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ABSTRACT: Infectious diseases provide a particularly clear illustration
of the spatiotemporal underpinnings of consumer-resource dynam-
ics. The paradigm is provided by extremely contagious, acute, im-
munizing childhood infections. Partially synchronized, unstable os-
cillations are punctuated by local extinctions. This, in turn, can result
in spatial differentiation in the timing of epidemics and, depending
on the nature of spatial contagion, may result in traveling waves.
Measles epidemics are one of a few systems documented well enough
to reveal all of these properties and how they are affected by spa-
tiotemporal variations in population structure and demography. On
the basis of a gravity coupling model and a time series susceptible-
infected-recovered (TSIR) model for local dynamics, we propose a
metapopulation model for regional measles dynamics. The model
can capture all the major spatiotemporal properties in prevaccination
epidemics of measles in England and Wales.

Keywords: gravity models, measles, SIR model, phase difference, TSIR
model, wavelet.

Infectious diseases provide a particularly clear illustration
of the spatiotemporal underpinnings of consumer-
resource dynamics. The paradigm is provided by the locally
unstable, oscillatory dynamics of extremely contagious,
acute, immunizing childhood infections (Bartlett 1956,
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1957; Schenzle 1984; Anderson and May 1991; Cliff et al.
1993; Grenfell et al. 2001). In particular, measles dynamics
have sparked a long history of data analysis and modeling
across a range of disciplines. Mathematical epidemiolo-
gists, drawn by the importance of the disease, have dis-
sected most of the main features of measles transmission
within local communities. From the point of view of the
local dynamics, there are three interlocking issues. First,
seasonality in transmission interacts with epidemic non-
linearities to shape the attractor of the dynamical system
(Dietz 1976; Schenzle 1984; Bjornstad et al. 2002). Second,
host demography, particularly birthrates and immuniza-
tion through vaccination, interacts with transmission to
influence the disease dynamics (McLean and Anderson
1988; Finkenstidt et al. 1998; Earn et al. 2000; Finkenstiddt
and Grenfell 2000; Grenfell et al. 2002). Finally, the sto-
chasticity inherent in the epidemic birth and death process
(Bartlett 1956; Bailey 1975; Olsen and Schaffer 1990) can
excite recurrent epidemics (Bartlett 1956; Dietz 1976;
Schenzle 1984; Bjornstad et al. 2002) but also cause local
extinction in the troughs between epidemics (Bartlett 1956;
Cliff et al. 1993; Grenfell and Harwood 1997). While mea-
sles dynamics are arguably specific to the dynamics of
infectious childhood diseases, these main issues parallel
the dynamics of many consumer-resource systems (Wilson
and Hassell 1997; King and Schaffer 2001).

Local extinction of viral microparasites results when the
local chain of transmission is broken (Grenfell and Har-
wood 1997). This tends to happen in small host popula-
tions, since an epidemic reduces the susceptible numbers
and diminishes the force of infection to where demo-
graphic stochasticity leads to breaks in the chain of trans-
mission. Fifty years ago, Bartlett (1956) recognized this in
his epidemic taxonomy of measles, which divides dynamics
into Type I behavior (endemic cycles in large cities), Type
II dynamics in medium-sized communities (predictable
epidemics but with local extinction during epidemic
troughs), and Type III dynamics in small communities
(irregular epidemics interspersed by prolonged periods of
local disease extinction, so-called epidemic fade-outs). For
humans and other social animals in which hosts are dis-
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tributed in heterogeneous patches, there are two critical
sides to transmission. The first is local transmission among
individuals within “patches” (cities, towns, and villages).
The second is transmission between patches. With this
point of view, there is a clear conceptual link between
ecological and epidemiological theory; a body of recent
work has focused on analogies between the regional dy-
namics of infectious diseases and the dynamics of ecolog-
ical metapopulations (Grenfell and Harwood 1997; Earn
et al. 1998; Swinton et al. 1998). The twofold issues are
to dissect how infection processes at the local scale deter-
mine spatiotemporal patterns of epidemics and to under-
stand how these patterns are affected by the network of
spatial spread between patches.

Spatial transmission of directly transmitted infectious
diseases is ultimately tied to movement by the hosts. The
network of spatial spread (the disease’s spatial coupling)
may therefore be expected to be related to the transpor-
tation network within the host metapopulation. In ecology,
spatial coupling was classically assumed to be a simple
inverse function of distance (e.g., Okubo 1980). However,
metapopulation ecology has shown that both emigration
and immigration rates may partially depend on patch size
(Hanski 1998). For social animals in general and for hu-
mans in particular, distance-based coupling is likely too
simplistic an assumption, since movement between large
communities is disproportionately more common than be-
tween small ones (Erlander and Stewart 1990). Murray
and CIiff (1975) and Cliff et al. (1993) proposed that such
complex patterns of host movement result in what we may
call “gravity transmission” (after the class of gravity models
from transportation theory; Erlander and Stewart 1990).

In this study, we formulate an epidemic metapopulation
model by combining the time series susceptible-infected-
recovered (TSIR) model (Bjornstad et al. 2002; Grenfell
et al. 2002), which sets the standard susceptible-infected-
recovered (SIR) model in a time series framework, with
the gravity model for regional spread. Our goal is to es-
timate the parameters of the model from data and to in-
vestigate whether the model can provide a quantitative
picture of how a measles metapopulation operates. We seek
to understand how epidemiological coupling (the rate of
spatial transfer of infection) scales with the respective sizes
of “donor” and “recipient” populations, the distance be-
tween these, and what aspects of this scaling control the
synchronization of epidemics to shape hierarchical infec-
tion waves (Grenfell et al. 2001). We focus on these issues
on the basis of the richest data set: the urban spatiotem-
poral measles notification data set during the prevacci-
nation era (weekly records for 954 locations during 1950—
1966). Specifically, we develop a spatial extension of the
TSIR model that assumes gravity transmission between
different communities within the epidemic metapopula-

tion. As well as giving an unusually detailed picture of the
determinants of transmission at different scales, the re-
sulting model is the most detailed metapopulation patch
model to date of a specific host/natural enemy system.

