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Abstract. A new test based on the generalized additive model is proposed to investigate
density-dependent mortality in the juvenile cohorts of cod. Density dependence implies
that the function linking the count of a cohort in one year to the count in the succeeding
year is convex. The method estimates (without functional assumptions) the function linking
the two counts and provides a level of significance for any convexity. We investigate the
power and bias of the new test on the basis of simulated data. The power compares well
with a test of unit slope in a log–log plot (although it is usually somewhat lower). However,
in contrast to the latter method, the test for convexity is much more resistant to measurement
error. We applied the model to long-term survey data from two areas of the Norwegian
Skagerrak coast. In both cases, the variance is intermediate between the Gamma (variance
proportional to the squared mean) and the Poisson (variance proportional to the mean)
distributions. A negative binomial (with k ø 3.5) describes the variance well. The variance
is interpreted as resulting from sampling errors, spatial heterogeneity, and environmental
stochasticity. Incorporating this error structure, the optimal models linking the two main
juvenile stages are, for each area, nonlinear and significantly convex (P , 0.05). The full
models are highly significant (P , 0.001), and the examination of the residuals does not
reveal any remaining structure. We conclude that the survival of juvenile cod along the
Norwegian Skagerrak coast is density dependent, probably because of cannibalism, com-
petition for habitat, and food limitation. The functional form of density-dependence in the
per capita survival rate is estimated to be approximately log-linear.

Key words: age-structured interactions; cannibalism; competition; Gadus morhua; Gamma vari-
ance; Generalized Additive Model; negative binomial distribution; Norway; Poisson variance; sto-
chastic population dynamics; time series analysis.

INTRODUCTION

Fish stocks are known to fluctuate extensively over
large spatial and temporal scales (e.g., Laevastu 1993,
Cushing 1995). The early stages in the life cycle are
believed to be critical in determining year class strength
(May 1974, Cushing 1995). Survival has been related
to abiotic factors, such as changes in temperature, sa-
linity, wind field, and currents (e.g., Cushing 1982,
1995); human exploitation (Hutchings 1996, Myers et
al. 1996, Cook et al. 1997); and biological processes,
such as predation, competition, and cannibalism (Caley
et al. 1996). Sundby et al. (1989) reported evidence
suggesting that juvenile mortality in the northeast At-
lantic cod is density dependent. Myers and Cadigan
(1993) concluded that most of the marine demersal fish
populations are regulated through density dependence
that takes place during the juveniles stages.
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There is, however, no consensus on the functional
form of density dependence in fish (see, for example,
Ricker 1954, Shepherd and Cushing 1990, Myers and
Cadigan 1993). Indeed, uncertainty about functional
forms for biotic interactions (such as density depen-
dence and functional responses) is common in many
areas of population ecology (see, for example, Abrams
1982, Hanski 1991, Boutin 1995, Pascual et al. 1997).
In the following we develop a method that allows the
estimation of density-dependent survival without mak-
ing a priori assumptions about functional forms. From
this, we develop a formal test of density dependence.
When the test is applied to synthetic data, it is found
to have good power and to be relatively resistant to
measurement errors. We apply the method to census
data of cod (Gadus morhua) populations along the Nor-
wegian Skagerrak coast.

THE LIFE CYCLE OF THE NORWEGIAN

SKAGERRAK COD

Fromentin et al. (1997) demonstrated significant pe-
riodic fluctuations in time series of the Norwegian
Skagerrak cod population. The period was ;2-1/2 yr,
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FIG. 1. The life cycle of cod (Gadus morhua L.) along the Norwegian Skagerrak coast can be summarized into four main
stages: eggs (;2 wk in early March), larvae (;3 mo in the spring), juveniles (the following two years), and adults (maturation
occurs at ;2–3 yr).

and the authors hypothesized that the periodicity might
be related to interactions between the two main juvenile
cohorts, leading to density-dependent mortality. We in-
vestigate the long-term data sampled in two different
areas along the Norwegian Skagerrak coast in order to
test for density-dependent survival. Firstly, we will
provide a summary of the population ecology of the
cod.

