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abstract: Many pathogens of plants are transmitted by arthropod
vectors whose movement between individual hosts is influenced by
foraging behavior. Insect foraging has been shown to depend on both
the quality of hosts and the distances between hosts. Given the spatial
distribution of host plants and individual variation in quality, vector
foraging patterns may therefore produce predictable variation in ex-
posure to pathogens. We develop a “gravity” model to describe the
spatial spread of a vector-borne plant pathogen from underlying
models of insect foraging in response to host quality using the
pollinator-borne smut fungus Microbotryum violaceum as a case
study. We fit the model to spatially explicit time series of M. violaceum
transmission in replicate experimental plots of the white campion
Silene latifolia. The gravity model provides a better fit than a mean
field model or a model with only distance-dependent transmission.
The results highlight the importance of active vector foraging in
generating spatial patterns of disease incidence and for pathogen-
mediated selection for floral traits.

Keywords: gravity model, Microbotryum, Silene, spatial model, vector-
borne pathogen.

A fundamental challenge in modeling the dynamics of in-
fectious pathogens is specifying a model for the interaction
among hosts in a population (McCallum et al. 2001). Con-
ventional, population-level, susceptible-infected-removed-
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type epidemic models employ a mean field approximation
that is an implicit model of complete population mixing.
The functional form of mean field mixing models for host-
pathogen systems is a subject of debate (Antonovics et al.
1995; Bucheli and Shykoff 1999; McCallum et al. 2001);
the appropriate model depends on the transmission mech-
anism, the degree of heterogeneity in exposure, and the
scaling of transmission with population size (Antonovics
et al. 1995; McCallum et al. 2001). Network models of
populations, in contrast, explore the effect of explicit social
contact networks on epidemic dynamics (Newman 2002;
Meyers et al. 2005). Such explicit networks can lead to
very different predictions about pathogen invasion
(Pastor-Satorras and Vespignani 2001, 2002) and evolution
(Boots and Sasaki 1999; Read and Keeling 2003; Boots et
al. 2004). By considering the underlying behavior that gen-
erates the contact networks, we propose a general model
for characterizing the topology of the transmission net-
work that incorporates both spatial interactions and host-
specific heterogeneities in exposure.

The spread of disease in plant populations necessarily
generates a spatial pattern in incidence as the hosts them-
selves are fixed in space. Analyzing the spatial distribution
of disease incidence to make inference on transmission
has become commonplace in plant pathogen systems
(Campbell and Madden 1990; Real and McElhany 1996).
Analyses using the observed pattern of spatial clustering
to characterize a pathogen dispersal kernel are by necessity
phenomenological (Mollison 1977; Campbell and Madden
1990). However, it is difficult to distinguish the process
that generates a given pattern by characterizing the pattern
alone (Real and McElhany 1996). Patchiness in disease
incidence may signify either a spatially constrained trans-
mission process or clustering of susceptibility due to en-
vironmental conditions or genetic relatedness (Campbell
and Madden 1990). Conversely, the absence of clustering
of incidence need not signify the lack of a contagious
process.

Pathogens that are transmitted by arthropod vectors
may exhibit spatial autocorrelation in incidence, but trans-
mission may be further influenced by the foraging be-
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havior of the vector (Real et al. 1992; Altizer et al. 1998).
Considerable empirical and theoretical work has shown
that foraging arthropods tend to make decisions about
where to forage to maximize the rate of energy acquisition
(Charnov 1976; Zimmerman 1981; Ohashi and Yahara
1999; Goulson 2000). Selective foraging by disease vectors,
therefore, may result in differential exposure (Shykoff and
Bucheli 1995; Shykoff et al. 1997) and infection rates (Al-
exander 1987; Thrall and Jarosz 1994) as a function of
foraging quality, which in turn has implications for
disease-induced selection on plant traits (Shykoff et al.
1997; Giles et al. 2005). In particular, vector-borne path-
ogens can result in selection against the host traits that
attract vectors. Giles et al. (2005) showed strong directional
selection for less attractive floral traits in Silene dioica as
a result of the pollinator-borne anther smut Microbotryum
violaceum. Similarly, pathogens are likely to influence se-
lection on mating systems and monogamy in both plant
and animal hosts (Thrall et al. 1997; Nunn et al. 2000).

