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Time is of the essence: exploring a measles
outbreak response vaccination

in Niamey, Niger
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The current World Health Organization recommendations for response during measles
epidemics focus on case management rather than outbreak response vaccination (ORV)
campaigns, which may occur too late to impact morbidity and mortality and have a high cost
per case prevented. Here, we explore the potential impact of an ORV campaign conducted
during the 2003–2004 measles epidemic in Niamey, Niger. We measured the impact of this
intervention and also the potential impact of alternate strategies. Using a unique
geographical, epidemiologic and demographic dataset collected during the epidemic, we
developed an individual-based simulation model. We estimate that a median of 7.6% [4.9–
8.9] of cases were potentially averted as a result of the outbreak response, which vaccinated
approximately 57% (84 563 of an estimated 148 600) of children in the target age range (6–59
months), 23 weeks after the epidemic started. We found that intervening early (up to 60 days
after the start of the epidemic) and expanding the age range to all children aged 6 months to
15 years may lead to a much larger (up to 90%) reduction in the number of cases in a West
African urban setting like Niamey. Our results suggest that intervening earlier even with
lower target coverage (approx. 60%), but a wider age range, may be more effective than
intervening later with high coverage (more than 90%) in similar settings. This has important
implications for the implementation of reactive vaccination interventions as they can be
highly effective if the response is fast with respect to the spread of the epidemic.
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1. INTRODUCTION

Measles epidemics represent a continuing public health
problem in countries that have not effectively
implemented routine immunization programmes, as
recommended in the WHO/UNICEF measles mortality
reduction strategy (WHO 2001). In the event of an
epidemic, the key issue is whether a reactive vaccination
campaign is worth mounting. The current World Health
Organization (WHO) recommendations for responding
to measles epidemics in urban areas focus on case
management rather than outbreak response vaccination
(ORV). This is because the latter is generally thought to
occur too late to have an impact on morbidity and
mortality; instead, the associated cost of mortality
prevention may be more effective if spent on post-
orrespondence (rebecca.grais@epicentre.msf.org).
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infection health care (WHO 1999). If implemented, the
WHO recommendations suggest that vaccination inter-
ventions should be concentrated only in areas, where
measles virus transmission has not yet occurred, or in
closed high-risk populations, such as refugee camps,
military campsor schools.Limited resourcesmaybemore
effectively used to strengthen routine measles coverage.
Some previous studies suggest that reactive vaccination
will not stop epidemics becausemeasles transmission is so
rapid (Aylward et al. 1997; Grenfell et al. 2001; Strebel &
Cochi 2001). Other analyses, however, point to the
potential benefits of vaccination interventions in high-
burden settings (Broutin et al. 2005; Grais et al. 2006a,b).

During a recent outbreak in Niamey, Niger (2003–
2004), the Ministry of Health (MoH) and WHO
organized an ORV campaign in the city, with the
support of the medical non-governmental organization,
Médecins Sans Frontières (MSF). The campaign began
J. R. Soc. Interface
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Figure 1. Map of Niamey, Niger showing the three communes
and quartiers.
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161 days (23 weeks) after the beginning of the epidemic
(defined by a sharp increase in reported cases over a
period of three weeks). The goal of this activity was to
vaccinate 50% of all children aged 6–59 months (the age
group at highest risk) living in Niamey. Considering the
extent of the epidemic and limited resources available
at that time, this objective was reached over 10 days,
during which approximately 57% of children aged 6–59
months received measles vaccine regardless of previous
vaccination status or disease history; 84 563 vaccines
were dispersed across the risk group, estimated to
comprise 148 595 individuals.

Three key questions arose from this ORV cam-
paign: (i) What was the impact of the intervention in
terms of the number of cases averted? (ii) How many
cases could have been averted had the intervention
occurred earlier? (iii) What difference would it make if
the target age range was expanded to all children aged
6 months to 15 years? Mathematical models are useful
to address these questions and provide important
insights into the impact of reactive vaccination
campaigns (Tildesley et al. 2006). Although a large
body of research has been devoted to modelling
measles transmission dynamics and routine vac-
cination strategies (Remme et al. 1984; McLean &
Anderson 1988a,b; Nokes et al. 1990; Bolker & Grenfell
1996; Bjørnstad et al. 2002; Scott et al. 2004;
Cummings et al. 2006), little research has focused on
control of measles outbreaks in high-burden settings
once epidemics have taken off.