Theoretical approximations to networks of spread are
important for numerous reasons. First, such approxima-
tions may provide a characterization of consumer-resource
dynamics in heterogeneous landscapes. Second, such net-
works may provide a priori models for predicting spatial
spread of pathogens and may ultimately lead to improved
intervention strategies (Ferguson et al. 2003; Keeling et al.
2003). Finally, recent theory suggests that the topology of
contact networks is very important for the evolution of
virulence (Read and Keeling 2003). Understanding the net-
work that governs regional spread and the consequences
of the resultant spatial transmission on local epidemics is
the focus of our study.

A Space-Time Model

The epidemic metapopulation model represents an exten-
sion of the TSIR model (Bjornstad et al. 2002; Grenfell et
al. 2002) through the inclusion of an explicit formulation
for the spatial transmission between different host com-
munities. The nonspatial TSIR model provides a statistical
link between standard theoretical models and epidemic
time series data.

If we consider the epidemic dynamics through a single
epidemic generation (=latent + infectious period =~ 2
weeks for measles), the force of infection (¢)—that is, the
rate at which a susceptible encounters infectious individ-
uals to become infected—will be approximately constant.
The probability of infection in this unit of time is 1 —
e™?, so the expected number of new infections, N, will be
N = S(1 — ¢7®), where S is the number of susceptibles.
For reasonable values of ¢, this expectation is well ap-
proximated by A = S x ¢, which constitutes the core of
the TSIR model. (We chose to use the latter approximation
because it is amenable to statistical estimation. For the-
oretical purposes, it may be desirable to use the former
formulation [W. W. Murdoch and C. J. Briggs, unpub-
lished manuscript].)

Demographic stochasticity introduces variability around
the expected trajectory of the epidemic. Demographic sto-
chasticity is a critical component of the dynamics because
it predicts breaks in the chain of transmission, local ex-
tinction of pathogens, and community thresholds for per-
sistence (cf. the critical community size; Bartlett 1956).
Stochasticity can also exert far more subtle effects on the
dynamics of infectious disease (for detailed discussion, see
Rand and Wilson 1991; Rohani et al. 2002). Conditional
on the numbers of susceptible and infected individuals in
the previous epidemic generation, one can use two plau-



sible models for demographic stochasticity depending on
the distribution of infectious periods. If the infectious pe-
riod is fixed and epidemic generations separated, the chain
binomial model predicts binomial variation around the
expectation (e.g., Bailey 1975; Cliff et al. 1993). Alterna-
tively, if infectious periods are exponentially distributed
(as is implicitly assumed in the standard SIR models), the
stochastic epidemic represents a generalized birth and
death process (Kendall 1949; Bjornstad et al. 2002). The
variability is then best approximated by a piecewise con-
stant (at the one-generation scale) birth and death process,
in which case,

I, ~NegBin(\,,,, I), 1)

where NegBin(a, b) signifies a negative binomial distri-
bution with expectation a and clumping parameter b. This
is the formulation used in the TSIR model. The negative
binomial is encountered frequently in ecology. However,
the above conditional distribution derives from stochastic
process theory and may therefore be less familiar. The
derivation is as follows (Kendall 1949): if we assume a
birth and death process with a per capita growth rate,
which in our case is S x ¢/I, then, starting with one in-
dividual, the number of individuals one generation later
will be distributed according to NegBin(S x ¢/I, 1). In the
general epidemic setting, we start with I individuals, so
the distribution one generation later will be (approxi-
mately) a sum of I negative binomials. Equation (1) follows
because the sum of b NegBin(a, 1) distributions is a
NegBin(a x b, b) (e.g., Evans et al. 1993).

The TSIR model gives a generally excellent fit to his-
torical measles dynamics in cities and villages and sheds
light on epidemical parameters and their scaling with re-
spect to host community size (Finkenstidt and Grenfell
2000; Bjornstad et al. 2002; Grenfell et al. 2002). In par-
ticular, the transmission rate, (3, varies seasonally because
of term-time forcing (Fine and Clarkson 1982) modulated
by age-structured transmission (Bjernstad et al. 2002). The
average transmission rate, B, scales inversely with com-
munity size (so-called frequency-dependent transmission)
so that the force of infection ¢ scales as BI/N, where N is
the community size (Bjernstad et al. 2002).

To develop a spatially explicit version of the TSIR model,
we consider the linked dynamics of K host communities
(954 in the case of urban epidemics in England and Wales)
of size N,. For simplicity, we assume that N, is constant
through time. This is a rough approximation for the 1950—
1965 measles case study, for which the median growth of
the communities was 7.1% (78% of the 954 communities
grew during the period). For consistency with previous
local analyses (Bjornstad et al. 2002; Grenfell et al. 2002),
we use the population size in 1960 here. The force of
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infection is therefore likely to be slightly underestimated
(by about 3%—4%) during the early part of the time series
and slightly overestimated toward the end. Future refine-
ments should correct for this.

In the spatially explicit model, we let I, , and S, , rep-
resent, respectively, the number of infected and susceptible
hosts in area k at time t. The force of infection in a host
community embedded in an epidemic metapopulation is
a weighted average of local infection rates versus spatial
contagion (Swinton 1998). For microparasites like measles
(and the related phocine distemper virus; Swinton 1998;
Swinton et al. 1998), frequency-dependent transmission
has subtle consequences for the appropriate weighting of
these two processes; the consequences of movement of
susceptibles and infectious are asymmetric. This asym-
metry is best illustrated by assuming that any transient
(migrant susceptible or infectious hosts) is dynamically
indistinguishable from local hosts during the transit. Let
us consider one local community, j, and one other com-
munity, k. If spatial contagion is due to susceptible move-
ment, the overall force of infection experienced by indi-
viduals in community j scales with B[(1 —#)[/N;+
nI/N,], where n («1) is the time spent away from the
home community. If, in contrast, spatial contagion is due
to movement of infectious hosts, the overall force of in-
fection scales with B[(1 — n)I; + nL,]/N, In this study, we
use the latter approximation. The key motivation for this
is linked to its apparent success in predicting the dynamics
of the epidemic measles metapopulation. Elucidating the
dynamics of susceptible-driven spatial contagion or more
complex movement regimes is an area of current inquiry
(Keeling and Rohani 2002; Keeling et al. 2004).

