transformed relative abundances {catch per 100 rrap-nights+0.08) of Norwegian
lemmings {Lemmus lemmas (L)) on two trapping grids {H, M) for the period 1970-1395.

Lemmings were captured on these | ha grids by
snap-trapping twice a year {end of June/beginning of
July —termed spring; end of August/beginning of
September — termed fall) from 1970 until present. We
have regularly used 1200 trap-nights per grid and
trapping session, but with some reduction in trap
numbers due to partial snow cover during same spring
sessiors. We employ the number of captures per 100
trap-nights as a standardized abundance index. Since
1970, a total of 3114 lemmings have been caught an
these two grids. Besides lemmings we have caught:
Micratus seconomus (16.49] of total catches on grids H
and M combined), A, agrestis (2.5%,), Clethrionomys
glareatus (2,193, C. rufocanus (1.0%,), and Serex araneus
(1.7%). Hence, lemmings tend to dominate the small
mamimal community; however, M. oeconomus was
numerically dominant on grid H during the 1970s
(Framstad 2 afl. 1993 a).

The relative abundances of lemmings as revealed in
the fall catches were frequently very high, and resulted
in pronounced and rather consistent regular fluctu-
ations {figure 1). The overall lower abundances in the
spring result in less pronounced fluctuations, which
presumably are more sensitive to random sampling
variation. There is considerable covariation in the
fluctuation patterns of the spring and fall ume series for
both grids {figure 1). However, the less cansistent
fluctuations of the spring series did not permit
consistent analyses of these series. Hence, only the fall
time series have been used for further analysis. Focusing
on fall abundances is also consistent with recom-
mendations by Henttanen o af. (1985].
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The consistent fluctuation pattern and the numerical
dominance of lemmings at our study site at Finse
indicate that this alpine area 1s part of the core range
of Norwegian lemmings. Other long-term Fenno-
scandian small rodent studies which include lemmings
are placed in the low alpine, subalpine birch or taiga
zones. These sites appear to be more marginal within
the lemming range, with less regular population
fluctuations of lemmings {e.g. Kalela 1971 ; Henttonen
& Jdrvinen 1981 ; Henttanen e af. 1987; Oksanen &
Oksanen 1992; Henttonen & Kaikusalo 1993). Our
analysis may therefore not be directly applicable to
other available long-term time series for Norweglan
lemmings.

The rapid increase to high abundance in lemmings
{higure 1) is possible because of their high reproductive
potential. A female may have an average of six {1-12)
voung in a ltter, pregmancy is 21 d and age of
maturation in the field 1s typically 5 weeks (reviewed 1n
Stenseth & Ims 1993¢). Sex ratia at birth is approxi-
mately 30:30 {A. Semb-Jobansson unpublished data).
Past-partum oestrus is common {Semb-Jobansson ef al.
1993), so that a female may produce three or more
litters during the summer. A common feature
appears ta he frequent subnivean winter reproduction
(E. Framstad ¢ al. unpublished data; see also Hansson
1984). Due to the length of the winter, subnivean
winter repraduction may have more pronounced
effects in the lemming species than in most other
micratine species {cf. Kaikusalo & Tast 1984, Sitcler
1985].

The predator community of the study area relevant



to small rodents consists primarily of red foxes (Pulpes
vulpes), Arctic foxes (Alopex lagopus), stoats {Mustela
evmineq), weasels (M. nivalis), vavens (Ceruus corax),
rough-legged buzzards (Butes lagepus), kestrels {Falco
tinnuneulys), and common gulls (Larus canus) (Dsthye ef
al. 1975). Among these, stoats and weasels have been in
focus in many studies of Fennoscandian rodents
hecause they are considered to be specialist predarors
of microtines (Norrdahl 1995). That is, their demo-
graphy is numerically and reproductively linked to the
rodents {e.g. Hanski ¢f af. 1991). Studies of the diet of
birds of prey (Hagen 1952) indicate that lemmings are
less favoured food items than other microtines; it is
even suggested that lemmings are not very palatable
(Taite 1993). Hagen (1952) argued that this is perhaps
the reason why lemmings are allowed to reach such
extreme densities.