The slow stochastic spatial spread of measles in
Niger revealed by previous studies suggests that a
prompt reactive intervention may reduce morbidity
(Grais et al. 2006a,b). Here, we explore the impact of
ORV on the 2003–2004 epidemic in Niamey, Niger. We
examine the impact of the intervention and the
probable impact of other campaigns, using an individ-
ual-based simulation model, firmly rooted in epidemio-
logical data.
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2. METHODS

2.1. Study setting

Measles exhibits seasonal outbreaks in Niamey with
increased incidence during the dry season (November
to May). Over a longer timeframe, major epidemics
have occurred in Niamey every 2–4 years, with 1–3
years of reduced incidence following major epidemics.
The epidemic in 2001 reported 9184 measles cases
(WHO 2004a).

The national measles routine vaccination strategy
consists of one dose of vaccine, administered to infants
between 9 and 11 months, but with all children under
age 5, being eligible to receive vaccine (WHO 2004b).
There is no routine second opportunity for measles
immunization (i.e. a two-dose schedule) currently in
place (WHO 2004b). Supplementary mass vaccination
campaigns, called SIAs, have been organized previously
with one occurring in 2001, 2 years before the 2003–
2004 epidemic. The WHO/UNICEF coverage estimate
for the country in 2003 was 64% (WHO 2004b).
RSIF 20071038—26/4/2007—19:12—PARANDAMAN—275020—XML – pp.
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2.2. Data sources
2.2.1. Population, surveillance and vaccine coverage.
The city of Niamey is divided into three communes
(districts; figure 1).Within these are 33 Centre de Santé
Intégré (CSI) or health centres, serving 104 quartiers
(neighbourhoods). Estimates of the size and age
structure of the population were obtained from the
2001 Niger National Population Census. Assuming a
4.8% annual growth rate, the city population at the
time of the epidemic was estimated to be 769 454. Only
total quartier population sizes were available. The
population served by CSIs was assumed to be the sum
of each of the quartiers in the catchment area. The
population of each commune was estimated as the sum
of all quartiers in the commune. As both the at-risk
population for measles and the target population for
intervention were children under 15 years, we restricted
our analysis to this age group. Given the age pyramid
for Niger in 2005 (Brown et al. 1999; US Census Bureau
2005), 45% of the population was estimated to be under
15 years, of which 46% are estimated to fall in 6–59
months age range and 54% in the 5–14 years range.

Surveillance data consisted of reported measles cases
to each CSI between 1 November 2003 and 6 July 2004.
Measles was diagnosed clinically using the WHO case
definition and laboratory confirmation was not routi-
nely performed (Guris 2001). At the beginning of the
outbreak, 10 cases were laboratory confirmed by the
MoH through detection of measles-specific IgM
antibodies in sera collected after rash onset. The start
of the epidemic was identified retrospectively as
occurring during the last week of October 2003, when
four cases were reported in commune 1. The peak in
case reports were in March 2004 with the epidemic
beginning to subside in April 2004. In total, the
epidemic lasted 30 weeks (1 November 2003 to 6 July
2004) with 10 880 cases reported citywide. At the
commune level, 5789 cases were reported in commune
1, 3598 cases in commune 2 and 587 cases in commune 3
(Dubray 2004; Dubray et al. 2006). Cases were first
reported in commune 1, spreading several weeks later
to commune 2 and were not reported in commune 3
until later in the epidemic (see figure 2 for epidemic
curves by commune and figure 3 for the citywide
1–9
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Figure 2. Reported measles cases in Niamey, Niger (November 2003 to July 2004) by commune and the performance of the model
by commune. The solid lines depict the median forecast epidemic curve over 1000 simulations including the vaccination
intervention targeting 50% of children aged 6–59 months for each commune.
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epidemic curve). Further epidemiological details of this
epidemic have been described previously (Dubray 2004;
Dubray et al. 2006).