The life cycle of cod (Gadus morhua L.) can be
divided into four main stages (Fig. 1): eggs (;2 wk),
larvae (;3 mo), juveniles (2 yr), and adults (21 yr).
Eggs are buoyant and hatch near the surface 1 or 2 wk
after the spawning, which usually occurs in early March
along the Norwegian Skagerrak coast. The larvae stay
in the water column and feed on zooplankton, mainly
copepod nauplii and copepodites. The fish larvae meta-
morphose into juvenile fishes around May–June in this
area. The younger stage of these juveniles constitutes
the 0-group, which lives on their nursery ground but
settles and feeds on the bottom when they are ;3–5
cm long. The egg and larval stages are variable among
years because of starvation and expatriation (Skreslet
1989; see also Cushing 1995) and changes in temper-
ature, salinity, wind field, and currents (Koslow and
Tompson 1987, Ellersten et al. 1989, Dickson and
Brander 1993, Ottersen and Sundby 1995). Juveniles
grow at the bottom for ;2 yr after which maturation
occurs. The maturation time of 2–3 yr in the Norwegian

Skagerrak cod is short compared to the North Sea and
the Arcto-Norwegian cod (Gjøsæter et al. 1996). Tag-
ging experiments have indicated that the Norwegian
Skagerrak cod is relatively isolated, with limited mi-
gration (individuals appear fjord specific) and limited
interchange with individuals of other nearby areas
(such as the open sea population from the Skagerrak
[Danielssen 1969]). The young juveniles (0-group), the
older juveniles (1-group; 1-1/2 year old), and the adults
are, thus, considered to be sympatric or parapatric. The
adults are, however, generally found in deeper water
than the two juvenile cohorts (Gjøsæter 1990, Gjøsæter
et al. 1996; see also Dalley and Anderson [1997]).

THE DATA

The time series on cod have been assembled as part
of the Flødevigen survey in which fish communities at
numerous fixed locations along the Norwegian Skag-
errak coast have been censused every September/Oc-
tober since 1919. The sampling has been carried out
with beach seines of standardized design since the onset
of the study (for more details, see Tveite [1971], Jo-
hannessen and Sollie [1994]). The abundances of the
two main juvenile cohorts of cod (the 0-group and the
1-group) are well represented in the catch. The 0-group
individuals in a given year correspond to the 1-group
cohort in the succeeding year (Fig. 1). Because the
sampling started a bit later than 1919 in some stations
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FIG. 2. The Norwegian Skagerrak coast together with a detailed map showing the location of the two broad areas
(Southwestern: black dots; Northeastern: grey dots; m shows the location of the city of Oslo). The long-term survey data of
the 0-group and of the 1-group of the southwest area go from 1921 to 1994, and those of the northeastern area from 1936
to 1994. The time series correspond to the yearly total counts of the two age classes across 38 fixed stations in the former
and 37 stations in the latter.

in the southwestern (SW) area (Fig. 2), we study the
census data of juvenile cod sampled from 1921 to 1994
(barring the five war years 1940–1944) at 38 fixed sta-
tions. A second set of 37 stations in the northeastern
(NE) area were sampled from 1936 to 1994 (excluding
the war years; Fig. 2).

To obtain a sufficiently large count of 1-group in-
dividuals and thus to enhance power, we analyze the

total counts of the two age classes across the 38 SW
stations and the 37 NE stations. The data, thus, consist
of two series of 69 values from the former and two
series of 56 values from the latter (Fig. 2). There is a
high level of correlation between the individual series
(see Fromentin et al. 1997). This facilitates the aggre-
gation of the counts. Unpublished analyses that break
the data up by fjords provide a more detailed geo-
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graphic analysis of density dependence (J. M. Fro-
mentin et al., unpublished manuscript).

THE MODEL

Density-dependent survival: a test of convexity

Considering that adults are primarily found in deeper
waters, density-dependent processes are likely to occur
mainly between juveniles of the 0-group during and
after settling and juveniles of 1-group, which are al-
ready settled on the bottom.