In this article, we derive a “gravity model” for the spatial
spread of a vector-borne pathogen from underlying models
of insect movement and foraging behavior. We further
discuss model fitting and predictions that allow an inves-
tigation of the relative contribution of spatial autocorre-
lation in transmission and vector choice in the generation
of spatial patterns of infection. We develop these models
using the pollinator-borne smut fungus M. violaceum as
a case study.

A Gravity Model for Pathogen Exposure

By incorporating basic theory of vector foraging, we de-
velop models that explicitly account for heterogeneities in
pathogen exposure due to behavioral decisions. Insect for-
aging behavior in response to host plant spacing and qual-
ity has been extensively studied—both empirically and the-
oretically—in plant-pollinator systems (Charnov 1976;
Ohashi and Yahara 1999, 2002; Goulson 2000). The ex-
posure of a susceptible plant to a pollinator-borne path-
ogen is the result of three distinct processes: the acquisition
of infectious particles by the vector from the infectious
plant, the movement of the vector from the infectious to
a susceptible plant, and the deposition of infectious par-
ticles on the susceptible plant. The rates associated with
these three events are determined by the cumulative out-
come of individual foraging decisions made by the pop-
ulation of vectors. In this way, the movement of pathogens
between individuals or patches is similar to gene flow.
Previous empirical studies have independently shown both
separation distance and source and destination patch qual-
ity to influence the overall rate of gene flow between in-
dividuals and patches (Schmitt 1980; Ellstrand et al. 1989;
Cresswell et al. 2002; Cresswell and Osborne 2004). We

develop a general model of pathogen exposure for polli-
nator vector systems based on, first, the probability of
movement between an infectious and susceptible plant as
a function of distance and, second, the likelihood of spore
transfer as a function of foraging duration on the infec-
tious and susceptible plant hosts. The aggregate dynamics
of transmission will be the result of many such individual
moves by many pollinators. For simplicity, we consider
only individual plant-to-plant moves by pollinators and
ignore potential spore carryover along a sequence of mul-
tiple susceptible plants visited. Though developed in the
context of pollinator systems, the framework should be
generalizable to any system in which vectors actively select
hosts on which to forage.

We first consider the probability of a pollinator moving
between an infectious plant, i, and a susceptible plant, j,
a distance dij away. Assuming that insect vectors have lim-
ited knowledge of plant quality before landing, we may
model vector movement as a random walk (Broadbent
and Kendall 1953; Okubo 1980). The resultant distribution
of vector locations at time t will be Gaussian, with mean
at the origin plant, i, and variance qt, where q is the
diffusion constant and t is the transit time (Okubo 1980).
Let the probability that the vector encounters a host plant
during the random walk in any short interval dt be ldt.
Following Broadbent and Kendall (1953), the distribution
of vectors on a circle of radius r, centered at the origin
plant, is then

r r
f(r) p K , (1)02 ( )a a

where and is a modified Bessel func-1/2a p 1/(2l/q) K (7)0

tion of order 0. To obtain the distribution of moves be-
tween two specific plants separated by a distance dij (i.e.,
from one plant to another plant on the circle), we take
the average over the circumference to obtain

1 dijf(d ) p K . (2)ij 02 ( )2pa a

Thus, the probability of a move between an infectious
plant i and a susceptible plant j is a decreasing function
of their distance apart and depends on the diffusion rate
according to the parameter a.