In 2003, measles vaccination coverage (VC) in
children aged 9–11 months was estimated to be 62.0%
in commune 1, 68.0% in commune 2 and 75.4% in
commune 3 by the MoH (Dubray 2004). The citywide
VC estimated by a Lot Quality Assurance Survey was
60.1% (95% CI: 57.9–61.9) before the vaccination
intervention and 70.9% (95% CI: 68.8–72.6) after the
intervention, based on both parental recall and
vaccination card confirmation (Dubray et al. 2006).
0 5 10 15 20 25 30 35 40
epidemic week

Figure 3. Simulation of epidemic with and without vac-
cination intervention. The number of reported measles cases
per week is shown in the grey histogram. The blue line depicts
the median forecast epidemic curve over 1000 simulations
including the vaccination intervention targeting 50% of
children aged 6–59 months. The red line shows the median
of 1000 simulations of the forecast epidemic curve without any
intervention.
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2.3. Model structure

We developed an individual-based computational model
for the 2003–2004 measles epidemic in Niamey. The
infection process was modelled stochastically using a
discrete-time model formulation with a 1-day time-step.

Our previous study of this epidemic (Grais et al.
2006b) revealed a slow spatial spread between commu-
nes, with more rapid local transmission within quar-
tiers. Children were therefore assumed to belong to one
of the 104 quartiers of the city. We assumed the
probability of a susceptible child becoming infected to
be a function of the numbers of infectious children at
the quartier, CSI catchment, commune and citywide
scale with a reduced rate of interaction at each greater
scale. On day tC1, the probability Pq,tC1 that a
susceptible child in quartier q is infected is assumed
to be governed by

Pq;tC1 Z1Kexp K
bquartierIq;t

Nq

C
bCSIICSIq ;t

NCSI;q

��

C
bcommuneIcommuneq ;t

Ncommune;q

C
bcityIcity;t
Ncity

��
;

ð2:1Þ
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J. R. Soc. Interface
where bquartier is the transmission rate between children
within the same quartier, bCSI within the same health
centre catchment area, bcommune within commune and
bcity as the citywide scale. The variables Iq,t, ICSIq ;t,
Icommuneq ;t and Icity;t are the quartier-specific number of
infectious individuals on day t, i.e. ICSIq ;t is the number
of infectious individuals in the particular CSI that
contains quartier q, etc. The parameters N$ represent
the appropriate scale-specific total population sizes for
each quartier, CSI catchment area, commune and the
citywide total.

At each time-step, susceptible children are assumed
to be infected with a binomial probability pq,tC1, i.e.
Iq,tC1wBinom(Sq,tC1, Pq,tC1). Once infected, the
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infectious process is assumed to be deterministic;
children are infected but not infectious (latent) for
10 days and infectious for 6 days (Heymann 2004).
Upon recovery, children progress into the removed
class and are assumed immune for the remainder of the
epidemic (and the remainder of their life).

We evaluated the result of the ORV in terms of
response time and the target coverage percentage. For
enhanced realism, we assumed a 15-day delay between
the decision to intervene and the implementation of the
ORV, based on MSF experience (Medecins Sans
Frontiers 1999). Once vaccinated, children were
assumed to progress through a period of 3 days during
which they have partial protection (50%) before full
immunity (Heymann 2004). We quantified the effect of
the ORV as the ratio of the predicted final size of the
epidemic with intervention to that without.

Given the estimated citywide VC (see above) and
natural immunity, we assumed that 30% of children
under 15 years of age were susceptible (not vaccinated,
unsuccessfully vaccinated or have no naturally acquired
immunity). Of these, we assumed that 75% would be
children between 6 and 59 months based on the age
pyramid (see above) and an assumption that prior
immunity (natural or vaccine provided) was higher in
the 5–15-year group than in the younger age group.
Vaccines were assumed distributed at random across
the risk group. Vaccine efficacy during the ORV was
assumed to be 85% (with allowance for the partial
immunity during the 3 days just after vaccination;
WHO 2004b).

