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SUMMARY

The patterns of density dependence in Fennoscandian rodents are investigated statistically using a linear
autoregressive scheme. Nineteen time series of microtine abundances along a latitudinal gradient in
Fennoscandia from 60° N to 69° N are analysed. We provide statistical evidence that there exists a
latitudinal gradient in density dependence in Fennoscandian micratines. Southern populations experience
significantly stronger direct density dependence than northern populations. Delayed density dependence
was significantly negative throughout the region and appeared constant across the latitudinal gradient.
The populations consistently exhibit dynamics of second order throughout the region. Together, the clinal
direct density dependence and constant delayed density dependence give rise to a cline in cycle periad
from 3 to 4.5 years. The statistical results are compared to assumptions and predictions made in previous
studies on the geographic gradient in the population dynamics of these rodents. The results are in
agreement with the predictions of the ‘generalist predator hypothesis’.

1. INTRODUCTION

QOver the past decade several authors have documented
existence of geographic gradients in amplitude and
periodicity of population fluctuations in microtine
rodents {for examples, see Hansson & Henrttonen 1983,
1988; Henttonen ¢f «f. 1985; Hansson 1987; Hanski of
al. 1991 ; Turchin 1993 for a review see Stenseth & Ims
1993). To account for changes in the periodicity of the
population fluctuations of Fennoscandian micratines,
Hansson (1987) and Hanski et af (1991} invoked
changing abundance and diversity of generalist preda-
tors as an explanatory factor. Hanski et af (1991)
found, on the basis of a model-analysis, that increased
abundance of generalist predators tend to decrease the
cycle length and stabilize the dynamics of a vole cycle.
The cyclicity, as such, was assumed driven by specialist
predators such as mustelids: without the specialist
predator there would be no cycles in the first place.
Hanski e af. concluded that the latitudinal gradient
abserved in Fennoscandia is caused by the increase in
abundance and diversity of generalist predators in
Southern Fennoscandia. This hypothesis, as well as
ather hypotheses involving trophic interactions, can be
interpreted in terms of altered patterns of statistical
density dependence (pp) experienced by the popu-
lations (see Royama 1981). If a gradient in dynamics
is present, we should find the strength of direct or
delayed DD to carrelate smoothly with latitude, Here,
we report an analysis based on |9 time series from the
Fennoscandian peninsula.
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2. SOME HYPOTHESES

The ecological literature containg a bewildering
diversity of hypotheses pertaining to the multi-annual
fluctuations of small rodents {for recent reviews see
Batzli 1992; Stenseth & Ims 1993). From the point of
view of our statistical modelling approach, we highlight
some assumptions and predictions of a small subset of
the hypotheses. We make no attempt to undertake 2
full evaluation of all hypotheses, nor do we wish to
advocate that the selected hypotheses have maore merit
than others in explaining the rodent cycles. We have,
rather, selected the hypotheses which we consider to be
reasonable candidates for explaining the differences
between various cyclic populations in Fennoscandia.

I. The specialist predator hypothesis, The abun-
dance of specialist predators are by definition linked to
the abundance of the prey through a numerical, rather
than functional, response (Murdoch & Oaten 1973).
That is, the predator respond to increased prey density
by increased reproductive effort. Changes in the
interaction between a specialist predator and its prey
may come about threugh changes in predator
efficiency of catching prey or changes in converting
prey biomass into predator offtspring biomass. Because
specialist predators respond to prey densities through
reproductive output, any changes in the interaction is
likely to affect the delayed component of o (Butler
1953): it will always take some time to reproduce. A
mare efficient specialist predator may be expected to
lead to more negative delayed pp. In short, this
hypothesis predicts that a second order madel (the
simplest model that includes delayed DD} is necessary
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to describe the data. Any changes seen in the patterns
of op should largely be in the delayed component.

2. The generalist predator hypothesis. Hansson
(1987) and Hanski ef al. (1991) observe that generalist
predators are more abundant in the south of
Fennoscandia. Generalist predation is characterized by
z functional or migratory response to altered prey
densities (Murdoch & Oaten 1975 ; Korpimaki 1994].
The response of these predators to altered prey
abundance 15 nearly instantanecus {Korpimiki 1994},
Thus, increased generalist predator abundance will
largely affect the direct component of pp. If only
generalist predators were present, we would expect
that a simple first order model {only direct bp) would
be saufhcient to describe the dynamics. However, the
hypothesis explicitly incorporares the presence of
specialist predators, such as mustelids, throughout the
region. These omuipresent specialists are assumed
respansible for the underlying multi-annual rhythms
observed. The predictions are, therefore, that a second
order maodel {both direct and delayed pp) is necessary
to describe the flucruations. Consistent geographic
variation is largely expected to be associated with the
direct component of pp (N. C. Stenseth o al. un-
published results).