Under infection-driven spatial contagion, the expected
number of new cases in community k at time ¢+ 1 is,
according to the TSIR formulation,

_ BSi L, + 1.)*

)\k, t+1 T Nk, , (2)

Here, 1, , accounts for the transient force of infection due
to spatial contagion. Since migration of infected individ-
uals is relatively rare (and unobserved), we make the ap-
proximation (1 — n) = 1 for the local force of infection to
arrive at equation (2). Note that equation (2) explicitly
embraces the frequency dependence in transmission. Thus,
B, is invariant across all host communities (with estimated
mean 8 = 29.9, SE = 0.99). The transmission rate does,
however, vary seasonally (see below; Bjornstad et al. 2002).
The epiphenomenological exponent, «, which usually
takes a value slightly less than unity (see below), has a
range of motivations. First, if individuals are spatially or
socially clustered within local communities, the force of
infection will be disproportionately smaller at high infec-
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tious densities (Fine and Clarkson 1982; Liu et al. 1987).
Second, this exponent may be seen as a correction for
biases because of the temporal discretization of the un-
derlying continuous time epidemic process (Glass et al.
2003). Finally, time series analyses support the use of such
a discounting of the force of infection during epidemic
peaks (Finkenstiddt and Grenfell 2000; Finkenstiddt et al.
2002).

The associated balance equation for the susceptibles is

Sk,t+1 = Sk,t - Ik,t+1 + Bk,t‘ 3

Here B, . is the local number of new hosts born into the
susceptible class. This balance was first introduced by Bart-
lett (1957) for measles epidemics. It is important to note
that the model altogether ignores host deaths, as included
in the classic epidemic model (Nasell 1999; Hethcote
2000). This, however, is not a bad approximation; in de-
veloped countries, case fatality from measles was very low
even going back to the 1950s, and before mass vaccination,
almost all susceptibles were infected before the age of 20
(Anderson and May 1991). Thus, natural host mortality
almost exclusively affected the recovered class.

The final consideration for local dynamics is to model
the importance of transient infection. This will be a ran-
dom variable with some expectation (m, ). Considering
that transients are unlikely to stay for a full epidemic gen-
eration, we assume t,, to take a positive but fractional
(rather than integer) value:

u.,~ Ga(my , 1), 4)

where Ga(m, a) represents a gamma distribution with
shape parameter m and scale parameter a. (If transient
infecteds remained for a full epidemic generation, the ap-
propriate formulation would be ¢, , ~ Poisson(, ), as as-
sumed in Bjornstad et al. [2002] and Grenfell et al. [2002].)

Equations (1)—(4) represent the doubly stochastic TSIR
model for measles epidemics. This formulation makes a
number of simplifying assumptions but does capture the
major interactions between epidemic nonlinearities, sea-
sonality, and stochasticity that drive local measles dynam-
ics (Bjornstad et al. 2002; Grenfell et al. 2002).

Epidemic Coupling
A Gravity Model for Spatial Transmission

Spatial coupling determines the invasion speed of a path-
ogen across the geographic range of susceptible hosts (Ba-
con 1985; Mollison 1995). Furthermore, spatial coupling
is the critical parameter determining phase coherence and
spatial synchrony (Grenfell et al. 2001) and thereby meta-

population persistence of host-pathogen systems (Wood
and Thomas 1996; Swinton 1998; Keeling et al. 2004). Both
local recolonization and regional invasion are thus gov-
erned by an epidemic network that specifies the strength
of coupling between different host populations. Under-
standing the spatial contact network for parasite trans-
mission is thus something of a holy grail, because it will
allow predictions about the spread of emerging pathogens
and ultimately guide public health and veterinary inter-
vention programs.

The quest for an appropriate spatial network translates
to quantifying how ¢, , depends on the size and isolation
of a given host population k and the geometry of the
metapopulation in which it is embedded. If transmission
is through simple diffusion of infected hosts, the network
may be expected to be distance (and perhaps habitat) de-
pendent (Swinton et al. 1998; Smith et al. 2002). However,
the network for human pathogens is likely to be more
complex because of the intricate local and long-range
movement behavior of the host (Cliff et al. 1993; Satten-
spiel and Powell 1993; Grenfell et al. 2001; Lloyd and May
2001).

A standard preliminary approach would be to assume
inverse or exponential distance weighting for the contact
probability. However, this assumption failed to fit the mea-
sles data and does not reproduce empirical regional pat-
terns (Y. Xia, O. N. Bjornstad, and B. T. Grenfell, unpub-
lished data). Instead, we build on gravity network models
from transportation theory (Erlander and Stewart 1990),
as proposed by Cliff et al. (1993). Detailed analyses of
recreational and professional behavior by humans show
that movement often depends on both the size of and
distance between the communities. According to a gen-
eralized gravity model, the amount of movement between
two communities k and j is proportional to N;'N;*/d%, with
0> 7, 7, > 0, where d is the distance between the areas.
Under infection-driven spatial contagion, the transient
force of infection exerted by infecteds in location j on
susceptibles in location k will be

T T
Nk,lrIj,Zt
m .

. oC
'k, t o
s

Supposing there are K host populations (k = 1,2, ..., K)
in the epidemic metapopulation, the transient force of
infection will then depend on the influx from all other
areas. Thus, the expectation for this quantity will be

. (5)

bl
ik d,ﬁj

mk, = oNkT,lt

where 6 measures the spatial coupling strength. The pa-



rameter 7, determines how attraction to an area scales with
size (7, = 1 means that attraction is proportional to re-
cipient community size; 7; < 1 means that attraction scales
slower than proportional with size, etc.). The parameter
7, quantifies how the transient “emigration” intensity
scales with donor population size. Finally, p quantifies how
attraction decays with distance.