We simulated 1000 stochastic epidemics over a period
of 365 days beginning from an index case located in the
same quartier where the first case was reported in
commune 1. A paired Wilcoxon rank sum test was used
to evaluate the performance of the model fit: if the p -
value obtained is greater than 0.05, then the null
hypothesis that simulated and observed epidemic curves
are from the same distribution cannot be rejected. For
this assessment, only simulated epidemics that ‘took
off’—for which at least 10 cases were predicted—were
included. We performed the statistical test for each
simulation run and for the median epidemic.
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2.4. Model calibration

As the surveillance data available to calibrate the
model included the ORV campaign targeting 50% of
children aged between 6 and 59 months living in
Niamey over a 10-day period at week 23 (day 161), we
calibrated the model including the campaign. We
assumed that only a fraction of cases would be detected
by the surveillance system, estimated at 50% based on
previous analyses (Médecins sans Frontières 1996;
Arudo et al. 2003; Grais 2006b).

Previous research on the data for this epidemic
provided the estimates of the overall transmission rate
within the city (Grais 2006a,b), following the removal
method developed by Ferrari et al. (2005). The
assumptions of this method are that on the time-scale
of the epidemic generation time (DtZlatentCinfectious
period) of around two weeks, the epidemic progressed
according to a chain-binomial model (e.g. Bailey 1957;
RSIF 20071038—26/4/2007—19:13—PARANDAMAN—275020—XML – pp.
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Ferrari et al. 2005), in which the binomial denominator
is the pool of susceptible individuals, St, and the
associated probability distribution for the expected
number of new cases, ItCDt, is

PðItCDt Z I ÞZ
St

I

 !
ð1KeKbStIt ÞI ðeKbStIt ÞStKI : ð2:2Þ

Noting that StZS0K
Pt

jZ1 Ij , where S0 is the initial
number of susceptible individuals, we can write a full
likelihood for the time-series of case counts, It, in terms
of the overall (i.e. ignoring within-city spatial hetero-
geneities) transmission rate, b, and the initial number
of susceptibles, S0, according to standard likelihood
theory (Ferrari et al. 2005).

To carry out this estimation, the time-series of day-
specific case reports were aggregated in two-week time-
intervals as detailed by Grais et al. (2006a). Based on
this prior analysis and our assumption that trans-
mission was more rapid at smaller spatial scales, the
scale-specific transmission rates were chosen and fixed
as 10 for local transmission within a quartier, 5 for
transmission across quartiers within any given CSI
catchment area, 2.5 between catchment areas within
any given commune and 1.25 for citywide transmission.
2.4.1. Scenario analysis. Our principal aimwas to study
the impact of the intervention and explore the con-
sequences of any earlier implementation. Although the
survey conducted just after the epidemic provided an
estimate of baseline pre-interventionVC (approx. 60%),
we also used the model to examine higher (90%) and
lower (50%) level of coverage and their associated
predicted outcomes, given the ORV intervention
strategies. We further explored several other candidate
interventions by comparing proportions of cases poten-
tially preventedby interventions at different times in the
epidemic, the proportion of children targeted during the
outbreak response intervention and different interven-
tion lengths. We examined decisions to intervene at 60,
90 and 120 days from the start of the epidemic, with
proportions of children (except those children who were
classified as infectious) vaccinated between 30 and 100%
at 10% increments. We explored vaccination interven-
tions lasting 6, 10 and 14 days, and the difference
between targeting only children aged between 6 and 59
months and targeting all children aged 6 months to 15
years. Results are presented as themedian percentage of
cases potentially averted compared to final epidemic size
in the absence of intervention.
3. RESULTS