Let yt denote the number of 1-group and xt the num-
ber of 0-group in year t. According to classical theory
for age-structured populations, density-dependent sur-
vival of the 0-group cohort into the 1-group of the
following year may be written as

yt11 5 Fs(xt) (1)

where Fs(·) is the survival function (and the per capita
survival is given by Fs(·)/x). Density-dependent sur-
vival implies that this function is nonlinear and convex
in the raw abundance. In contrast, the hypothesis of
density-independent survival implies the function to be
linear with a positive and constant slope (i.e., the pro-
portion surviving is constant across the range of den-
sities). An intercept a (±0) may be included in the
model to compensate for immigration and emigration
in nonclosed populations.

Eq. 1 is a deterministic model that does not incor-
porate either the stochasticity inherent in natural pop-
ulations or the variability due to the sampling error. To
remedy this, we consider Eq. 1 as the model for the
expected (i.e., conditional expectation) survival of the
cohort from year t to year t 1 1:

E[yt11] 5 Fs(xt) (2a)

where the expectation is taken marginally with respect
to the inherent stochasticity and the randomness due
to sampling. We define a function, v, for the conditional
variance (as in generalized linear models [McCullagh
and Nelder 1989]). This variance function defines the
law for the variability around the survival function:

Var(yt11 z xt) 5 v[E(yt11 z xt)] 5 v[Fs(xt)]. (2b)

We consider first measurement error. The variance
induced by the counting process will be proportional
to the conditional expectation, mx (5Fs(·)), if individ-
uals are distributed completely randomly because the
numbers will be Poisson distributed (e.g., Pielou 1977).
As individuals get very aggregated, however, the vari-
ance will be close to proportional to the squared mean
(Pielou 1977). At the intermediate scale, the variance
may follows the negative binomial variance function,
v 5 mx 1 /k (see, for example, Gaston and McArdle2mx

1994, Wilson et al. 1996).
Demographic stochasticity alone will, in constant en-

vironment, lead to negative binomial variance (e.g.,
Kendall 1949, Anderson et al. 1982). Variability due
to population growth in a variable environment, in con-

trast, often has a variance that increases with the
squared mean (through a Gamma or lognormally dis-
tributed steady state [Dennis and Patil 1984, Engen and
Lande 1996a, b]). For k small, the negative binomial
may be seen as approximating a discrete Gamma dis-
tribution. A negative binomial variance function is
therefore a natural choice for population counts. For k
large, the negative binomial converges on the Poisson
distribution.

Census data of marine fish populations are likely to
harbor both process variability and measurement error.
We determine the appropriate variance function (error
structure) from the data by estimating k in the negative
binomial as an integral part of the model fitting (using
maximum likelihood [see Venables and Ripley 1994]).

Given an appropriate variance function (Eq. 2b), the
cohort survival function Fs(·) can be estimated from
census data without making assumptions about its func-
tional form (such as a Ricker or Gompertz model [e.g.,
Lebreton 1989) using tools from nonparametric re-
gression (e.g., Green and Silverman 1994). That is we
estimate the entire function itself by building it from
a set of basis functions. Different basis functions are
possible, but the most commonly used are splines (of
which we will use B-splines [Green and Silverman
1994]). Splines are piecewise polynomials that are
smooth (twice differentiable) in the spline knots (the
control points of the splines). Compared to a polyno-
mial basis (i.e., as in polynomial regression), splines
are much more flexible and can attain a fit to the un-
derlying function using many fewer degrees of freedom
for the model. Splines are, thus, better suited for func-
tion estimation both with respect to bias and variance.
Ellner and coworkers advocate the use of spline
smoothing to ecological time series analysis in the con-
text of estimating Lyapunov exponents when the func-
tional form of the underlying interactions are unknown
(Ellner and Turchin 1995; see also Ellner et al. [1991],
McCaffrey et al. [1992]).

Nonparametric regression with non-Gaussian error
may be estimated using the framework of generalized
additive models (Hastie and Tibshirani 1990; see Sten-
seth et al. [1997], Bjørnstad et al. [1998] for applica-
tions to population dynamics). We optimize the com-
plexity of the curve (the number of degrees of freedom)
using the AIC criterion (Burnham and Andersson
1992). The test for density-dependent survival is equiv-
alent to the test for significant convexity in the esti-
mated function. Since the linear model is nested in the
nonlinear model, this can be done by an analysis of
deviance (a likelihood-ratio test) of the two models.
Denote the sample size by n, the difference in deviance
by DD, the number of parameters in the linear model
by p1 (52), and the number of parameters of the non-
linear model by p2 (so that Dp 5 p2 2 p1 is the dif-
ference in number of model parameters). Define further
the scale parameter on the basis of the nonlinear model
as f 5 deviance/(n 2 p2). Under the null hypothesis
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of linearity DD/fDp will be approximately F distrib-
uted with Dp and n 2 p2 degrees of freedom (Mc-
Cullagh and Nelder 1989).