Theoretical Dynamics

Equations (1)—(4) with a spatial network according to
equation (5) represent a fully specified space-time model
for an epidemic metapopulation. However, its behavior
depends critically on a set of gravity parameters that in-
fluence the spread of infection in complex ways. Before
applying the model to the prevaccination dynamics of
measles, we therefore investigate how the spatial dynamics
of a “measles-like” pathogen depends on the coupling pa-
rameters in equation (5) using a simplified spatial map of
host populations. We consider a large central core city
(N, = 5,000,000) surrounded by 500 smaller “satellites”
with host population size 100,000 (fig. 1a). We take the
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per capita birthrate to be 0.017 year ' for all the cities
(Finkenstadt et al. 1998; Bjernstad et al. 2002). We further
assume measles-like parameters for the local transmission
dynamics (eqq. [1]-[3]): @ = 0.97, B, = 24.6 for non-
school time (i.e., first, eighth, fifteenth, sixteenth, seven-
teenth, eighteenth, nineteenth, twenty-third, twenty-sixth
biweeks), and 33.3 for term time.

We subsequently vary the gravity model parameters
through a sequence of simulations of the doubly stochastic
metapopulation model (each of 2,000 iterations). In each
case, we explored two key quantities (Grenfell et al.
2001)—the relative phase angle of the epidemics and the
epidemic synchrony—as functions of the distance from
the core city. We estimate the former using wavelet phase
analysis (Grenfell et al. 2001) and the latter as the cor-
relation between time series. In the following theoretical
exploration, we reduce the dimension of system complex-
ity by assuming that 7, = 1 (Cliff et al. 1993). (In later
statistical analysis of the measles data, we will relax this
assumption to estimate all four gravity parameters.) In
this way, we investigate the dynamical impact of overall
coupling strength (), the decay exponent of coupling with
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Figure 1: Epidemics on an artificial landscape. a is the geographic position of the 501 cities. b and ¢ are the phase difference and the correlation
coefficients, respectively, of the 500 satellites with the core city (180° phase difference corresponds to major biennial epidemics completely out of

phase). d—g are typical realizations of the model in different cities.
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distance (p), and the “donor” population exponent (7,).
As a first illustration, figure 1d-1g shows epidemic dy-
namics in the core city (0) and cities 5, 100, and 500,
assuming that § = 0.01N; ', p = 1, and 7, = 1. The dy-
namics of the core city are virtually unaffected by im-
migrants, since there are many local infectious individuals
(even in the epidemic troughs); the epidemic trajectory
for highly contagious pathogens is insensitive to transient
infection as soon as the local number of infecteds is more
than a handful (Bjornstad et al. 2002). Satellite commu-
nities close to the core exhibit epidemics that are highly
correlated with the core dynamics (fig. 1). However, as
distance from the core increases, the degree of synchrony
declines and the phase difference expands, testifying to the
presence of spatial waves away from the core city (Grenfell
et al. 2001). Peripheral communities exhibit irregular ep-
idemics with long periods of pathogen extinction.

In figure 2, we consider the effect of epidemic coupling

on phase relations and synchrony through varying the pa-
rameters in the gravity model. As coupling () increases
(fig. 24, 2b), the influence of the core city on local dy-
namics is magnified. Whenever the flux of transient in-
fection from the core is sufficiently large (such as in central
cities, e.g., city 1), the dynamic pattern of the satellite city
mirrors that of the core. In the metapopulation as a whole,
increased coupling tends to reduce the phase difference
between cities (fig. 2a) and increase the overall synchrony
(fig. 2b). As p increases, in contrast, the decay in coupling
with distance rises. The phase difference therefore drops
more rapidly with distance, and the geographic extent of
the hierarchical waves (as judged from the decay in syn-
chrony) appears to decrease (fig. 2¢, 2d). As 7, increases,
the core city donates disproportionately more infections
to the satellite cities and thus magnifies the overall cou-
pling. As a consequence, the phase difference becomes
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Figure 2: Spatiotemporal dynamics and parameter variation in an artificial epidemic landscape. a—f are nonparametric smoothers of the correlation
coefficients between time series in city 0 and the other cities and phase difference between city 0 and the other cities. In g and h, different lines
correspond to population sizes for all the “satellites” 50,000, 100,000, 150,000, and 200,000, respectively. For the solid lines, the population decreases

from 200,000 for the city closest to city 0 to 50,000 for the farthest city.



more shallow, and overall synchrony is enhanced (fig. 2e,
2f).

A final important modulator of the spatial dynamics is
the average size of the host communities and the degree
of heterogeneity in size. Comparing the thin lines in figure
2g and 2h, we find that the phase difference increases as
peripheral populations decrease in size. By contrast, as
peripheral communities approach the critical community
size, the epidemics become increasingly phase locked (see
also Grenfell et al. 2001).

The most important empirical deviation from the basic
core satellite arrangement used in most of figure 2 is that
there tends to be spatial clustering around large cities; the
size of the communities tends to decrease with distance
from core cities (Grenfell et al. 2001). We therefore also
studied the consequences of having a gradient in com-
munity size away from the core (bold lines, fig. 2¢, 2h).
Both phase differences and decay in spatial synchrony
show intermediate patterns to the constant-sized satellites.
However, the synchrony and phase differences indicate
that the smallest most peripheral communities are less
epidemiologically isolated in the hierarchical case. This is
because of their gravity coupling to relatively close and
relatively large intermediate communities.

In summary, the proposed spatiotemporal model (eqq.
[1]-[5]) holds the potential to capture diverse aspects of
epidemic metapopulation dynamics (for caveats, see “Dis-
cussion”) depending on model parameters. These features
include local oscillatory dynamics, local extinction in small
communities, phase differences in the timing of epidemics,
and the degree of synchrony of epidemics. Armed with
these insights, we now turn to a more detailed consider-
ation of the metapopulation dynamics of measles on a real
host geography. The issues are twofold: first, can we es-
timate the parameters from the data? Second, given pa-
rameter estimates, does the TSIR/gravity formulation cap-
ture the essence of the space-time dynamics of measles?

