
Supplementary text 

 

Quantifying the Structural Impact of Random Vaccination: In general, random and 

health-based vaccination programs immunize individuals without considering 

connectivity (Anderson & May 1991). Therefore, the removal of nodes is random with 

respect to degree.  It follows that the mean original degree on the residual network 

following random vaccination ( k v ) is simply equal to the mean degree in the original 

network, k v = k .  We next derive the mean residual degree on the vaccinated network 

( kr v
) following the logic of the derivation of kr r  above.  Consider a network of size 

N .  If a fraction of the network, π, is vaccinated at random, then the number of nodes in 

the vaccinated portion is Nπ  and the number stubs attached to unvaccinated nodes is 

N kpk (1− π )∑ = N k (1 − π ) .  Dividing this quantity by the total number of stubs in the 

original network, N k , we find that the fraction of stubs attached to unvaccinated nodes 

is equal to (1 − π ) . As above, we assume random connectivity in the network, and square 

this quantity to find the fraction of stubs that lie on edges connecting two unvaccinated 

nodes. We then multiply by the total number of stubs in the original network and divide 

by the number unvaccinated nodes to compute the average degree of an unvaccinated 

node, which yields  

 kr v
= (1− π ) k .  [S1] 

We model vaccination at coverage levels comparable to those attained by epidemic 

immunization by setting π  equal to the expected size of the epidemic, 



S =1− pk (1+ (u −1)T)k∑ as derived in (Newman 2002), with u  as defined in the text and 

 is the probability of transmission across an edge. 

Analytically, we find that the difference between the residual degree on the 

naturally immunized networks and on the vaccinated networks is small (<1) in general. 

The two processes yield virtually identical results on the Poisson network. Small-world 

networks seem to be better protected by random vaccination than natural immunization 

( kr v
< kr r

) whereas the reverse is true for scale free networks ( kr r
< kr v

).  In both 

cases, the differences between the two forms of immunization decreases as infectivity 

(β ) increases (Figure Supplementary 1).  

 

Estimates for Average Residual Degree: 

Our estimate for the average residual degree in the residual network after an epidemic is 

given by: 
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, νk = 1− 1− T + Tu( )k  and .  

Solving for the mean residual degree using the residual degree distribution given by Eq 

(9) of Newman 2005 gives: 
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where   is the solution to uN

  
uN = 1− T +T

kpkuN
k −1∑

kpk∑
, and gives the mean probability 

that a vertex is not infected by a specified neighbor.  We can express uN in terms of u as 

 and re-express our equation for   uN = 1− T + Tu r r
k  as  
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A comparison of Equations [S2] and [S3] shows that the two estimates for the mean 

residual degree are very similar.   Our estimate ( kr r) differs in that it excludes edges 

that have been conduits for disease transmission from the calculation (there are 

  
Npk 1− uN

k( ) of these edges, where N  is the size of the network).  In Supplementary 

Figure 2, we show that our estimate for average residual degree performs slightly better 

when compared to simulated epidemics on Poisson and scale-free networks than the 

estimate that follows from Newman (2005.) 



 
 
Figure Supplementary 1.  Residual degree on residual network, kr r , for naturally 
immunized (Equation 2) and randomly vaccinated networks (Equation 5).    
 
 
 



 
 
Figure Supplementary 2: Average residual degree estimates for A) Poisson and B) scale-
free using 1) the method described above, and 2) the method form Newman (2005) 
compared to results from simulated networks.  