Overall, the median forecast epidemic curve from 1000
simulations is in good agreement with the observed
dynamics of the 2003–2004 epidemic (paired Wilcoxon
rank sum test, pZ0.25; figure 3). No cases were
predicted in 6% of 1000 simulations; in those runs for
which cases were reported, 92.3% were in good
agreement with the observed dynamics (paired Wil-
coxon rank sum test, a-levelZ0.05).
1–9
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Figure 4. Estimated proportion of cases averted with a
vaccination intervention targeting children aged between 6
and 59 months for a vaccination intervention lasting 10 days.
The blue line shows an intervention at 60 days, the red line an
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In commune 1, where the epidemic began, cumu-
lative cases were overestimated by a median of 0.5%
(paired Wilcoxon rank sum test, pZ0.63). The model
performed less well in commune 2 (paired Wilcoxon
rank sum test, pZ0.81) and commune 3 (paired
Wilcoxon rank sum test, pZ0.57), where cumulative
cases were overestimated by a median of 11.3 and
13.4%, respectively, over 1000 epidemics (figure 2). The
reasonable fit shown here—despite the simplicity of the
model—gives us some confidence in our predictions
regarding different scenarios of intervention.

Comparing the simulated epidemic with and without
the implemented vaccination intervention with an
objective of vaccinating 50% of children between 6
and 59 months at week 23 (day 161) from epidemic
onset, we estimated a median of 7.6% [4.9, 8.9] cases
averted (figure 3).
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
30 40 50 60 70 80 90 100

intervention coverage (%)

pr
op

or
tio

n 
of

 c
as

es
 p

re
ve

nt
ed

Figure 5. Estimated proportion of cases averted with a
vaccination intervention targeting children aged 6 months to
15 years for a vaccination intervention lasting 10 days. The
blue line shows an intervention at 60 days, the red line an
intervention at 90 days and the green line an intervention at
120 days.

intervention at 90 days and the green line an intervention at
120 days.
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3.1. Scenario analysis

First, we examined the impact of the implemented
intervention under two extreme scenarios of population
susceptibility. Assuming only 10% of the eligible
population susceptible, vaccinating children between
6 and 59 months yielded a median estimated reduction
of 55.9% [41.1, 59.3] cases. Expanding the age range to
include children aged 6 months to 15 years yielded a
median reduction of 70.8% [58.6, 88.6] cases compared
with no intervention. Less benefit was seen when we
assumed a VC of 50% in the eligible population
susceptible. In this case, i.e. vaccination of children
between 6 and 59 months, we estimated that a median
18.1% [12.4, 20.2] of cases could be averted.

Second, we explored the proportion of cases poten-
tially averted for interventions targeting from 30 to
100% of non-infectious children aged 6–59 months with
a decision to intervene at 60, 90 and 120 days from the
start of the epidemic (figure 4). A target proportion of
50% of children (except ill children) resulted in up to 38,
27 and 20% of cases averted for campaigns at 60, 90 and
120 days from the start of the epidemic, respectively.
For campaigns at day 60, increasing the target
proportion vaccinated from 30 to 40% led to up to an
additional 18% of cases averted. Increasing the
proportion vaccinated between 40 and 90% led to 5–
9% additional cases averted for each 10% increase in
coverage. There was little benefit in increasing the
proportion vaccinated from 90 to 100%. Campaigns at
90 and 120 days followed a similar pattern, with the
greatest proportion of cases averted when the pro-
portion vaccinated was increased from 30 to 40%, and
no benefit was observed in increasing coverage from 90
to 100%.

Third, we examined the proportion of cases averted
if the intervention targeted all children aged 6 months
to 15 years. For a campaign with an objective of
vaccinating 50% of non-infectious children aged 6
months to 15 years, up to 93% of cases were potentially
averted at day 60, 81% at day 90 and 52% at day 120.
Expanding the target population resulted in substan-
tially more cases averted, but little additional gain was
seen when increasing the proportion vaccinated during
the intervention above 70% (figure 5).
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Increasing the length of the intervention from 10 to
14 days, holding all else constant, did not markedly
change the forecast number of cases prevented (data not
shown). There was no difference in the forecasted
proportion of cases prevented when all age groups were
targeted at vaccination target levels above 60%. For
intervention vaccination objectives under 60%, there was
a median 1% increase in the number of cases averted.
Similarly, reducing the intervention length to 6 days,
holding all else constant, with target intervention cover-
age levels above 60%gained amedian of an additional 1%
of cases averted. In contrast, the 6-day intervention at
lower coverage levels led to an additional median 2%
increase in averted cases with an intervention proportion
to be vaccinated of 50%, 3% of averted cases at 40%
vaccinated and 4% of averted cases at 30% vaccinated.
4. DISCUSSION