Measles Metapopulation Dynamics
in England and Wales

Data

Weekly case reports of measles for the 954 urban locations
in England and Wales from 1944 to 1967 represent a par-
ticularly useful case study of spatiotemporal epidemic dy-
namics (Grenfell et al. 2001). There is a well-understood
underreporting bias of 40%-55% in these records
(Bjornstad et al. 2002). Allowing for this, however, the
records are complete, and they reveal spectacular inter-
annual (usually biennial) outbreaks of infection. A critical
feature of this epidemic metapopulation is that, except for
a handful of large Type I cities (>300,000 inhabitants),
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infection frequently goes locally extinct, so that overall
persistence hinges on episodic reintroduction and spatial
coupling. Before further analyses, we corrected the re-
ported data by a factor of 1/0.52, with 52% being the
average reporting rate in previous analyses.

For simplicity, we assume that the population sizes and
per capita birthrates are approximately constant through-
out the time considered and take them as those in 1960
for each of the 954 areas. This is a crude approximation,
since most communities grew during the period (reviewed
above). The force of infection is, therefore, on average
slightly underestimated (overestimated) during the early
(late) part of the study.

Fitting the Gravity TSIR Model

The parameters governing local transmission of measles
(eqq. [1]-[3]) were previously estimated from a subset
represented 60 communities (spanning almost three orders
of magnitude in size; Bjornstad et al. 2002; Grenfell et al.
2002). The estimates have since been validated for all 954
communities (O. N. Bjornstad and B. T. Grenfell, unpub-
lished data). We will use these estimates for the spatial
analysis. In particular, the seasonal transmission rates for
biweeks 1 through 26 are 8, = 30 (1.24, 1.14, 1.16, 1.31,
1.24, 1.12, 1.06, 1.02, 0.94, 0.98, 1.06, 1.08, 0.96, 0.92,
0.92, 0.86, 0.76, 0.63, 0.62, 0.83, 1.13, 1.20, 1.11, 1.02,
1.04, 1.08), and o will be taken to be 0.97. The current
challenge is to quantify the parameters of the gravity model
(eq. [5]) and thereby provide a quantitative description of
the topology of the epidemic network.

Simultaneous estimation of all four gravity parameters
is difficult, first, because of the inherent collinearity, es-
pecially between parameters 7,, 7,, and p. We simplify this
problem through sequential estimation of the parameters.
We will initially assume that the parameters 7, and p are
unity, and we estimate 6 and 7, conditional on this as-
sumption; we then estimate the former on the basis of the
latter fits. More broadly, however, the estimation of the
parameters is a formidable statistical problem because we
are trying to match complex spatiotemporal dynamics in
a heterogeneous landscape. This means that there are sev-
eral potential “objective functions”—measures of the sta-
tistical distance between the data and the model—that may
be minimized to estimate the parameters. The classic so-
lution is to optimize short-term forecasting and minimize
one-step-ahead prediction error (Tong 1990). However,
from an ecological point of view, long-term spatiotemporal
signatures may be equally or more important (for a general
ecological discussion, see Kendall et al. 1999). In particular,
an appropriate model for the epidemic metapopulation
model should get epidemic sizes (Finkenstidt et al. 2002),
fade-out lengths (Grenfell et al. 2002), relative phase re-
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lationships, and patterns of spatial synchrony right (Gren-
fell et al. 2001).

We approach the problem here with a somewhat ad hoc
approach; we combine minimizing short-term prediction
error with matching key long-term signatures. We have
found that this provides a reasonable characterization of
feasible parameter values. However, it also raises a number
of future methodological questions. We return to these in
“Discussion.”

Short-Term Prediction. Minimizing one-step-ahead predic-
tion error is the method most commonly used to estimate
epidemiological parameters for the TSIR and other non-
linear time series models for ecological dynamics (Ellner
et al. 1998; Bjornstad et al. 2002). The methodology is
based on comparing one-step predictions of the models
with observed equivalents. Here, we use the classic loss
function, the simple (conditional) least squares formula-
tion:

1 i = 2B 05 75 7, O
L6, b Tos P) = 2_ 2 Y Y = .
k Nka,t>0 Tk

Here y,, = log (I, ), B, is the previously estimated season-
ally transmission rate, y, () is the one-step-ahead predic-
tion of y, , based on equations (1)—(5) and candidate grav-
ity parameters, and 7, is the number of nonzero
observations for I, in the time series. The final 1/N, weight-
ing has deeper motivations; previous analyses of the TSIR
model showed that the influence of infectious influx on
the overall epidemic trajectory is proportional to (.,/1,
(Bjornstad et al. 2002). On average, I, is proportional to
N; thus, in order to quantify spatial contagion, it is ap-
propriate to use a 1/N weighting scheme.

Figure 3a-3¢ shows the value of the least squares loss
function for various parameter combinations of 6, 7,, 7,,
and p. This calculation puts 7, near unity, 7, around 1.5,
and p close to 1. Over and above this, the analysis reveals
how the one-step-ahead analysis provides little informa-
tion with respect to the epidemic coupling parameter, 6.
This parameter appears to be elusive from the point of
view of the one-step-ahead method.

Estimation Based on Long-Term Dynamics. There are sev-
eral potential distance measures between the model and
the long-term spatiotemporal patterns in the data, which
all could be used as alternative tools to estimate spatial
parameters (notably 0). Because of the sensitive depen-
dence of epidemic correlation on the gravity parameters
(fig. 2), we estimate § by minimizing the predicted and
observed epidemic synchrony within the spatiotemporal
data panel (Fuller 1976; Whitcher et al. 2000). (Optimizing

wavelet phase angles would represent a viable alternative
[fig. 2]. However, the computational overhead is substan-
tial for wavelet decomposition; we therefore focus on spa-
tial correlation in this study.) To simplify calculations, we
use the predicted correlation between the epidemics of the
954 communities and the epidemic trajectory observed for
London. Let r, be the correlation coefficient between non-
zero case reports in area k and London, and let
7.6, 7,, 7,, p) be the predicted correlation based on the
model. An appropriate loss function based on deviations
in observed and predicted correlations is

954

RO, 7, 7,,0) = I;

|rk - ;k(ea T Ty ,0)|
954 '

Given p = 1, 7, = 1, and 7, = 1.5, this loss function re-
veals a well-behaved estimate for 6 near 0.015N, ) (fig. 34d),
where N, is the population size of London.