3. STATISTICAL MODELS AND
TREATMENTS

Microtine population dynamics have at various
stages been considered phase-dependent (e.g. Krebs
1978} and density-dependent (e.g. Hornfeldt 1994,
Bjgrnstad et 2. 1933). From a modelling perspective,
density dependence is usually formulated as r, =
g(N,N,_ |, ..., N_,), where ¥, is the abundance at time
t, g{+) is a general function for density dependence (e.g.
Turchin & Millstein [993), and r, is the growth rate
given by In(N,,;/N,). A possihle analogous phase-
dependent madel would be », = f(r, 7,4, ..., 7,4y ) For
certain specifications of g{+) and f{-) there will be a
duality between the density-dependent and the phase-
dependent maodels. For instance, a linear first-order
phase-dependent maodel may be considered in terms of
a second-order {delayed) density-dependent madel
{with constraints on the parameters).

A crucial issue 1s to select the functional form for f{-)
or g{+). Unless the data indicate otherwise, a log linear
model for f{+) may be advocated {e.g. Royama 1992,
Harnfeldt 1994; Bjernstad e el 1995). In such a
situation, the statistical model will be identical to a
standard linear autoregressive {Box-Jenkins) madel — a
model for which both the dynamic {e.g. Royama 1992)
and statistical (e.g. Wel 1989) properties are well-
known.

Several goodness-of-fit tests are necessary in order ta
find a suitable model. First, the data should adhere
approximately to a symmetric homascedastic distri-
hution {e.g. a normal distribution]. This amaounts to
finding a suitable scale — which 1s usually the lag-scale
for biological populations since papulation dynamics
are multiplicative. Second, deviations from linearity on
this transformed scale should be assessed. Various tests
for nenlinearity in tifme series exist, but few have been
properly investigated for the present small sample
situation. The man problem is related to low pawer
when data are scarce; one may end up retaining the
null hypothesis of approximate linearity (on the log
scale) when this is not true (i.e. a type IT error). In the
present analysis we employ two tests for nonlinearity:
a test for threshold nonlinearity {(Chan & Tong 1990;
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Tong 1993) and a non-parametric test based on the
conditional means (Hjellvik & Tjastheim 1995).

Whenever approximate linearity is rejected, one is
faced with the task of finding an alternative nonlinear
model. The problem is that while there is only one form
of linearity, nonlinearity may take an infinite number
of different forms (e.g. Tong 1993; Tjestheim 1994).
The curse for ecolagical time series analysis is that
flexible models are usually associated with a large
number of free parameters that may consume the
numnber of observations completely (Falck et af. 1995 4).
Below we focus on simple threshold autoregressive
madels (self-excitatory threshold autoregressive models
- SETAR, that is, piece-wise linear autoregression
(Tong 1983, 1993)). This model-structure has pre-
viously been fitted to some of the classical ecological
time series (lynx, Lynx canadensis: Tong 1993 ; blowflies,
Luciha cupring: Chan & Tong 1986; Tsay 1983;
muskrat, Ondatra zibethica: Tong & Lim 1980).

Both the original and the log-transformed abun-
dances in our series had very skewed distributions
(with a surplus of low wvalues). Na simple trans-
formation of the data appeared to stabilize the variance
satisfactorily as required for the fitting of the series to
time series maodels. Hence, we investigate the
sequence of growth ratesr, = In{ N, /N,] (cf. Sugihara
& May 1990). Such an analysis of growth rates
represents a difference in abundances which also
promaotes stationarity of the series (Bax & Jenking
1976). Due to the presence of zeraes in the abundance
data, a constant equal to 0.08 (equivalent to the
capture of a single individual during a full trapping
session) was added ta each observation prior to log-
transformation. Without loss of generality, growth
rates were scaled (mean = 0, SD = 1) prior to analysis.