Conditional on the move between them, the acquisition
of spores from an infectious host and the deposition of
spores on a susceptible host are similar processes in that
they are related to the number of flowers visited on the
host plant. Pollinator foraging intensity is greatly influ-
enced by the number of flowers open at any one time on
a plant (floral display). Pollinators seeking to maximize
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net energy gain should spend relatively more time visiting
plants with larger floral displays (Charnov 1976; Goulson
2000; Ohashi and Yahara 2002). When those pollinators
are also vectors of a pathogen, increased foraging intensity
will translate into increased pathogen exposure (Shykoff
and Bucheli 1995; Shykoff et al. 1997). By considering the
relationship between floral display size and the duration
of foraging bouts, we can derive a functional form for the
effect of floral display on pathogen exposure. It should be
easily generalized to any vector-borne system in which
some measure of host quality is substituted for floral dis-
play size.

From Charnov’s (1976) “marginal value theorem,” a
forager should leave a patch when the rate of resource
acquisition falls below the region-wide mean. Ohashi and
Yahara (1999) studied a stochastic, discrete analog of this
theory that applies to a pollinator foraging on individual
flowers on a plant. Assuming the pollinator visits flowers
at random, the probability of encountering a previously
depleted flower increases with the number of flowers
probed and decreases with the total number of flowers on
the plant, . The risk of encountering a depleted flowerFTot

will increase with time spent foraging (i.e., flowers visited).
Weighing this risk against the discounting rate, k, for vis-
iting any flower on other plants—that is, timek p [(f light
per flower within a time perplant) � (handling

time between timef lower)]/[(f light plants) � (handling
per flower)]—Ohashi and Yahara (1999) showed that the
optimal number of flowers to visit, , is linearly related∗F
to the total number of flowers on a plant:

∗F ≈ (1 � k)F . (3)Tot

Given that a forager moves from plant i to j and forages
according to the optimal rule, we can calculate the spore
deposition on plant j as a function of the total number of
flowers, . Assuming that spore deposition decreases ex-FTot

ponentially as flowers on an individual plant are visited
(for empirical support of this assumption, see Altizer et
al. 1998), we then write the number of spores deposited
per flower, S, as

�fxS p ye , (4)

where y is proportional to the number of spores carried
from host i by the vector, f is the discounting rate, and
x is the flower number in a visitation sequence. Integrating
equation (4), we obtain the total spore deposition, ,STot

for a pollinator visiting F flowers on a plant:

F

�fxS p ye dxTot �
0

y
�fFp (1 � e ). (5)

f

Substituting the optimal flower number (eq. [3]) into
equation (5), we obtain

y
�f(1�k)FTotS p [1 � e ],Tot

f

which is approximately

S ≈ y(1 � k)F (6)Tot Tot

when is small. This approximation is goodf(1 � k)FTot

whenever the decay rate in spore deposition is slow
( ) and the cost of interplant movement is lowf ! 0.5
( ).k 1 0.5

Recalling that y is proportional to the number of spores
carried by the vector from infectious host i and assuming
that the vector accumulates spores at a rate g during the
course of foraging within a plant, then the spores acquired
is a function of the total number of flowers according to

y p g(1 � k)F . (7)Tot

Note that equation (7) assumes that all flowers on plant
i are infectious (i.e., the infection is systemic). This is not
necessarily the case for pollinator-borne pathogens (e.g.,
Microbotryum violaceum discussed below), for which
plants may exhibit partial infection. In such cases, equation
(7) may be altered to reflect the number of infectious
flowers (see “Case Study: Silene latifolia and Microbotryum
violaceum”).

Combining equations (6) and (7), we can write the total
flow of spores from infectious plant i to susceptible plant
j as

2gd(1 � k) F F , (8)Tot, i Tot, j

where and are the total flowers on plants i andF FTot, i Tot, j

j, respectively.
For a given spore exposure (eq. [8]), we assume a Pois-

son dose response relationship to give the probability of
an effective transmission from i to j as

P p 1 � exp (�tF F ), (9)ij Tot, i Tot, j

where . Note that we assume that the de-2t p gd(1 � k)
position of spores from plant i on plants visited after j is
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negligible, and so the probability of transmission can thus
be characterized in terms of this pairwise interaction.