3. The snow cover hypothesis. Hansson &
Henttonen {1885) argue that the patterns of fluctuation
correlate with winter snow cover. Steen (1995)
demaonstrate that survival is much higher during the
winter than during the summer. It appears that snow
may give some protection from predators. In which
case, increased duration and depth of the snow cover
will separate the dynamics of the prey and, at least
parts, of the predator community. The dynamics is
separated in the sense that the predators have limited
access to the prey, whereas the prey, at least oc-
casionally undertake winter reproduction (Kaikusalo
& Tast 1984). This will make the predator—prey dyna-
mies more discretized and, hence, enhance the delayed
companent of bp, passibly “at the expense’, so to speak,
of the direct DD. A second order model will he necessary
to describe the data.

3. THE DATA

Time series of abundances of 19 populations of
Fennoscandian rodents (including a population on
Kola) were studied (table 1), These time series
represent five species from nine geographic locations,
extending from 60.5° N (Finse) to 69° N (Kilpisjarvi).
Only autumn counts have been considered (cf.
Henttonen et al. 1985). The series were log-
transformed. Population abundances are governed by
birth and death processes which operate in a muli-
plicative manner. Such muldplicative process will be
additive on a log scale, allowing the application of
additive statistical models. Because of zeros in some
series, a constant of 0.1 was added to all series before
transformation. Conspicuous changes in abundance
has been noticed for some of the time series during
the late 1980s (see, for example, Small e f. 1993).
Such non-stationarities cause problems for many
statistical methods. To remove any trends, all time
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series were detrended (after log-transformation) using
a locally weighted regression (LOWESS; Statistical
Sciences Inc. 1993 ; Trexler & Travis 1993). A six-year
window width was chosen because this s just larger
than the maximum period reported for the fluctuations
of the Fennoscandian rodents (see, for example,
Henttonen st af. 1985). The estimated period lengths
(dominant period in the periodogram; see, for ex-
ample, Priestiey 1981) for the detrended data are given
in tahle 1.

4, STATISTICAL MODELS FOR TEMPORAL
FLUCTUATIONS

The patterns of pp experienced by a popalation will
create a certain signature in the autocovariance
structure of a time series. We will use this in the
reconstruction of the patterns of pp. Because we
examine correlates, we are not able ro nfer strict
causality (Royama 1981, 1992). To emphasize that the
estimated pp may paossibly be spurious (Just like in any
correlation  analyses), we make inference about
‘statistical op’ (Royama 1981). However, ‘statistical
direct pp’ and ‘statistical delayed pn’ will just be
denoted by direct pp and delayed pp to ease
readability.

Temporal changes in population density may be
described using stochastic difference equations (for
examples see Dennis 1989). A general starting point is:

N = NANN_, .. N:.—A-.u-,—l}.: %)y (la)

where ¥, is the abundance at time ¢, and », is some
stochastic term (possibly time or state dependent)
affecting the population growth rate. The function
AN N N ey 18 some function of past abun-
dances determining the pattern of direct and delayed
pp. The maximal lag of bp is determined by £+ 1,
Writing log (N,) = X, log (fIN)) = g{X) and the

corresponding stochastic term as », we obtain:
Ro=X,—X =gX, X, ..., Xt.—k(}:.—l)! ), {14)

where R, 15 the population growth at time £, and g{e) is
the function describing how the population growth
rate depend on previous densities, From the literature
on theoretical population ecolagy, it is clear that the
choice of g{|] is not trivial; numerous functional forms
have been suggested {for example see May & Oster
1976). For ecase of comparison, it is necessary to settle
for one. A useful simplification for the estimation of
statistical bp is to assume g(|) to be linear in #, and Xs.
That is, the growth rate changes linearly with log-
abundances: the Gompertz assumption (for examples,
see Reddingius 1990; Dennis & Taper 1994). This will
not be strictly true for population dynamics in general
{for examples, see May 1986). Specifically, the assump-
tion of linearity is false for some of the populations
investigated here (Falck et al. 1995; unpublished
results). We stress, therefore, that this assumption is
made to estimate the strength of pp. Linear models
appear to give fair approximations to same real
pepulation with non-linear dynamics (Subba Rao &
Gabr 1980; Haggan e al 1984; Royama 1992),
Presently, we require the much weaker property that a
linear model may recreate the autocovariance signa-
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Table i. Latitude North, location and taxon (genera: L = Lemmus, M = Microtus, ¢ = Clethrionomys) for the 19 time