Validation and Prediction

The acid test for the gravity model is to compare its pre-
dictions of long-term dynamics with those observed in
measles. We have already used aspects of the spatiotem-
poral correlation structure of measles to estimate the over-
all coupling strength, §. We now test the model against
other key temporal and spatial features of measles dynam-
ics: how measles incidence scales with population size, the
periodicity of recurrent epidemics, patterns of extinction
and recolonization in the epidemic metapopulation, and
hierarchical waves and phase relations around large cen-
ters. We compare the model predictions with data for each
of these in turn.

We first compare the overall numerical scale of epidem-
ics in all the towns and cities of England and Wales (fig.
4a—4c). The numbers of observed and predicted cases scale
very similarly with populations size. Next, we compare the
cyclic patterns among towns. Prevaccination measles dy-
namics display a mixture of biennial (cyclic) and annual
(seasonal) dynamics in large cities, with more irregular 2—
3-year cycles in small towns (Bartlett 1956; Bjornstad et
al. 2002; Grenfell et al. 2002). We crudely quantify the
balance of the seasonal and interannual—generally bien-
nial—variation on the basis of spectral analysis of observed
and simulated epidemic time series. Spectral analysis is
fraught with estimation uncertainty; for example, the pe-
riodogram does not provide a consistent estimate of the
spectral density (Priestley 1981). We therefore measure
relative importance of the seasonal versus interannual cy-
cles as the ratio of the summed power of fluctuations with
0.5—1.5-year periods (“seasonal variation”) to the summed
power of those with 1.5-2.5-year periods (biennial vari-
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Figure 3: Estimation of gravity TSIR model from short-term dynamics. In 4, the loss function L(6, 1, 7,, 1) achieves its minimum point around
7, = 1.5. In b, L(6, 7,, 1.5, 1) achieves its minimum point around 7, = 1. In ¢, L(6, 1, 1.5, p) achieves its minimum point around p = 1. d shows
the very shallow loss function R(6, 1, 1.5, 1) at different values of 6 by points. The curve is a nonparametric kernel smoother of the points. The loss
function R(6, 1, 1.5, 1) achieves its minimum point around 0.015N;,, where N, is the population size of London. (Color version of figure available

in the online edition of the American Naturalist.)

ation; Bolker and Grenfell 1995; fig. 4d—4f). The model,
again, appears to reflect the observed scaling of local dy-
namics; both observed and simulated series show an over-
all progression to dominantly biennial cycles with increas-
ing community size.

Third, we compare the observed and predicted scaling
of epidemic extinction rates (“fade-outs”; fig. 4¢—41). We
measure the overall extinction rate by the proportion of
zeros in the time series: more sophisticated measures
(Bartlett 1960) give similar results (not shown). Again, the
qualitative fit is good: both the model and the data reflect
the well-known increase in persistence with population
size. In more detail, the scatterplot of observed and sim-
ulated fade-outs shows a slight bias; over much of the

range of population sizes, the simulated series show slightly
more fade-outs than observed. This may partly be due to
the greater stochastic variation (and therefore greater de-
correlation of epidemic troughs) in the real system. It may
conceivably also be influenced by subtleties relating to the
underreporting in the data. Intuitively, this would lead to
the reverse bias, though.

In the appendix in the online edition of the American
Naturalist, we provide further comparisons between pre-
dicted and observed dynamics. On the whole, the phase
relationships predicted by the epidemic metapopulation
model compare very well with those observed in the data.
The phase relations do, however, depend critically on the
gravity exponent, p. Small values of p lead to phase locking
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Figure 4: Comparison of observed and predicted prevaccination measles incidence and persistence in England and Wales as a function of urban
population size. The observations were taken from 1944 to 1967 in 954 urban areas. a—c are the average number of biweekly cases in the 954 urban
areas. d—f are the ratios of biennial to annual cycle frequencies. g—i are the proportion of zeros in the time series. For each row, the first and second
panels are based on the observations and model, respectively; the third panel shows equivalent scatterplots of observed and model results; the straight
line is y = x. (Color version of figure available in the online edition of the American Naturalist.)

of all epidemics (i.e., zero phase differences). This is be-
cause the system approaches the mean field as p ap-
proaches 0. Our estimate of p near unity gives regional
dynamics comparable to those seen in the data. Higher
values of p near the “diffusion” limit of 2 (Murray and
Cliff 1975; CIliff et al. 1993) also produce reasonably good
qualitative fits to the phase dynamics. However, as dis-
cussed in the theoretical exploration (fig. 2), such values
of p lead to rapid decays in correlation with distance.

Mapping Epidemiological Isolation

The gravity formulation represents a simple model for the
regional epidemic network. When combined with the TSIR
model, this formulation appears to successfully predict the
spatiotemporal dynamics of measles. It is interesting to
ask what the emergent network topology predicts about

epidemiological isolation (and, conversely, epidemiologi-
cal coupling) in the real (and heterogeneous) epidemic
metapopulation. There are two key quantities to consider.
First, the recipient perspective: what is the influx of in-
fection into any given community? Second, the donor per-
spective: how much transient infection does a given com-
munity export to the metapopulation at large?