Combining the probabilities of exposure as a function
of distance (eq. [1]) and as a function of floral display
sizes (eq. [9]), and scaling by the spore intensity v, we
arrive at the “gravity” model of exposure

K (d /a)0 ijE p v[1 � exp (�tF F )] . (10)ij Tot, i Tot, j 22pa

Gravity models have been used to describe spatial in-
teraction models with site-specific effects in economics
(Fitzsimons et al. 1999), transportation (Erlander and
Stewart 1990), demography (Murray and Cliff 1977), ecol-
ogy (Bossenbroek et al. 2001), and epidemiology (Murray
and Cliff 1977; Xia et al. 2004). The unifying characteristic
of these models is that the strength of interaction between
sites (populations, locations, or individuals) is bilinear in
some site variable and decays as a function of the distance
between sites (Bailey and Gatrell 1995). In this way, the
models are analogous to gravitational attraction between
planetary bodies.

The total exposure of any susceptible plant, j, is con-
sequently given by the sum of the exposure to all infectious
plants:

K (d /a)0 ijE p v[1 � exp (�tF F )] . (11)�j Tot, i Tot, j 22pai�infected

j�susceptible

Importantly, there are three relevant submodels con-
tained within the gravity model. Setting the term con-
taining and to 1, that is, equation (9), equationF FTot, i Tot, j

(11) reduces to a purely distance-based model of trans-
mission. We will call this submodel the distance-decay
model (DD). Setting the term containing dij to 1, that is,
equation (2), equation (11) reduces to a function only of
the floral displays; we call this the host-quality model
(HQ). Last, setting the second and third terms in equation
(11) to 1, the model reduces to the common density-
dependent, mean field model (McCallum et al. 2001).

Parameter Estimation

Direct observation of pathogen flow between individuals
is difficult. Therefore, to make the above models applicable
to real data, we must consider a statistical model with
observable data as inputs; while we cannot usually observe
the transfer of infectious spores, we can often make ob-
servations of the change in distribution of infected plants
over time. Assuming that the probability of an individual
becoming infected at any given time is a function of its

level of exposure, we can develop a statistical model based
on the timing of infection.

Considering the simplest case, where infection is per-
manent and nonfatal, we denote the status of host j at
time t, , as 0 if the host is susceptible and 1 if it isXj, t

infected. Assuming that infection is a Poisson process in
time, with rate parameter determined by the exposure to
spores, we write the probability that the susceptible host
j is infected after a time step dt as

P p 1 � exp (�E dt). (12)j,dt j

It is then straightforward to write the binomial likelihood
for infection status of host j given the probability (forPj,dt

ease of notation, we will consider only time steps of length
1). We employ a discrete time Markov assumption, which
states that the status of any plant at time dependst � 1
on the distribution of infection at the previous time step
and that all hosts are conditionally independent (for meth-
ods when the Markov assumption is inappropriate, see
Gibson 1997). We then write the joint likelihood for the
observed distributions of infection for N individuals sam-
pled at T discrete time intervals as the product of the
individual likelihoods:

T�1 N

X 1�Xj,t j,tL(PFX ) p (P ) (1 � P ) , (13)��t j, t j, t
tp1 jp1

where is given by equations (11) and (12). MaximizingPj, t

over equation (13), we obtain estimates of the parameters
of the exposure model. We apply model selection criteria
from likelihood theory (e.g., likelihood ratios, Akaike In-
formation Criterion [AIC]) to choose the best among can-
didate submodels (McCullagh and Nelder 1989).

Simulation Experiments

We evaluated the ability of the statistical framework to
distinguish among the DD, HQ, and gravity (GR) exposure
models using data generated by simulation. We simulated
60 spatial epidemics on an lattice of hosts at each8 # 8
of nine factorial combinations of weak, medium, and
strong levels of distance effects ( , 5, and 10 in eq.a p 1
[4]) and host quality effects ( , 0.05, and 1.0 int p 0.01
eq. [11]; fig. 1). These parameter levels were chosen such
that the extremes ( and ) should resemblea p 10 t p 1.0
the HQ and DD models, respectively. For a given spore
production rate, the different parameter combinations for
a and t result in different rates of infection at the plot
level. To control the plot level infection rate, we scaled the
spore production rate, v, to give constant plot level force
of infection for each parameter combination.