As indicated, we employ a plece-wise linear
threshold autoregressive madel in r, with one threshald
as an alternative to the log linear model. Denoting #, as
the growth rate at time ¢ and ¢ as the order {maximum
lag), we may write this model as:

QGata 1 FtTa ot ot T 7 16,
ifr,, =In{N/N_) <8

7, = (1)
Qyotay Yyt agaty gt a7 g +e,

Hry =In(N/N_\) >4

where a, , 4, |, @, 5, ..., 4, 4 cOrrespand to the estimated
parameters for the two regimes (=1, 2} below and
above the threshold (f), and {¢ } is a sequence of
independent, normally distributed, state-independent
random variables with mean zero.

Once it has been determined if a linear or nonlinear
model 1s more appropriate, the order must he
determined. We have employed cross-validation using
a non-parametric method (Cheng & Tong 1992) to
determine the maximum order for further consider-
ation. For comparison we have also calculared the
crass-validation based on the linear autoregressive
model {see Kohn & Ansley (1986) for ARIMA
estimation with deleted observations). When fine-
tuning the final model we use the AIC, (Hurvich &
Tsal 1989; see also Tong 1993). See, for instance,
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Royama (1992), Bjarnstad e al. (1995), and Stenseth
(1995) for a discussion of the ecological significance of
the order.

To investigate if the two segments of the plece-wise
model are significantly different at the threshold,
confidence intervals for the predicted values at this
point were calculared using classical linear regression
theary (e.g. Sen & Srivastava 1990, ch. 3]. The paoled
variance of the SETAR3 model was used as the
variance for both regimes.

The analyses were carried out using S-plus for
Windows version 3.2 (Stavstical Sciences 1993) and
SETARS (Tong 1993). The non-parametric order
estimates and test for nonlinearity was calculated using
a code campiled in Borland Pascal version 7.0 (Borland
1992} interfaced with S-plus.

4. RESULTS

The null hypothesis of linearity was rejected at the
59, level for both series {grid H: non-parametric tests,
#=10.02; threshold tesr, p < 0.01; grid M: non-
parametric tests, p <0 0.01; threshold test, p < 0.01).
Thus, the evidence against linearity is overwhelming.

Order estimation (figure 2) indicates that order twa
is appropriate. The optimum order of the linear model
diverges from the non-parametric by indicating that
order three and four are slightly better than two. This
is likely to be a reflection of the nonlinearity of the
underlying pracess {Royama 1992: ch. 2) and is the
artefact of imposing linear constraints on a nonlinear
process. From the nonparametric model it is clear that,
if not twa, the arder is closer to one than three or four
{CV, < GV, < CV; see figure 2).

Following the order estimates (figure 2} we have
used a piece-wise linear, ane-threshold model of
maximum order 2 {4 in equation (l}). The most
extensive second order, plece-wise linear threshold
model to be applied to the two series (H, M) is
therefore:

Gota g tay ., te,
fr_, =In(N/N,_ )</

1= (2)
Qyotag b tay a7, o Fe,

e =m{N/N_,) =8

Thresholds were selected to give optimal models (as
Judged by AIC,}. For both series the most parsimonious
structure of the threshold autoregressive model was
{table 1}:

ayotey, ifr, ,=In(N/N_} £ p
n= (3)
Gy gty Fioy T 6g, ifr,, =In(N/N_})> S

Note that the lower regime is represented by a
constant and that the upper regime includes one of the
maximum of twe lags (in r,). Plots and tests of residuals
from the models for both fall series indicated that these
were reasonably approximated by symmetrical noise
(SETARS3; Tong 1993).

The estimated models and parameter values gave
essentially the same result for both series. Based on
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Figure 2. Order estimates for the time series of growth rates
from grids H and M, based on baoth lincar autoregressive
{grey lines and open triangles} and non-parametric {solid
lines and circles) models. Cross validation error (CV error) is
plotted against model order,

mspection of the spectral density function (Wei 1990},
a gignificant periodicity of 3.4 was found for bath time
series. Simulating the skeletons {equation (3) without
noise] of the fitted models results in limit cycles of
(frxed) period 3. The skeletan for the fitted model for
the #, series for grid H 1s shown in figure 34. As can he
seen from the 95 % confidence intervals of the growth
rates (table 1), for both gnds the growth rate for the
lower segment is significantly less than the maximum
rate of the upper regime (cf. Agure 3). The selected
threshold values for the series were similar (table 1),
suggesting some particular underlying biological pro-
cess (helow).