The intermediate values of the gravity exponents p, 7,
and 7, result in hierarchical localization of dynamics
around the core areas represented by the communities
above the critical community size. This is best illustrated
by mapping the per capita infectious “import” and “ex-
port” rates of the different communities (fig. 5). On the
whole, the aggregations of communities that, on a per
capita basis, most fuel the epidemic metapopulation (fig.
5b) are also the ones that see the greatest infection influx
(fig. 5a). This is partly because of the approximate bilin-
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Figure 5: Epidemical isolation in the model measles population. a, Per capita influx of infections from all the other areas. b, Per capita emigrants
from the area. The values of the per capita influx or emigrants (from low to high) are indicated by color from blue to cyan to yellow to red.

earity inherent in gravity networks. However, equally im-
portant is the spatial autocorrelation in community size;
communities in the vicinity of the core areas tend to be
larger than the more peripheral towns. Thus, the large
urban centra (London, Birmingham, and the industrial
northwest) and the communities around them fuel the
epidemic traveling waves through both receiving and do-
nating more transient infection than the more peripheral
satellite communities. This is as compared with, say, the
relatively small and isolated communities in parts of Corn-
wall and mid- and North Wales (fig. 5; see also Grenfell
et al. 2001).

Discussion

The theory of metapopulation dynamics has been ac-
claimed for elucidating many of the key issues of landscape
and conservation ecology (e.g., Hanski 1998). It is in-
creasingly recognized that analogous extinction/recoloni-
zation processes may underlie dynamics of a range of often
intrinsically unstable consumer-resource systems. Parasit-
oids (e.g., Murdoch 1994) and pathogens (e.g., Grenfell
and Harwood 1997) are particularly striking examples. For
theoretical ecology, this realization is both a blessing and
a curse: it promises deeper understanding of interactions
that are inherently spatiotemporal, and at the same time,
it crystallizes a new challenge: the need to characterize the
rate of spatial contact between different host communities.
Predicting spread and persistence of acute viral infections
will ultimately require an understanding of the topology
of the underlying network of spatial contagion. The fact
that the details of the spatial networks are important is
emphasized by two different lines of enquiry. First, many
strategies for optimal intervention have been shown to

depend critically on pattern of spread (Keeling et al. 2003).
Second, the question of whether evolution will favor more
or less virulent strains may depend on the detailed pattern
of spatial contagion (Read and Keeling 2003).

The coupling of spatially extended ecological systems
has been a recent and active area of research in population
ecology (Tilman and Kareiva 1997; Hanski 1998; Dieck-
mann et al. 2000). Using spatial diffusion as a first prin-
ciple (e.g., Okubo 1980), dispersal distances will be in-
versely dependent on distance. Typically, dispersal distance
distributions will follow exponential/Bessel (depending on
whether dispersal is one-dimensional or two-dimensional)
or Gaussian models (Bjernstad and Bolker 2000). Gen-
eralizing from detailed distributional assumptions, theory
predicts spatial coupling to be inversely distant dependent
(e.g., Okubo 1980). Measles qualifies this: spatial coupling
appears not to follow a simple distance-dependent network
in mobile social “animals” (namely humans) inhabiting
heterogeneous landscapes.

A central question in host/natural enemy dynamics and,
indeed, in ecology in general is how to characterize the
scaling of interactions in space and time (Dieckmann et
al. 2000). Here we show that a gravity model, originally
derived in spatial geography and sociology (Erlander and
Stewart 1990), gives an accurate description of the spa-
tiotemporal flux of measles infection in the prevaccination
England and Wales data set. Measles in England and Wales
provide a unique opportunity to test the “gravity” spread
of a pathogen across patchily distributed host commu-
nities. In a prescient article, Murray and Cliff (1975) pro-
posed a gravity model for measles spread around Bristol
(see also CIliff et al. 1993; Thomas 1999). Here, we have
extended the comparison to the full prevaccination Eng-
land and Wales data set. The TSIR formulation also allows
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us to quantify the balance of forces between local season-
ality, nonlinear epidemic dynamics, and regional coupling.
Because estimation requires nonstandard analyses, this
study is admittedly preliminary (see below). However, we
have been able to establish feasible ranges for the gravity
parameters from the point of view of balancing long- and
short-term dynamics.

Epidemic coupling appears to scale inversely with dis-
tance rather than the inverse squared distance scaling that
is predicted by random diffusion (Caffrey and Isaacs 1971).
A value of p = 1 corresponds to what one would expect
if transportation of measles is not a spatially random dif-
fusion process (in which case, p would be equal to 2) but
rather due to the directed movement along the fastest—
oftentimes almost straight—route to a target location (e.g.,
friends, family, or day care/school) but with the caveat that
near targets are preferred over distant ones. This is a rea-
sonable conclusion if we remember that measles, partic-
ularly in the prevaccination era, was restricted almost com-
pletely to children in primary school and preschool
children. Here, diffusive movement (with a scaling of
p = 2) may be a less adequate model than more direct
movement patterns. Examination of this hypothesis using
explicit movement data will be a fruitful direction for fu-
ture work.

The exponent 7, controls the scaling of transfer of in-
fection as a function of donor population density. Our
estimation based on short-term fitting and long-term dy-
namic comparisons suggests that 7, = 1.5 (>1); this im-
plies that large centers are disproportionately important
in “donating” infection to the hinterland (because cou-
pling increases faster than linear with community size).
This may happen if larger centers are disproportionately
attractive in terms of social and recreational facilities,
though exploring this will require models that encompass
the complexities of susceptible as well as infected move-
ment. Simulations of epidemics on artificial landscapes
(not shown) illustrate how any clustering in community
size can reenforce the strength and spatial extent of hi-
erarchical waves. Exploring these issues and, in particular,
their implications for disease control and the spread of
emergent infections will be an important avenue for fur-
ther inquiry (Ferguson et al. 2003).

In order to narrow the gap between theoretical differ-
ential equations for the mechanism of epidemics and
discrete-time observations, we developed discrete-time
models. Generic methodologies to estimate these time se-
ries models have not been fully investigated (Ellner et al.
1998; Finkenstddt and Grenfell 2000; Finkenstddt et al.
2002). The estimation difficulty includes the following as-
pects: some of the variables, such as the number of sus-
ceptible hosts in our model, are not directly observed;
unrealistic assumptions, such as stationarity, are at least

partially implicit in the methods; finally, there is great
collinearity among some of the parameters. Most statistical
methods for fitting dynamical models to data are based
on minimization of a loss function related to the one-step-
ahead prediction error. This minimization is, however, not
synonymous with optimizing the match of the model to
long-term behavior of the system (e.g., Ellner and Seifu
2002). In this article, we used both one-step-ahead pre-
diction and long-term behavior to obtain estimates of the
parameters. Using simulations, the reconstruction of the
unobserved variable (susceptibles) and the estimation of
the parameters may be done simultaneously. Similar ideas
have been explored in applied statistics (Hannan 1973).
This approach can be extended to more general cases with
nonstationary dynamics; we shall discuss such estimation
in subsequent articles.