We generated simulations using a spatially extended ver-
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Figure 1: Probability of spore transmission from host i to j as a function of (a) distance and (b) floral display (F) for the parameter values used
in the simulation model.

Figure 2: Results of model selection on simulated epidemics. The shaded
bars indicate the number of simulations, out of 60, for which the gravity,
distance decay, and host quality models were selected at each of nine
parameter combinations. Numbers underneath each bar indicate the
value of the distance decay parameter (a) and the host quality parameter
(t). Arrows give the qualitative effects of the parameter combinations.

sion of the epidemic birth and death model. Hosts were
initialized with random floral displays that varied in time
according to a random walk. Following standard theory
(Renshaw 1991), waiting times to infection were drawn
for each susceptible host from an exponential distribution,
with rate determined by the exposure from the gravity
model (eq. [11]). In accordance with the Gillespie algo-
rithm, time was incremented forward, and new exposure
weights were calculated following each event. This process
was repeated until all hosts were infected. This spatial ep-
idemic birth and death model generates realizations of the
epidemic process in continuous time. Observation of a
spatial epidemic, in contrast, is usually in discrete time.
To mirror such an observation process, the distribution
of susceptible and infected individuals was “observed” ev-
ery 10 time units. Thus, multiple chains of infection be-
tween observations were possible.

We fit the DD, HQ, and GR models to the observed
time series for each simulation by maximizing the likeli-
hood given in equation (13). We then selected the best fit
model using corrected AIC (AICc). The nonspatial, null
model was rejected in all simulations at all parameter com-
binations. As expected, the full gravity model tended to
be selected as the best fit when the distance and host quality
effects were of similar magnitude (i.e., both medium or
both large; fig. 2). When the parameter combination in-
cluded a stronger effect of either distance or host quality,
the appropriate simpler model was more often selected.
In the extreme limit, when both the distance and host
quality effects were small, model selection was highly
variable.

For a given simulation run, the maximum likelihood
estimates of the distance and host quality parameters for
the best fit model tended to reflect the true parameter
values when the effect sizes were large (i.e., a and t small;
fig. 3). When the effect sizes were small (i.e., a and t

large), the maximum likelihood estimates tended to be
biased toward 0. Note, though, that the simpler submodels
were usually favored for the latter parameter combina-
tions. When one of the submodels (DD or HQ) was se-
lected as best fit, the parameter estimates were more con-
sistent over the full parameter range, though with a
tendency toward a positive bias (fig. 3).

Case Study: Silene latifolia and
Microbotryum violaceum

Microbotryum violaceum, or anther smut disease, is a fun-
gal pathogen that commonly infects members of the Car-
yophyllaceae such as Silene latifolia (white campion), a
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Figure 3: Parameter estimates for simulation experiments. The rows indicate model runs in which the gravity, distance decay, and host quality
models were selected as the best fit. Columns indicate estimates of the host quality parameter (t) and distance decay parameter (a). Each panel
gives the estimated parameter values as a function of the true value used in the simulation. Box plots indicate the median and interquartile range;
dashed lines indicate the most extreme estimate no more than 1.5 times the interquartile range from the box. Solid lines indicate estimated

value.value p true

short-lived, dioecious perennial that generally occurs along
roadsides and other semidisturbed habitats. When in-
fected, both male and female plants produce spore-bearing
anthers and are completely sterilized. The infection is
spread via pollinators such as bumblebees and various
moth species (Altizer et al. 1998), and the latent period
of infection is approximately 3–4 weeks (Alexander and
Antonovics 1988). In Virginia, natural populations of S.
latifolia flower between late May and late October, and
this long flowering season can allow more than one cycle
of transmission.