5. DISCUSSION: COMBINING PHASE-
DEPENDENT AND DENSITY-DEPENDENT
DYNAMIGS

Even though we have based the analysis on the
growth rates (r,), the structure of the statistically
deduced model shows clear similarites to linear
autoregressive models abtained for lag-abundance data
of other radent species (Bjornstad ¢t of. 1995). That js,
equation (3) may be rewritten as

i n(N,/N,_() < f

(4)
Nzcxp[az.ﬂ ta,, In(¥,) —ay,In{N, 1+ 62,:]
ifln(N/N,_) > p8.

N, exp [41,0 + eu]

N =

The two growth rate regimes relate to different
phases of the cycle rather than to density levels. This
model may therefore appropriately be referred to as a
combined density-dependent and phase-dependent
model, where the threshold § represents the phase-
dependence, and the lagged regressions on past
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{The models are SETAR models based an Tong {1993}, applied to series of yearly growth rates of lemmings at Finse, South
Norway, 1970-1995, based on fall catches from two grids (H, M). Symbols for coefficients are the same as in equation (1) of the
main text. 959% C.L indicates the 959 confidence intervals for the growth rates at the threshold for the respective regimes

{r,{)], hased an the pocled variances.)

coefficients
regime 85% C.L poaled
grid ¢ 4 {+SE) 4, {x SE} af 7. 5] # threshold  variance  AIC,
H 1 14266 (£0.1441) {0.1094, 0.7438) 12 (.10 0.3104 —0.5602
9 2.0372  (+0.4669) —2.7399 (+04897) (13492, 2.1470) 11
M [ 1.0830 (£ 0.0766) (—0.1044, 0.2704) 7 (L0O5 (3.2536 —0.9957
2 L0944 (+£0.2123) —1.7489 (+£0.2537) (0.825L, 1.1867) 16

densities during the upper regime represent the
(delayed] density-dependence. Phase-dependence has
been suggested on the basis of many earlier ex-
perimental studies (summanzed by Krebs (1978)), but
has never befare been shown for time series data on
microtines.

Our general second-order model formulation
{equation (2)) may, in its deterministic form, exhibit a
wide range of dynamics, from stable points via
limit cycles ta chaos, depending an parameter values
{T. Lindstrém & N. C. Stenseth, unpublished data}.
The most apprapriate madel for our data (equation
{31} is, however, more restrictive. It vields interesting
limit cycle behaviour with both direct and delayed
density-dependence. [t should be emphasized that the
limited sample size of 25 growth rates severely restricts
the power and reliahility of the statistical analyses, ag
most of the methods have been developed and tested
for much larger sample sizes. Nevertheless, the con-
sistency of the results and their clear relationship to the
empirical data {cf. figure 3) indicate ta us thar the
analyses have captured some real praperties of the
data.

References to limit cycles abound in thearetical
ecology texts. Commonly this is exemplified by the
periadic fluctuations of abundances seen in narthern
vertebrates (e.g. Stenseth 1977, 1985, May 1981).
Haowever, except for the Canadian lynx (Lynx cana-
densis) (Tong [993) such limit cycles have not been
demonstrated in analyses of actual population time
trajectaries of narthern microtines,

Delayed density-dependence appears to be commeon
in northern microtines (Hanski et 2l 1993; Turchin
1993, 1985; Hdrnfelde 1994; Bjornstad e of 1995).
This is consistent with the assumption of a process
influenced by specialist predators {e.g. Hanski et al
1991, 1993; Harnfelde 1994, Bjarnstad & af 1993).
That such a delaved density-dependence is only
observed in the upper regime conforms with recent
observations that predation 1s important during the
peak and crash phases {Norrdahl & Korpimaki 1993,
Reid e ai. 1995; Steen 1995), but sometimes absent
during the low phase (Sirtler 1995}, In our study area
Steen ef af. {1997) demonstrate that predation is an
impartant mortality factor {809%) in lemming carcasses
found. On the basis of the time series analysis we
cannot exclude that delayed effects may be due to the
interactions of lemmings with therr food resources
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{Batzli 1992). However, current literature certainly
points to predation, What seems clear, though, 1s that
the delayed density-dependence 1s consistent with a
sigrmificant influence of trophic mnteractions during the
peak and crash phases.