series

{The period is the cycle period (years; see text). 1 is the number of annual ebservatians. AICc{min) is the minimum of the
AIC -profile. Order indicates the arder correspanding o this minimum. Whenever the optimal dimension does not carrespond
to 2, the difference between the AIG, for dimension 2 and the AIC, (min) is indicated by AAIC ; A difference of unity is
considered not significant {(Sakamoto ¢ af. 1986). Order 2 indicates (¥ = yes, N = no} whether the dynamics are cansistent
with a 2nd order model. All series but two are consistent with dimension 2. The columns (1 +6,) £s.e. and B,+s.e. give the
parameter estimates of the 2nd order autoregression and their standard errors. g signifies the estimated standard deviation of the

gaussian noise.)

AIG (min)H arder AAIC, order? (14 f,) fs.e.

B,ts.e a

latitude location species period =

60.5° Finse L. lemmas® 36 25 96.83
60.5° Finse L. lemmas® 3.6 25 103.58
60.5° Finse Microtus spp* 3.6 25  86.35
60.5°  Finse Micratus spp* 3.6 25 2542
61.5° Boda C. glareolus” 3.5 28 1G1.01
63° Ruotsala Mucratus spp® 2.9 20 58.98
63° Alajoki Murotus spp® 3.2 16  57.41
64° Umed C. glareolus™ 3.4 24 £7.72
647 Umed C. orufocanus® 3.4 24 5205
64° Umea M. agrentis® 3.4 24 53.45
64~ Sotkamo M. agrestis® 39 27 84.82
64~ Sotkame C. glareolus® 1.9 27 76.59
67" Koala C. glareolus' 4 80 19 72.90
67° Koala C. rufecanus’ 480 19 68.91
64° Pallagjarvi €. glareolus® 4.60 23 7521
68°  Pallasjarvi  C. rafocanus® 460 23 71.39
68° Pallasjarvi = €. rutifus® 4.6( 23 7021
69° Kilpigjarvi! . rufocanus® 4.4 22 6569
69° Kilpisigrvi* C. rufocanns® 4.8 24 86.04

2 — Y —047£0.18 —0594+0.17 150
2 — Y —032+019 ~0541+018 1.72
2 — Y —024£016 —-0631016 I1.21
3 447 N —059+016 —0671+013 039
2 — Y —0.08+0.17 —055+017 .34
2 — Y —0.58+0.16 —0711£0.17 .89
2 — Y ~0.57+0.21 —0.634025 1.15
2 — Y ~021+£017 —0641+0.16 088
2 — Y —G0.la+014 —0731+0.13 (163
2 — Y —020+014 0761013 (164
3 079 Y —038+017 0561017 107
0 oae Y —0.194£019 0391015 035!
2 — Y 0.14+02] —052+021 |.4¢
2 — Y 0.05+0.20 —0614+0.18 1.25
2 — Y 0124017 ~0.59+0.47 1.09
2 — Y 0.10+0.17 —0601+0.17 098
2 — Y 0.34+016 —-0631+0.16 1.00
3 [.L14 N 021+£017 —065£0.47 036
2 — Y 010+0.18 —063£016 1.28

b Small of af. (1993).
¢ Korpimiki & Norrdahl {1991) and Korpimaki (1994).
Harnfeldt (1994) and Birger Harnfeldt (personal comm. ).

! Koshkina (1966, cited from Turchin 1993).

Framstad et al. (1993) and Erik Framstad (personal comm.).

Henttonen of af. (1977) and Asko Kaikusalo & Hekki Henttonen {personal comm.).

® Henrttanen et al. (1977), Hentronen ¢ af. (1987) and H. Henttonen {personal comm.); ald forest papulation anly.

® Kalela {1957), Laine & Henttanen (1983, 1987) and H. Hentronen {personal camm.).