Previous studies have shown distance effects in fungal
spore deposition (Altizer et al. 1998) and increased infec-
tion risk for individuals with larger floral displays (Alex-
ander 1987; Thrall and Jarosz 1994; Shykoff and Bucheli
1995; Shykoff et al. 1997). However, these effects have not
previously been explored using a spatially explicit model
at the individual level. In 1999, Antonovics et al. (2002)
set up three replicate experimental populations of S. la-
tifolia. Each population consisted of 64 individuals, ar-
ranged in an grid with 0.75-m spacing. Of these,8 # 8

14 plants were lab-inoculated “sources” of the infection,
and the remaining 50 plants were healthy “target” plants.
Individuals were subsequently monitored at weekly inter-
vals to record the growth form of the plant as vegetative
or flowering (some individuals spend the season as a non-
flowering rosette), the disease status (healthy or diseased),
and the numbers of healthy and diseased flowers. Data
were collected for 19 weeks from June 12, 1999, to October
22, 1999.

During their first season, individuals that have been
infected generally exhibit partial infection (i.e., they pro-
duce both normal and spore-bearing flowers). As such, an
infected plant can, at any given observation point, have
no spore-bearing flowers. In our analysis, we considered
plants as infected for all time points after the first obser-
vation of a spore-bearing flower (i.e., disease status as a
binary variable, healthy or diseased). However, to account
for the partial infection, we modified the HQ and GR
models so that they reflected the observed number of
spore-bearing flowers per infectious host. Because of the
long latent period, the floral display at the onset of symp-
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Figure 4: A, Observed (circles) and predicted (line) infection probability over time for the gravity model fitted to replicate A. Observed infection
probability is the proportion of susceptible plants infected per week. B, Relative floral display size and distance to infected plants of S. latifolia
individuals that became infected. For each observation point, the sum of the distances of each susceptible plant to all infected plants (X-axis) and
the number of flowers (Y-axis) per plant are plotted. Values are standardized relative to the median and variance at the time of observation. Thus,
the upper left quadrant indicates plants that were larger than average and closer to infected hosts than average. Filled symbols indicate observations
of transitions from susceptible to infected status, lagged by the 3-week latent period (i.e., the conditions when they were likely to have been infected):
circle, replicate A; triangle, replicate B, square, replicate C. Open gray circles indicate susceptible plants that remained susceptible. All observation
points for all plants in three replicates are plotted.

toms may not reflect the conditions at the time of infec-
tion. To correct for this, we used 3-week time lagged flower
counts. We fit the four competing models to the weekly
incidence and flowering data for the three replicates.

Overall, the pattern of infection in all plots supports
significant effects of both distance and a floral display (fig.
4). Of all infected plants, 47% both were relatively closer
to infectious hosts and had relatively larger floral displays
at the time of infection; 87% were either closer or larger
than average (fig. 4). Our gravity model was strongly sup-
ported in replicate A (table 1). The gravity model provided
a good fit to the infection rates through time for replicate
A (fig. 4A). Within any given week, there was significant
variation in the predicted probability of infection as a func-
tion of individual variation in floral display and spatial
location; in general, infections occurred among plants that
were larger and/or closer to infected sources than expected
by chance (fig. 4B). The HQ model was selected as the
best fit model in replicate C (table 1). The estimated host
quality parameter, t, was similar in magnitude for repli-
cates A and C, suggesting a similar effect of floral display
size on infection risk. The gravity model was weakly se-
lected as the best fit model in replicate B ( ),DAIC ! 1c

though the parameter values suggest little effect of distance
or floral display. The fact that the null model was not
selected may reflect the fact that plants with 0 flowers never

become infected; that is, the null model assumes that non-
flowering plants can be infected.

The finding that models incorporating floral display
were better supported than the null or distance-dependent
model is consistent with previous studies of the Silene-
Microbotryum system. Shykoff and Bucheli (1995) found
higher rates of fluorescent dye deposition on S. latifolia
individuals with larger floral display sizes. Further, Alex-
ander (1987) and Thrall and Jarosz (1994) showed, using
different experimental populations of S. latifolia, that in-
dividuals that produced large numbers of flowers over the
course of the growing season were more likely to become
infected. The gravity model we have presented may thus
be seen as a synthesis of the previous experimental results
in this spatially explicit system.