An important implication of the variance–mean re-
lationship is that the expected deviation of observations
away from the model prediction will vary with the
mean. That is, the magnitude of the residuals will de-
pend on the cohort size. This feature of the system may
be considered when assessing the goodness-of-fit of the
model by using Pearson residuals (residuals that are
scaled by their variance McCullagh and Nelder [1989]).
Serial dependence in the scaled residuals was further
tested for using the 1st order autoregressive model.

The log–log unit slope test

The traditional tests for density dependence in sur-
vival use the fact that under the null hypothesis the
slope in the regression of log(yt) on log(xt) will be one
(see, for example, Myers and Cadigan 1993). Density
dependence leads to a slope significantly smaller than
one. This class of tests suffers from inflated type I error
in the presence of measurement error (e.g., Kuno 1973,
Lebreton 1989), unless the magnitude of the error is
known a priori (e.g., through multiple measurements)
(see Myers and Cadigan 1993). To investigate the prop-
erties of the likelihood-ratio test of convexity, we will
compare it to the results of a log–log unit slope test
applied to synthetic data (with various degrees of con-
tamination of measurement error). The likelihood-ratio
test for the latter can be constructed by regressing yt

on log(xt) using a log link (McCullagh and Nelder
1989) and the suitable variance function. The deviance
of this model may be compared to the model with a
slope fixed at unity (i.e., the regression model that is
offset by log (xt)). Under the null hypothesis, the like-
lihood-ratio statistic DD/fDp will be approximately
F-distributed with 1 and n 2 1 degrees of freedom.

Data sets with varying levels of measurement error
were generated by contaminating the predictor with
error. An uncontaminated predictor, x, was made by
drawing 50 data points from a uniform distribution on
[10, 2000], that is, loosely spanning the observations
for the 0-group in the SW data set (Fig. 1). The variance
of the predictor is thus (10 2 2000)2/12 (see e.g., Ross
1994). The error variance was selected to be 0 (un-
contaminated), 1, 5, 10, 25, and 50% of this variance.
To simplify calculations, the response, y, was calcu-
lated as overdispersed Poisson variates (v 5 fmx9,
where the scale, f, is some constant) with mean lx,
rather than strictly following the negative binomial dis-
tribution (see McCullagh and Nelder 1989:chapter 6,
Wilson et al. 1996). The constant proportion surviving,
l, was set to 0.1, so that the ys loosely span the range
of the 1-group. The scale, f, was set to 1, 4, and 9.
For this analyses of sensitivity to measurement error
on the basis of synthetic data we assume a quasi-Pois-
son error structure (Lawless 1987, McCullagh and
Nelder 1989:chapter 6). The reason why we use this,

rather than using the negative-binomial, is to speed up
and facilitate the automation of the calculations across
the large number of synthetic data sets. For the 0%-
contamination runs, the error rates are estimated on the
basis of 60 000 simulations for each of the levels of f.
For the remaining levels of measurement error we use
10 000 runs for each parameterization. The smallest
parameters are deliberately chosen to represent very
weak density dependence.

A preliminary investigation of power was carried out
by simulating data under the alternative hypothesis of
density-dependent survival. Density dependence was
modeled as following a Ricker map (i.e., y 5 axe2bx),
or a Gompertz map (i.e., y 5 axe2bln(x)) (see, for ex-
ample, Lebreton 1989). The predictor, x, were assumed
to be without measurement error, and both the test of
convexity and the log–log test of unit slope were ap-
plied. The density-dependent survival rate, a, were
tuned to give an average y of 100, to facilitate com-
parison across models. Rejection rates at a nominal 5%
level were assessed on the basis of 10 000 runs.