! The two time series from Kilpisjarvi is from a single population in which the dynamics is believed to have changed (Hekki
Henttonen, personal comm.) associated with an altered variance. The series is therefore divided in two.

ture of a possibly nonlinear time series (Theiler ef al.
1992). If the process is extremely nonlinear, we may
over-estimate the number of lags required fi.e. the

arder]. But we will not underestimate the dimension
{cf. Takens theorem; Broomhead & Jones 1989).
Under the linear approximation, equation {14)

simplifies to {see, for example, Raoyama 1992, chapter

2):

Ry= X=X =BtB X B X+ B X T
(2)

Rewriting and setting ¢ = {—1 we obtain,

Xo=Bat(V+B) X+ Xt B Kot (3)

Whenever we are willing to assume the zs to be
independent and from an identical symmetric distri-
bution, {3} is the autoregressive model of order £,
AR(k) (see, for example, Priestley 1981). Ecologically
speaking, B, is an estimate of the strength of direct pD
in the population growth, and {3, through f§, are
estimates of the strength of delayed bp at various time
lags.

The assumption of linearity is an impertant ap-
proximation to facilitate the comparison of the dy-

Froc. B. Soe. Lond. B (1995)

namics of different populations; there is only one
restricted class of time series maodels which are linear,
whereas nonlinearity may take several incomparahle
farms (nonlinearity in mean, nonlinearity in variance,
threshold nonlinear, exponential nonlinear; see, for
example, Tong 1990). A further simplfication necess-
ary for the comparison is to find an acceptable value
for & for the time series. An appropriate approach for
selecting a value for £ is to use the AIC, of Hurvich &
Tsai (1989): AIC, = —2loglikelihood + 2p+2[p+ 1]
[p+2]/[n—p—2], where, p is the number of model
parameters and # is the sample size. The appropriate
autoregressive model 15 that with the smallest AIC,
value among all the models considered. The rule of
thumb in AIC-based selection is that a difference of
unity in the AIC, value is insignificant (Sakamato et al.
1986).

(a} Dynamics of the second ovder autorvegressive
model

The dynamics of the AR(2) model varies greatly
with the values of {1+ [,) and B,. The consrant term,
B, determines the average, and it does not affect the
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Figure 1. The periodicity of the dynamics of the Ind order autoregressive madel X, = B+ {1 +B) X, +B, X, _,.
Parameters autside the triangle lead to extinction. Inside the triangle, the dynamics is either pointstability or damped
fluctuarions. The fluctuations will be persistent if any level of stochasticity is present {Royama 1992}, The dynamics
is cyclic helow the semicircle. The lines given are contour lines: the periodicity changes in a continuous fashion inside
the semicircle. The two main gradients in dynamics from short to long periodicity is indicated by the arrows. One
is through the reduction of f,, the ather is through the increase in (1 4+ 8,} given that i, is inside the semicircle. For
a full expositian of the dynamies of this model see Royama (1992).

patterns of pp and dees not alter the dynamic
properties of the model {Royama 1992}, This par-
ameter is therefore not discussed here. It is approxi-
mately zero in all the present analyses, because of the
detcending of the data. The effects on penaod length of
{1+0,) and B, are depicted in figure 1. The penodicity
of the dynamics changes from point stability (no
periodicity) to very long-term periodicity (towards the
right hand carner of the triangle). The semicircle of
figure | indicates the region below which the dynamics
are truly cyclic. In the AR({2) madel, there are twa
main ways of generating a gradient in periadicity: {i)
by decreasing the delayed coefficient (vertical arrow in
figure 1); and (ii) by increasing the direct coefficient,
given that the delayed coefficient is in the cyclic region
{the horizontal arrow of figure 1). Thus, the periodicity
af the dynamics may increase either because of more
severe delayed pp of because of less severe direct
density dependence.

(b} Statistical fitting of the autoregressive model:
demonstration of a geagraphic gradient

The parameters of the AR{%Z) model is easily
estimated using a variety of statistical packages. We
have used the PROC AUTOREG (with the maximum
likelihood option) of SAS version 6.08 {SAS Institute
1990) to estimate both the AIC -values and the
autoregressive parameters. Note, that most statistical
packages give the large sample equivalent of the AIC,
(AIC), which is generally less appropriate.