Assuming that the density-dependent structure of
the upper regime is due ta predators specializing on
micratines, it might seem centradictory to realize that
lemmings are argued not to he highly preferred by
predators {cf. Hagen 1952; Taitt 1993). Hawever, the
statistically deduced maodel structure is likely ta apply
i a community — such as ours (e.g. @sthye ¢t al. 1975)
— where lemmings are numerically dominant. During
the low and early increase phases {when the predator
density is also low) there should be no or only negligible
effects of predators. Predators may increase through a
numerical response to the entire radent community
{including Microtus); these predators will then be
‘farced’ te feed on their non-preferred prey when
lemmings {and the ather micratines) crash.

The significantly lower growth rate for the lower
regime than for the initial part of the upper regime
{table 1) indicates that maximum specific growth
during the low phase (from post-peak to pre-peak
year) is lower than the maximum specific growth rate
{before density-dependent effects) during other phases
of the cycle. This may seem paradoxical. In general,
the maximum growth rate is assumed to be higher
during low densities than during high densities. The
experimental results of Mihok & Boonstra ([1992) on
Micratus pennsylvanicus are directly relevant in this case.
They showed that vales from the low phase had poar
breeding performance in ideal labaratary conditians
(faod, water, shelter, no predation). This poor breeding
perfarmance persisted through the F, generation in the
labaratary, presumably through maternal inheritance.

Our results are important in that they incarporate
intrinsic — phase-dependent — factors inta population
madels giving rise to cycles. Earlier theoretical maodels
which have incorporated such factors (e.g. Stenseth
1981, 1986, Stensech & Lomnicki 1990} have generally
cancluded that intraspecific {(and phase-dependent)
factars are stabilizing, and that cycles, if they exist, da
50 1n spite of the intrinsic stabilizing factors. Inter-
preting our statistical model suggests that 1t is the
combination of intrinsic stabilizing pracesses coupled
with destabilizing trophic processes which may be the
key to untangling the puzzle of the lemming cycles.
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Figure 3. (&) Time plot (above) and phase plot (v, vs r,,,) of the observed standardized growth rates for the fall series
tor grid H, indicating cyclic dynamics. {(4) Time plot {abave) and phase plot {below) of the estimated skeleton model
far grid H (fall}, as defined by equation (3) and with parameters as given in table . The model is given by the thick
solid lines, while the predicted limit cycle of the growth rate (corresponding to the phase plot in {a}) is indicated by
wide grey lines with arrows. (¢) Time plot {(abave) and phase plot (below) of the estimated skeleton madel for grid
H {fall} with system noise (drawn from a normal distribution with mean 0 and 8D of 0.50 and 0.61 as estimated from
fitting the model ta the ariginal data, far the lower and upper regimes, respectively). The illustrated sequence of 25
time steps was drawn after approximately 100 time steps, well after the simulated series had stabilized.
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6. CONCLUSION

Based on long-term data on lemming abundances in
a high mountain site, we have empirically supported
the hypothesis of limit cycles in lemmings. Such
dynamics have lang been postulated {May 1972) but
has never before been demaonstrated empirically. Qur
results contrast with recent claims that northern
Fennoscandian rodents show chaotic dynamics
(Hanski et al. 1993; Hanski & Korpimiki 1995; but see
Falck et al. 19954, 8). We have furthermore found that
delayed density-dependence appears to operate pri-
marily during the peak and crash vears. Intraspecific
factors on the other hand are suggested to cause the
differences between the specific maximum population
growth rates during the post-peak (1.e. low) years and
pre-peak and peak years, respectively. Thus, the
growth rate of the lemmings appears to be trapped in
a limit cycle, locked in the tensions between stabilizing
intrinsic processes leading to self-regulaton and
destabilizing trophic interactions.
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Boonstra, Ilkka Hanski, Ralf Anker Ims, Eivind @sthye, and
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helpful comments an the manuscript.
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