Most calculations are carried out in S-plus for Win-
dows version 3.3 (Statistical Sciences 1995) with the
MASS library attached (Venables and Ripley 1994). The
statistical simulations were carried out with S-plus ver-
sion 3.4 on a SGI Power Challenge L with four R10.000
processors.

RESULTS

Variability of cod counts

When the additive model with a negative binomial
error was applied to the data, the clumping parameter,
k, in the negative binomial was estimated to be 3.68
6 0.70 (mean 6 1 SE) for the SW data and 3.68 6
0.78 for the NE data. The variance thus increases some-
what faster than in proportion to the mean. The data
appear to conform rather well to the negative binomial
as the scale parameters were estimated to be 0.98 and
1.16, respectively. There is no evidence of serial cor-
relation in the residuals (SW lag1 autocorrelation 5
0.06, P 5 0.64; NE lag1 autocorrelation 5 0.07, P 5
0.59).

Survival function of juvenile cod

The variability in the data led us to employ a negative
binomial error (with k ø 3.5) to estimate Fs(·). The
optimal (in the minimum AIC sense) model uses a
B-spline with two degrees of freedom to estimate the
survival function Fs(·) for both the SW and NE data
sets (Fig. 3).

The optimal model (Fig. 3) linking the 1-group to
the 0-group in the previous year is highly significant
for both the SW (F2,68 5 46.29, P , 0.001) and the NE
(F2,51 5 55.46, P , 0.001) areas. The Spearman rank
correlation between the predicted and observed values
is rSpear 5 0.76 for the SW and rSpear 5 0.83 for the NE
data. Fig. 3 indicates a wide spread of fish counts
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FIG. 3. The relationship between the 0-
group in each year to the 1-group in the suc-
ceeding year for (A) the southwestern and (B)
the northeastern data set. The survival functions
are calculated as B-splines with two degrees of
freedom, assuming that the variance follows a
negative binomial distribution with k 5 3.5. The
estimated curves are convex as predicted for
density-dependent mortality, and the nonlinear-
ity is significant at a nominal 5% level in both.

TABLE 1. The observed type I error rates (for the nominal
5% level) under the null hypothesis of density indepen-
dence for (A) the convexity test and (B) the traditional log–
log test of unit slope. Each run of a model used n 5 50
simulated data points.

Measure-
ment

error (%)

Variability level, f

1 4 9

A) Convexity test
0
1
5

10
25
50

5.32
6.41
7.03
7.95

10.97
14.5

4.63
5.48
5.52
6.56

10.64
12.33

4.10
4.48
4.92
5.78
8.86

11.99

B) Log–log unit slope test
0
1
5

5.10
12.98
32.31

6.14
11.09
27.18

8.57
13.48
25.52

10
25
50

50.12
79.73
94.96

42.89
73.9
93.07

39.35
69.95
91.08

Notes: Both tests apply a quasi-Poisson error structure and
likelihood ratio tests based on model deviances and estimated
scale parameters. The simulations are repeated for three dif-
ferent levels of variability, f, in the response (all assuming
the variance proportional to the mean), and six different levels
of contamination with measurement error (with variance rang-
ing from 0% to 50% of the variance in the predictor, x). For
the 0%-contamination runs the error rates were estimated on
the basis of 60 000 simulations for each of the levels of f.
For the remaining levels of measurement error we used 10 000
runs.

around the fitted cohort survival curve. Residual anal-
ysis (assuming negative binomial variance), however,
reveal no departure from the assumptions. As noted
above the observed variability is consistent with, and
no more than expected from (barring a few outlying
years), the probabilistic model (in other words, the
spread of the counts around the predicted model cor-
respond to what can be expected under the model for
the variance).

The estimated curves are both convex as predicted
in the case of density-dependent survival. The nonlin-
earity is significant at a nominal 5% level (SW: F1,68

5 4.34, P 5 0.04; NE: F1,51 5 4.32, P 5 0.04). Hence,
the hypothesis of a linear relationship (i.e., density-
independent survival) between the 1-group and the
0-group in the proceeding year is rejected.