The difficulty in estimating spatial coupling is partly
rooted in the fact that transient infection does not nec-
essarily have significant dynamical consequences. For ex-
ample, our recent calculations (Bjernstad et al. 2002, their
fig. 9b) show that epidemic immigration sometimes has
negligible dynamical consequences; for measles, such tran-
sient infection is dynamically unimportant as soon as local
prevalence passes five to 10 infected hosts. This threshold
is only crossed in small centers during the troughs between
epidemics: during the prevaccination era, large cities that
were above the critical community size almost always have
case counts above this minimum. Thus, the trough be-
haviors in places below the critical community size give
reliable information on coupling (Finkenstidt et al. 1998).
To improve the statistical estimation, we are currently ex-
ploring whether fade-out lengths and extinction-recoloni-
zation rate carry more direct signatures of coupling rates
and coupling parameters.

For simplicity, we fixed the local population exponent
of the gravity model to unity; 7, = 1 corresponds to the
original findings of Bartlett on the scaling of immigration
of infection against local population size (Bartlett 1957).
This is the appropriate assumption if the probability of
susceptibles acquiring nonlocal infection, either locally
(from transient infectious individuals) or through infec-
tion while traveling, depends on density of infected in-
dividuals. Its adequacy hinges on whether the transients,
either infectious or susceptible individuals, play similar
roles to the resident (infectious or susceptible) individuals.
In the face of differing host community sizes, this will hold
only if two additional assumptions are fulfilled. First, the
basic reproduction ratio, R, needs to be invariant of com-
munity size. We have previously showed that this is the
case for measles in England and Wales (Bjgrnstad et al.
2002, their fig. 8). Second, transmission has to be density
dependent. If transmission is not density dependent (but
frequency dependent, as is the case for measles), equation



(2) will hold only if spatial contagion is primarily driven
by the transient movement of infectious individuals. (This
is discussed in detail in “A Space-Time Model.”) Our for-
mulation employs one further simplifying assumption that
is worth stressing: the local force of infection is not ad-
equately discounted by any transient movement (Swinton
1998; Swinton et al. 1998). The ultimate mechanistic
model needs not only to correct the force of infection for
transient immigration, as done in our current formulation,
but also to make the balancing corrections for transient
emigration. However, as pointed out by Keeling and Ro-
hani (2002), to do this for complex networks is nontrivial
and a challenge for the future. In the current setting, spatial
transmission is likely to be relatively rare. This, in addition
to the apparent predictive success of our model, makes us
confident that our formulation is not a bad approximation,
for now.

Understanding the size and duration of epidemics is a
key issue for locally nonpersistent pathogens such as mea-
sles (Nésell 1999). High rates of transient infection may
very well extend the duration of an epidemic. However,
for measles, there are several reasons why this is not likely
to be of great importance in the regionally endemic set-
tings. First, spatial transmission appears to be rare. Second,
the influence on local dynamics of transient infection is
unimportant as soon as there are more than a handful of
local infecteds (above). Finally, because of measles’ high
R,, extinction is through the more or less deterministic
exhaustion of susceptibles (Grenfell et al. 2002). Slight
stochastic increases in the force of infection toward the
end of an epidemic will have a negligible effect on the
epidemic trajectory. In contrast, rates of transportation
have important consequences for the overall metapopu-
lation persistence and the time to extinction for the re-
gional epidemic (Keeling et al. 2004). When spatial cou-
pling is low, epidemic recolonization will be rare, making
regional (“metapopulation”) extinctions more common.
When the coupling is high, in contrast, rates of local ep-
idemic extinct will be somewhat diminished. However,
because of the synchronizing effect of spatial transmission,
epidemic declines will become aligned and therefore in-
creasingly prone to simultaneous extinctions. Hence, re-
gional persistence is greatest at intermediate coupling
(Keeling et al. 2004).

Although the gravity model captures many of the overall
features of epidemic dynamics in space and time, there
are a number of important regional patterns that we still
fail to match. In particular, we cannot yet represent either
the tendency for epidemics in northwestern English con-
urbations to lead those in other centers or the dramatically
anomalous behavior of Norwich and its environs in north
Norfolk, where epidemics were completely out of phase
with the major tendency in the rest of the country during
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the 1940s and 1950s (Grenfell et al. 2001). Preliminary
work indicates that we may be able to address these issues
using models that take explicit account of epidemics in
the less dense rural areas that lie between urban centers.
Sparsely populated regions appear to act as barriers to local
diffusion of measles and may act to channel and isolate
the epidemics in urban centers. Explicit consideration of
the epidemiological impact of regional transport connec-
tions and topography is also an interesting area for future
study; a major challenge for future work is to extend the
model to the more complex dynamics observed in the
vaccine era where, paradoxically, data for England and
Wales were much more coarsely spatially sampled.

In conclusion, much of the complex prevaccination spa-
tiotemporal behavior of the measles oscillator can be ex-
plained by conceptually simple stochastic models, which
capture the balance between local dynamics and regional
coupling arising from human contact networks. Because
of the unique characteristics of measles, this is the most
detailed such model to date. Perhaps ironically, historical
patterns of human movement are far from perfectly doc-
umented. Thus, analyses of diseases records may also give
unusual perspectives on the underlying flux of human
movement. Furthermore, it remains to be seen whether
gravity models may be of wider application in other eco-
logical systems. Intriguingly, Schneider et al. (1998) re-
cently showed that the spread of invasive mussels is suf-
ficiently tightly linked to human vectoring and that the
risk of spread is given by the gravity network created by
boat use. We believe gravity models may ultimately provide
insights into metapopulation dynamics of “nonhuman”
animals with complex social organization.
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