That the gravity model was relatively less supported in
replicates B and C may reflect either that the number of
infections (7 and 11 compared with 15 in replicate A) was
too small to provide sufficient power to differentiate be-
tween models or that the spatial scale of the experimental
design was too small and the temporal scale of observation
too long to detect these effects. While both may have con-
tributed, the latter seems likely to be important because
the model was developed after the experiment had been
designed and implemented. From the model formulation
above, we predict that the strength of the distance effect
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Table 1: Results of model fitting for the spread of
Microbotryum in experimental plots of Silene
latifolia

Plot and model DAICc

Parameter estimates

v a t

A (15):
Null 31 .023 … …
Distance 27 .131 1.25 …
Host quality 4 .004 … 4.50
Gravity … .759 1.02 .42

B (7):
Null 9 .010 … …
Distance 9 .287 8.95 …
Host quality .1 .002 … 4.50
Gravity … 1.774 21 9.98

C (11):
Null 25 .015 … …
Distance 20 .108 .96 …
Host quality … .004 … .65
Gravity .05 7.144 81 .65

Note: Parameters v, a, and t are the scaling, distance, and

host quality parameters, respectively. Number in parentheses

gives the number of infections in each plot. AIC pc

Akaike Information Criterion. For each plot, thecorrected

best fit model and the corresponding parameter estimates are

given in bold.

will diminish if the vectors are highly mobile relative to
the scale of observation. Natural populations of Silene tend
to occur in patches along roadsides, and the scale of this
experiment replicated the within-patch scale. It would be
interesting in the future to compare the dynamics of in-
fection between patches, where the effect of spatial distance
is more likely to be important.

Discussion

Though epidemics are classically studied at the population
scale, the dynamics of transmission often involve the be-
havior of individual hosts or vectors. The mean field mod-
els for transmission dynamics based on mass-action ki-
netics have been very successful in describing a broad
sample of both vector-borne and directly transmitted path-
ogens (Anderson and May 1991; Antonovics et al. 1995;
McCallum et al. 2001). Increasingly, however, the impor-
tance of heterogeneities in transmission due to individual
characteristics has been recognized to have important con-
sequences for the dynamics of epidemics (Real et al. 1992).
Recent network models of epidemic spread have illustrated
how variation in the number of contacts between hosts
can impact the threshold conditions for pathogen invasion
(Andersson 1997; May and Lloyd 2001; Eames and Keeling
2002) and the evolution of virulence (Read and Keeling
2003; Boots et al. 2004). While these heterogeneities are

generally recognized in many systems, they are often elu-
sive to measure. In this article, we have presented a gravity
model for the heterogeneities in exposure that result from
the foraging behavior of disease vectors and spatial loca-
tion of infection. Further, we have developed a statistical
framework for evaluating the relative importance of such
heterogeneities versus spatial effects using spatially explicit
time series on the distribution of infection.

Given that vectors tend to forage actively and that the
spatial arrangement of hosts will influence the order of
contact, one would expect the true biological dynamics of
exposure to incorporate both host quality and spatial com-
ponents, as reflected in our gravity model. The degree to
which the full gravity model is necessary to describe the
observed dynamics of pathogen spread will certainly de-
pend on the specific system and the scale of observation.
In the Silene case study, host floral characteristics were
consistently important in determining pathogen spread,
and spatial effects were sometimes important. Had the
experimental plots been larger, a different result might
have been obtained. From the gravity formulation, we may
expect the spatial scale of the transmission dynamics to
be a function of both the movement abilities of the vectors
and the heterogeneity in host characteristics. As host var-
iation increases, it will become advantageous for the vec-
tors to make larger moves between high quality hosts. In
the Silene example, floral displays vary from 0 (i.e., no
reward to pollinators) to 70 flowers, which represents a
very large range of pollinator rewards. Given the mobility
of the pollinators, it is not surprising that the spatial effect
tended to be weak, because the variation in host quality
likely imposes a spatial scale greater than the experimental
scale. Interestingly, any spatial autocorrelation in host
quality—for instance, due to clumping of host genotypes
or environmental conditions—should result in a reduction
in the spatial scale of transmission and perhaps lower over-
all levels of transmission; Biere and Antonovics (1996)
found marginally reduced transmission rates in experi-
mental plots of Silene latifolia where host genotypes were
clumped compared with randomly distributed.