Proc. R. Soc. Lond. B (1995)

To investigate any gradient in patterns of statistical
DD the estimated coefficients of the optimal auto-
regressive model are regressed on a polynomial in
latitude: there are no a prior: reason to anticipate a
linear relation. The polynomial is initially taken to be
of order 2, and superfluous terms are removed by
backwards elimination {p,., = 0.10). Since the time
series differ in length and quality, the model fitung 1s
done using weighted least-squares (wrs). The weight 1s
inversely proportional to the variance of the estimates
{Sen & Srivastava 1991). The results are not crincally
dependent on the weights employed (unpublished
resulis), but the wrLs will give the most correct results.
After the backward eliminatuon, we obtain one
parsimanious statistical model for {1+ B} as a function
of latitude and another for B,. Their joint dependernce
on latitude can be plotted as an arrow (as in figure 1)
to help visualize any gradient. Because of the inter-
dependence between the different species at the same
geographic location {Hansson & Henrtonen 1988), the
gradient is alse estimated from the average coefficient
within each site. The symbol will indicate the analysis
where the different taxa at the same locatien are
considered independent {the model is the weighted
regression), MEAN will indicate the analysis based on
the mean (1 +f,) or B, from each location.

To validate the results, 300 time series (n = 23) for
each latitudinal degree (60°-70° NJ are simulated. The
simulation is based on a second order autoregressive
tme series with coefficients as predicted from the
regressions of (I +f,) and f, against latitude. Stoch-
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astic perturbations are simulated by normally diseri-
buted noise with variance equal to the average
estimated variances. The dorinant periods of these
simulated time serles are summarized and compared to
the largely independent periodicities reported by
Hansk: ef af. (1991}.

5. RESULTS

Using the AIC, criterion to select the appropriate
order of the processes reveals that the second order
model is the most appropriate for describing the
dynamics (table |). The estimated coefficients of the
second arder autoregressive model are given in table 1.
By examining the approximate confidence intervals
(generated by two times the standard errors printed in
table 1}, it is clear that all coefficients for delayed pp
{B,) are significantly different from zero and all the
coefficient for direct o (l1+f;) are significantly
different from 1. Thus, all populations exhibit both
direct and delayed pp which are significantly different
from no regulation {cf, equation 3; Reddingius 1990).

The estimates of the latitudinal clines in statistical
pp are summarized in figure 2. The best predictor
for the direct b {1 4+f;) was linear in latitude (see
figure 24). This first order coefficient increase with
latitude, Latitude explains as much as 669, of the
observed wvariability (g < 0.01). For the delayed pp
{ By}, there was no evidence of a latitudinal cline (figure
24). Latitude explained less than 19/ of the variation
(# = 0.95). Figure 2¢ 1s the scatter plot of B, against
(l+B.). Superimposed on this is the arrow repre-
senting the simultaneous change of the two coefficients
with latitude. The base of the atrow represents the
southern limit of the data sets (60.5°) and the arrow
head represents the northern (69°).

To examine the predictive power of our statistical
model, coefficients of delayed and direct pp were
predicted for each latitudinal degree (60° N-69° N}
from the models in figure 2. Time series of length 23
were simulated and the domunant periodicity caleu-
lated. The *within-degree’ variability and the overall
trend are compared to the pericdicities reported by
Hanski ef af. (1991} in figure 3. The fit is satisfactory.
The average periodicity increases smoothly from 3.3 to
4.5 vears.

6. DISCUSSION

The statistical pattern demaonstrated in this study
is consistent with the hypothesis put forth by Hansson
(1987} and Hanski ¢ ¢l (199]1). They postulate that
the greater abundances of generalist predators in
Southern Fennoscandia is the reason for the shortening
of the periodicity. Generalist predators are charac-
terized by a switching type of funcdonal response
{Murdoch & Qaten 1975), ot by a migratory response
(Ydenberg 1987; Korpimiki 1994). These predators
should therefore enhance the direct negative DD.
Obvicusly, the omnipresence of specialist predators {or
some other agent with lagged response} across the
region is essential to explain the basal detayed pp, The
snow cover hypothesis and the specialist predator