Sensitivity to measurement error

Table 1 summarizes the observed type I error rates
(for the nominal 5%) under the null hypothesis of den-
sity independence for the convexity test (Table 1A) and
also for comparison for the log–log test of unit slope
(Table 1B). The simulations reveal that both tests are
reasonably well calibrated in the absence of measure-
ment error. The type I error rate is inflated, somewhat,
for the convexity test in the presence of measurement
error. The bias is modest, however, even as the error
of measurement exceeds 10% of the total variance in
the predictor. The log–log unit slope test, in contrast,
exhibits hugely inflated error in the presence of mea-
surement error. When the error of measurement is 10%
of the variance in the predictor, the null hypothesis is
rejected nearly half the time at a nominal 5% level.
The latter sensitivity to measurement error is a well-
known result that has been discussed frequently (see,
for example, Kuno 1973, Bulmer 1975, Lebreton
1989).

Power of tests

The simulation to assess the power of the convexity
test for density dependence relative to that of the log–
log unit slope test is summarized in Table 2. The anal-
ysis should be seen as a preliminary analysis. The pow-
er of the convexity test is typically somewhat lower
than that of the log–log unit slope test. The two tests
are comparable in strength, though. The greatest dis-
crepancy is in the presence of weak log-linear density
dependence (Gompertz type). This functional form of
density dependence is the alternative hypothesis
against which the latter test has the greatest power
among all forms.

DISCUSSION

In this work, we developed an additive model with
negative binomial (or quasi-Poisson) error to test the
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TABLE 2. Power of the test of convexity and the log–log
unit slope test (at the nominal 5%) under various forms of
density dependence.

Model Log–log Convexity

Ricker b 5 0.001; a 5 0.34
Ricker b 5 0.0001; a 5 0.11
Ricker b 5 0.00005; a 5 0.11
Ricker b 5 0.00001; a 5 0.1
Gompertz b 5 0.30; a 5 0.83
Gompertz b 5 0.20; a 5 0.41
Gompertz b 5 0.10; a 5 0.2
Gompertz b 5 0.05; a 5 0.14

1.00
0.91
0.47
0.09
1.00
1.00
0.92
0.49

1.00
0.81
0.40
0.11
0.98
0.93
0.61
0.28

Notes: Test equations: fs(x) 5 xea2bG(x), where G(x) 5 x for
Ricker type of density dependence, and G(x) 5 ln (x) for
Gompertz type of density dependence. The density-indepen-
dent survival rates, a, were chosen so that the mean number
of survivors would be ;100 for each model. Each run of a
model used n 5 50 simulated data points. Both tests apply a
quasi-Poisson error structure and likelihood ratio tests based
on model deviances and estimated scale parameters. The sim-
ulations assume pure Poisson variability (the variance is equal
to the mean) because type I error rates appear to be inflated
in the log–log unit slope test in the presence of overdispersion
(Table 1). Four different parameters for density dependence
are used for both the Ricker and the Gompertz models. The
smallest parameters are deliberately chosen to represent very
weak density dependence. Rejection rates at a nominal 5%
level were assessed on the basis of 10 000 runs.

hypothesis of density-dependent mortality within the
juvenile stages of the Norwegian Skagerrak cod. We
argued that considerations of the conditional variance
in the data take logical priority over estimation of the
survival function. We showed that there is evidence of
density-dependent mortality during these early stages.
After a discussion of some methodological issues, we
will return to biological interpretations of the patterns
of variability and density dependence.

A most common methodology (the ‘‘log–log unit
slope’’ methods) for testing for density-dependent sur-
vival is through regressing log-transformed data as-
suming a Gompertz or a Ricker model (Ricker 1954,
Lebreton 1989). Oftentimes, an assumption of log-nor-
mal error, accompanies this class of models (see e.g.,
Myers and Cadigan 1993, Cushing et al. 1996). Above,
we showed that this was not the case for the present
data (see Bjørnstad et al. [1998] for a different ex-
ample). We, therefore, developed likelihood-ratio test
for log–log unit slope when the variance is not pro-
portional to the squared mean.