Increased pathogen exposure due to floral display size
will have strong implications for the evolution of repro-
ductive allocation and vector/pollinator-mediated selec-
tion on host reproductive traits. Interestingly, field obser-
vation has repeatedly shown that plants with smaller floral
displays are overrepresented in populations resistant to
Microbotryum violaceum (Alexander 1989; Biere and An-
tonovics 1996; Giles et al. 2005). Giles et al. (2005) recently
documented directional selection on traits affecting female
attractiveness in Silene dioica as a result of infection by
M. violaceum. This pollinator-mediated selection high-
lights the trade-off between allocation to reproduction
(size and quality of floral display) and survival and/or
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future reproductive success, given the risks of pathogen
infection. The gravity model for transmission can make
explicit the dependence of the strength of pollinator-
mediated selection on the spatial scale of vector movement
and the variation in host traits. Such a trade-off is not
necessarily restricted to pollinator systems and may be
applicable to any pathogen system in which sexual display
or promiscuity increases both fitness and pathogen ex-
posure. The trade-off will be particularly strong in other
sexually transmitted diseases. Using individual-based
models, Thrall et al. (1997) showed that sexually trans-
mitted (and sterilizing) pathogens can have significant im-
pacts on host mating behavior. Paralleling this, Nunn et
al. (2000) found higher white blood cell counts in primate
species where females have many mating partners, sug-
gesting increased pathogen exposure due to promiscuity
and, as a consequence, a selective pressure for monoga-
mous mating systems.

The idea of gravity-like dynamics describing the inter-
action of spatially distinct population units is intuitive,
given that organisms tend to be choosy about their choice
of location for feeding, mating, oviposition, and so on.
Gravity models have previously been used to describe the
flow of humans between population centers (Murray and
Cliff 1977; Erlander and Stewart 1990). Here we have pre-
sented a very specific functional form for the interaction
strength between two hosts derived from models of insect
movement and foraging decisions. However, it is quite
possible that a more generic and phenomenological for-
mulation for the interaction (Eij), of the form E ∝ij

—where Xi is some host trait of host attractive-a b g(X X /d )i j ij

ness; dij is a measure of distance between host i and j; and
a, b, and g are tuning parameters—would still be instruc-
tive for systems where the movement behavior of the vec-
tors is less well known. This generic model was recently
used to describe the risk of measles outbreaks in Britain
in the prevaccination era; there, X was taken to be equal
to population size of municipalities (Xia et al. 2004). It
has also been used for the invasion of zebra mussels to
inland lakes, in which case X was related to the relative
recreational fishing traffic (Bossenbroek et al. 2001). More-
over, Cresswell and Osborne (2004) describe the flow of
pollen between patches of oilseed rape as dependent on
both patch size and spatial separation, and De Moraes and
coauthors (De Moraes et al. 1998; De Moraes and Mescher
1999) have documented directed movement of organisms,
particularly insects, in response to plant volatile com-
pounds or conspecific pheromones that are induced in
response to host quality and infestation levels. Much of
the classic work in spatial population dynamics has as-
sumed that dispersal is isotropic or anisotropic with a
consistent bias. Here we have shown both theoretical and
empirical evidence for biased pathogen dispersal in re-

sponse to dynamic patch/host quality. The resultant gravity
dynamics in spatial interactions may have important im-
plications for evolution and stability of spatial population
dynamics and may warrant further investigation.
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