Proc. B, Soc. Lond. B (1995)
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Figure 2. (a) The scacter plot of (1 +p,) against laticude.
Circles represent the estimates (tahle 1), stars represent the
mean of the estimates. The line depicts the aptimal predicter
of the coefficients (see ctext); arL: —506 {se =081,
p < 0.01} +0.08*atitude (s.e. = 0.01,p < 0.01, R, = 0.66);
MEAN: —35.19 {s.e. = 1.38, p = (.01) + L.0O8*]atitude (s.e. =
0.02, p = 0.02, R}, = 0.53). (b) The scatter plot of fi, against
latitude. Symbeols are the same as in (2). The line depict the
aptimal predictor of the coefficients (see text), aLL: —0.63
(s.e. =002, p < 0.01); mpan: —0.6] (se. = 0.02, p < 0.01).
{¢) The scatter plot of (1 + B} against f§, plotted like in figure
i. Clearly all populations exhibit cyclic dynamics (see legend
figure 1). Superimposed is the arrow representing the
simultaneous evolution of the two coeflicients with latitude.
The base of the arrow represents the southern limit of the
data (60.3°) and the arrowhead represents the northern limit
{69°).

hypothesis predict changes in delayed pn. The pre-
dicticns of these hypotheses, therefore, disagrees with
the statistical patterns in the data. They are not
supported empirically. Note, however, that the study
of Hansson & Henttonen {1983) invoking snow cover
had a broader latitudinal scope than the present.
The correlation between geographic latitude and
aspects of population dynamics is intriguing in its
clarity. Many ecological factors are correlated with
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Figure 3. Box plats of the periodicity predicted by the
estimated gradient in {1+p,) and B,. For each ladtudinal
degree the parameters of the 2nd order autoregressive maodel
was predicted using the model in figure 2. The stochastic
term was assumed to he N(0, 1}. Each hax plot summarizes
the dominanc periad of 500 simulated time series of length 25.
The central bars represents the mean, the hox represents the
ohserved inter-quartile range, and the bars represents the
upper and lower five-percentile. Superimposed on the plat is
the data collected by Hanski ¢f af. (1951 (sold black circles)
and the periodicity estimared from the present derrended
time series (both black and white stars). Note, that the stars
represents the same data as used to predict the gradient.

latitude, but the correlation is often indirect, through
various environmental factors (see, for example, Pianka
1989). We rely on a carrelation between latitude and
predator fauna documented by Hansson (1987) and
Hanski ¢f af. {1991) in our statistical evaluatian of the
differences along a north-seuth gradient in
Fennoscandia. Latitude must be used, with care, as a
surrogate of underlying ecological parameters.

A fundamental question is whether our linear
autoregressive model 1s an appropriate one. One
constraint of the linear model 1s that 1t cannot exhibit
stable limit cycles (nor low dimensional chaos; see, for
example, Tong 1990). Any cyclic fluctuations exhibited
will be of the phase-forgetting type (sensu Nisbet &
Gurney 1982). Sustained fluctuations will require
external forcing or perturbation. The present metho-
dology will nat be useful in the quest for clines in
camplexity of populavion dynamiecs (such as those
sought by Turchin 1993). One way of evaluating the
appropriateness of the linear autoregressive framewaork,
is to test for nonlinearities using a piece-wise linear
model (STAR model; see, for example, Tong 1990).
Preliminary tests for nonlinearities has provided evi-
dence of such (and thereby for the possibility of more
complex dynamics) in several of the time series (Falck
et al. 1993; unpublished results). It is, however, nat
clear how the few tests available behave in small
sample situation considered here, Further work is
urgently needed.

The above analyses have revealed a consistent
geographic pattern of density dependency in a variety
of microtine species. Table | suggests tentatively
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(despite the scarcity of data) that the pattern of
statistical np experienced by any population is mare of
a biogeographical than a taxenomic property. This
lays at the heart of the concept of interspecific
synchrony in cyclic rodents (reviewed in Stenseth &
Ims 1993). This is furthermore consistent with Hansson
& Henttonen’s (1988) interpretation of the microtine
cycle as a community process. Certainly, it is easy to
envisage that external agents {density dependent cr
density independent) can synchronize population
fluctuations (see, for example, Moran 1953; Ims &
Steen 1990; Royama 1992). [t is, however, difficult to
see how such external agents ean tune the patterns of
po in all the species of the microtine community.

Data was provided to us by Erik Framstad, Heikki
Henttonen, Birger Hornfeldr, Peter Turchin, and Tomas
Willebrand. [llka Hanski, Charles Krebs and one anonymous
referee have read and improved the manuseripr.
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