Within the framework of the log–log method, a re-
gression slope smaller than unity is taken as evidence
for density dependence (e.g., Lebreton 1989). Thus,
with this approach, no relation (a slope of zero) indi-
cates strong density dependence. However, a slope of
zero may also result if the population size is measured
with error (e.g., Kuno 1973, Bulmer 1975, Lebreton
1989). Thus, measurement error biases this test towards
too frequent rejection of the null hypothesis. Our sim-
ulation (Table 1B) illustrates this effect. Myers and
Cadigan (1993) have developed a log-parametric
framework for testing for density dependence in the

presence of lognormal sampling error. This method re-
quires, however, the magnitude of the measurement
error to be known (for instance through repeated sam-
pling).

In the currently proposed methodology, the hypoth-
esis of density dependence refers to the shape of the
function for the raw counts. Within this framework,
measurement error will also affect the regression slope
(by a decrease—as for the log–log approach) and the
goodness of fit (by inflating the variance) of the re-
gression. However, measurement error does not strong-
ly affect the curvature of the estimated curve (see Table
1A). In contrast to the log–log test for unit slope, mea-
surement error only mildly affects the type I error rate
of the test of curvature (Table 1). We see three main
points of interest of the test for curvature (in order of
importance). (1) It is nonparametric in the sense that
we do not need to make a priori assumptions about the
functional form of density dependence. (2) It appears
to be relatively robust to measurement error. (3) It ap-
pears, therefore, to be permissible even when no in-
formation on the magnitude of the measurement vari-
ance exists. The power of the test is somewhat lower
than alternative test. In our opinion, the relative ro-
bustness to measurement error outweighs this draw-
back, at least to the extent that it should be considered
an important (or perhaps even necessary) supplement
to the unit slope test.

To illustrate the value of the method being model-
free, we can transform the estimated survival functions
(Fig. 3) into per capita survival functions (Fig. 4). Plot-
ting the function with various scales along the abscissa
allows an investigation of the functional form for the
density dependence. Density dependence is believed to
be of the Gompertz type in some systems (see, for
example, Myers and Cadigan [1993], Saitoh et al.
[1997]) but of the Ricker type in other systems (see,
for example, Ricker [1954], Turchin [1991], Dennis et
al. [1995]). Tests for density dependence may be rel-
atively robust to misspecification of functional forms.
The log–log unit slope test, for instance, works best
against a Gompertz model. It nevertheless differenti-
ates well against the Ricker type of dependence (Table
2). However, conclusions about the resultant dynamics
and the management consequences of misspecification
may be dramatic (Pascual et al. 1997). For the cod, the
reduction in survival appears close to linear in the log-
abundance for the SW area (Fig. 4). The nonparametric
curve estimation, thus, reveals that density dependence
conforms closer to the Gompertz than to the Ricker
model for this system (although there is some evidence
of departure from this at low densities in both areas).
The proposed methodology may prove useful to elu-
cidate functions for density dependence in data sets of
real populations.

There is room to elaborate the statistical machinery
to target the hypothesis of convexity more precisely.
A reason for that is that when the underlying survival
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FIG. 4. The estimated survival function (see
Fig. 3) of the southwestern data redrawn as a
per capita function. The density dependence is
apparent from the nonincreasing per capita
functions. Survival (A) as a function of abun-
dance and (B) as a function of log abundance.
The nonparametric curve estimation reveals that
survival is a nonlinear function of abundance
but a linear function in log abundance. One out-
lying data point for 1988 during which a bloom
of toxic algae killed most fish (Underdal et al.
1989, Granéli et al. 1993) (only five 0-group
individuals were caught) is excluded.

function is convex and nondecreasing, but observed
with error, the optimal B-spline solution may lie outside
the subspace of convex and nondecreasing functions
(Dole 1999). Dole (1999) develops a smoothing method
that generates regression splines subject to convexity
(and/or monotonicity) constraints. Reanalyses of the
cod data and some preliminary investigations of syn-
thetic data indicate that this constrained smoothing may
deserve future attention.

Given multiple measurements to give information
about the magnitude of the measurement error (see, for
example, Myers and Cadigan [1993]), it may be of
interest to extend the test of convexity to take advan-
tage of this information. A method to estimate regres-
sion splines in the presence of measurement error has
recently been developed by Maca et al. (1998). The
methodology is, however, yet in its infancy. Future de-
velopments may therefore increase the robustness to
measurement error and improve the power further.