Our analysis shows that substantial numbers of measles
cases may be averted through the timely implemen-
tation of measles ORV. Moreover, the proportion of
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cases averted is associated with the VC obtained and
the number of birth cohorts targeted for vaccination.
The operational implication of this analysis is that,
from a public health perspective, it may be preferable to
intervene earlier, across a wide age range even if a high
intervention VC is not feasible, than waiting until
sufficient resources are mobilized to conduct a mass
campaign capable to reach 90–100% of targeted
children. The key result is that ORV can be highly
effective if the response is fast with respect to the spread
of the epidemic. In Niamey, where epidemic spread is
slow due to the spatial structure and mixing within the
city, outbreak response may be particularly effective.
While the predictions herein are specific to the Niamey
model, we would expect the general utility of ORV to
hold for any situation where the spread is slow relative
to the response. Exploring further the relationship
between spatial spread and reactive vaccination is an
important area for future research.

Early interventions may work in two ways: first,
vaccination may immunize a child before they become
infected; and second, the vaccination response can slow
down the epidemic and thereby reduce the total
number of unvaccinated people who would be infected
during the current outbreak. An early but inefficient
response could be working in both ways, mostly
through the first effect, but partly through the second.

We estimate that as a result of the intervention in
Niamey, where the target was 50% of children aged
between 6 and 59 months and the intervention took
place about 161 days after the epidemic began,
approximately 7% of cases were averted. Had this
same intervention occurred earlier in the epidemic, we
estimate from our model that up to 38% of cases could
have been averted if the intervention had occurred at
day 60 of the epidemic, up to 27% if it had occurred at
day 90 and up to 20% if it had occurred at day 120.

Our results highlight the potential benefits of rapid
intervention, even if a high intervention vaccination
objective is not possible. Targeting children aged 6
months to 15 years was much more effective in
preventing cases than limiting vaccination to children
aged 6–59 months. Experience in many parts of the
world has found measles vaccination campaigns across
wide age ranges to be much more effective in preventing
periodic measles outbreaks (Arudo et al. 2003; Kambire
et al. 2003; Munyoro et al. 2003). This is likely due
to the role older children play in transmission to
younger children and also the importance of limiting
opportunities for virus reintroduction through popu-
lation movement.

In any large measles epidemic, ORV averting 7% of
cases can mean many lives saved. A retrospective
mortality survey after the Niamey epidemic estimated
a case fatality ratio in children under age 5 of 3.9%
(Grais et al. 2007). In 2005, a mass vaccination
campaign targeting children under age 15 was con-
ducted in Niger. Surveillance data will be an important
indicator of whether wide age range and wide geo-
graphical area campaigns impact measles epidemics in
future years.

Our model explicitly took into account the slow
spatial progression of the epidemic (Grais 2006b). As we
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expected, the analysis showed that the timing of the
intervention plays a more important role than the
proportion of children vaccinated. Intervening very
early in the epidemic (60 days after the start), at
relatively low VC, still led to a substantial proportion of
cases averted. The added benefit of intervening at day
60 decreased for vaccination objectives over 60%. The
same pattern emerged when intervening 90 days after
epidemic onset, where little added gain was seen for
target coverage levels above 70%. Interventions
120 days after epidemic onset still led to more than
half of reported cases averted, when targeting all
children aged 6 months to 15 years. A more intensive
intervention (lasting for 6 days, versus 10 or 14 days)
yielded slightly more averted cases than a longer
intervention. Our results are also in agreement with a
recent theoretical analysis, which found that the
average outbreak size grew exponentially with the
delay from the start of an outbreak to the implemen-
tation of an intervention, highlighting the importance
of early intervention (Drake 2005).