The theory of density-dependent population growth
in a stochastic environment predicts, under a wide
range of population models and in the absence of mea-
surement error, that abundance should be conditionally
Gamma (or log-normally) distributed (Dennis and Patil
1984, Engen and Lande 1996a, b). The variance will
in this case be proportional to the squared mean. The
variability due to the counting process is typically Pois-
son distributed (although oftentimes with overdisper-
sion [McCullagh and Nelder 1989]), in which case the
variance should be proportional to the mean. A Pois-
son-like or negative binomial variance structure will
also result from pure demographic stochasticity (Ken-
dall 1949; see also Anderson et al. 1982). The variance
function (conditional variance) for the 1-group of cod
appears to conform rather nicely to the negative bi-
nomial. Considering the nature of the sampling process
for marine populations, this variance function is likely
to be dominated by measurement variability. The
clumping parameter (k 5 3.5) is smaller than expected
from pure Poisson variance. This is possibly related to
the aggregated distribution of the cod, which forms

shoals and concentrate within the protected areas of the
fjords (Fromentin et al. 1997). It may also be related
to heterogeneity due to year-to-year variability in ju-
venile migration. These processes generate spatial het-
erogeneity that will inflate the variance compared to
the pure Poisson process (Lawless 1987, Wilson et al.
1996).

The optimal model to summarize the relationship
between abundance of the 0-group and 1-group appears
to be significantly nonlinear. The full model linking the
0-group with the 1-group in the succeeding year is
highly significant. Therefore, we conclude that survival
in the 0-group of the Norwegian Skagerrak cod is den-
sity dependent. This conclusion is robust because the
test we develop is relatively insensitive to measurement
error. The conclusion of significant convexity, further-
more, holds if the error is assumed to follow an ov-
erdispersed Poisson distribution or a Gamma distri-
bution (unpublished). We have checked for remaining
structure in the residuals and none is found. Analyses
of long-term census data may be hampered by long-
term changes in the environment. Fromentin et al.
(1998) and Bjørnstad et al. (1999) provide discussions
on the presence and possible sources of long-term
trends in the Norwegian Skagerrak cod. From a purely
statistical perspective Hart (1996) shows—through the
‘‘whitening-by-window’’ principle—why nonparamet-
ric regression, of the kind used to estimate the survival
function, is relatively robust to autocorrelated errors
that may, for instance, arise from underlying trends.
All available information indicates, therefore, that the
pattern uncovered in the present study is a true reflec-
tion of density-dependent interactions.

The periodic fluctuations identified by Fromentin et
al. (1997) in these data, may result from density-de-
pendent survival due to competition and cannibalism
within the juvenile stages (see also Bjørnstad et al.
1999). Indeed, theoretical arguments suggest that pe-
riodic fluctuations in age-structured populations de-
pend on the manifestation of competition between co-
horts (e.g., Caley et al. 1996), with generation-length
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or two-generation-length periods (Gurney and Nisbet
1985), although the picture can get more complicated
than that (see Nisbet and Onyiah 1994, Mertz and My-
ers 1996). As a mechanism for the density dependence,
competition for space is a candidate. Competition for
habitat is likely in the Norwegian Skagerrak cod pop-
ulations because the different juvenile stages have
overlapping habitats and the number of optimal habitats
may be limited (Gjøsæter 1987, 1988, Fromentin et al.
1997). Potential mechanisms underlying the competi-
tion for space on the bottom might involve food lim-
itation or increased predation risk in the suboptimal
habitats. Cannibalism is a second source of density
dependence in cod (Bailey and Houde 1989; see also
Caley et al. 1996). When the number of young juveniles
of the 0-group is high, competition and cannibalism
are likely to be more pronounced, especially during the
settlement (and the following months) of the 0-group.

In summary, we have introduced a new test for den-
sity-dependent survival that tests for significant con-
vexity in the survival function. The test does not re-
quire a priori assumptions about functional forms. The
type I error rate is shown to be relatively robust to
measurement error, and the power appears to be good.
We apply the test to census data of cod, and demon-
strate significant density dependence. The reduction in
survival is shown to be approximately proportional to
the log of abundance.
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