Our goal was to identify the key factors driving the
number of potentially averted cases, and, as with all
models, ours simplifies reality in a number of respects.
Although model simulations were in agreement with
the observed epidemic dynamics, we did not consider
the details of the spatial dynamics. We are currently
exploring the data using a full meta-population model
with an explicit distance function for transmission. An
additional area for refinement would also be to consider
different assumptions concerning the distributions for
the latent and infectious periods. Our analysis was
constrained by the use of constant contact rates in the
two age groups. Previous research on the force of
infection for measles in pre-vaccination England and
Wales has shown it to be strongly age dependent
(Grenfell et al. 2001). In cities like Niamey, or other
dense African cities, there is likely to be much greater
inter-age-group contact, due to differences in household
structure and formal education (Remme et al. 1984;
Scott et al. 2004), and although we suspect that the
impact of this simplification on our findings may not be
significant, this warrants further investigation. We also
assumed that the proportion of susceptibles was the
same in all quartiers, whereas a more refined model
would consider heterogeneities.

Although we used surveillance data from a well-
documented epidemic to calibrate the model and began
to estimate the impact of ORV, the results presented
here are only suggestive of potential trends. The
individual-based computational model we used pro-
vided a preliminary analysis to expose questions for
future research and where data collection needs to be
focused. A more detailed model, exploring different
timeframes and modes of intervention, is required. This
can be accomplished via theoretical models of epidemic
diffusion and through a more in-depth analysis of other
well-documented epidemics in similar contexts. We
chose scenarios that were considered operationally
feasible. An in-depth analysis considering different
population immunity profiles and a more complete
range of scenarios is required to investigate how the
lessons learned here may be applied to other contexts.
1–9
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Future collection of epidemiologic, demographic and
geographical data in other measles epidemics in similar
settings is also a high priority.

The model presented here captures only one
component of the complex decision whether or not to
implement measles ORV activities in an urban area,
and we were able to evaluate the impact of this
intervention with the aid of retrospective data. Early
intervention depends upon a sensitive and functioning
surveillance system and rapid response capacity, both
of which may be difficult to achieve in resource-poor
contexts. Moreover, most large measles outbreaks tend
to occur in countries with poorly performing health
systems with chronically low routine immunization
coverage. Determining whether a measles epidemic is
occurring remains difficult, especially in contexts where
surveillance systems are neither comprehensive nor
sensitive, and data from previous years are unavailable
for comparison. ORV in these settings will often occur
late in the timeline of an epidemic due to difficulties
caused by inadequate surveillance, poor logistics,
competing public health priorities, and cost and lack
of trained personnel.

The decision to implement measles ORV activities in
an urban area also depends on the population size,
previous routine measles immunization coverage,
history of vaccination campaigns and spatial charac-
teristics of the city itself. In a city such as Kinshasa,
DRC, where approximately one-half of the population
is under age 15, this means that an intervention during
an epidemic could target potentially millions of
children, which is not operationally feasible. An
additional constraint during interventions is that an
‘efficient’ campaign, like that modelled here, is selective
(targeting only children who were not previously
vaccinated). This is not always realistic in settings
where children do not always have comprehensive
medical records and where the precise age of children
may not be available. Further, as providing children
with a second-dose of measles vaccine affords increased
protection, efficiency must be balanced with issues of
logistics, economic and ethical constraints.

We demonstrate here that implementing a measles
ORV activity early in a measles epidemic in a resource-
poor urban setting with chronically low measles VC,
like Niamey, may lead to substantial reductions in
morbidity and subsequent mortality. However, ulti-
mately the decision whether or not to intervene and the
means to do so depend upon the political will of public
health authorities, and weighing the potential number
of cases averted with the economic and political costs of
conducting a measles vaccination campaign.
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