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Abstract

We provide calibrated degree-day models to predict potential West Nile virus (WNV) transmission periods in
Pennsylvania. We begin by following the standard approach of treating the degree-days necessary for the virus
to complete the extrinsic incubation period (EIP), and mosquito longevity as constants. This approach failed to
adequately explain virus transmission periods based on mosquito surveillance data from 4 locations (Harris-
burg, Philadelphia, Pittsburgh, and Williamsport) in Pennsylvania from 2002 to 2008. Allowing the EIP and
adult longevity to vary across time and space improved model fit substantially. The calibrated models increase
the ability to successfully predict the WNV transmission period in Pennsylvania to 70–80% compared to less
than 30% in the uncalibrated model. Model validation showed the optimized models to be robust in 3 of the
locations, although still showing errors for Philadelphia. These models and methods could provide useful tools
to predict WNV transmission period from surveillance datasets, assess potential WNV risk, and make informed
mosquito surveillance strategies.

Key Words: West Nile virus—Phenology model—Degree-days—Extrinsic incubation period—Mosquito
longevity.

Introduction

West Nile Virus (WNV) is a single-stranded RNA virus
belonging to the family Flaviviridae. It is transmitted

amongst primary bird hosts by Culex mosquitoes (Family
Culicidae) such as Culex pipiens, Cx. restuans, and Cx. tarsalis
(Campbell et al. 2002), with transmission via these vectors
causing infections in secondary/dead-end hosts such as humans
and horses. Following its arrival in New York City in 1999
(Lanciotti et al. 1999), WNV has spread across the continental
United States (Peterson 2001, Nash et al. 2001, Sugumaran et al.
2009). Each year, between 60 and 9000 human infections are
reported in the United States, with a total of > 30,600 confirmed
cases and 1200 fatalities to date (Centers for Disease Control and
Prevention 2011). One of the key surveillance tools is routine
monitoring of mosquito populations for infected mosquitoes
during potential WNV transmission periods.

As with many vector-borne diseases, key life history traits of
both vector and pathogen are affected by environmental tem-

perature (Rueda et al. 1990, Dohm et al. 2006a, Bellan et al. 2010).
In particular, the extrinsic incubation period (EIP) of the virus,
which is the time it takes following an initial infected blood meal
for the virus to replicate and disseminate within the mosquito
and for the mosquito to become infectious, exhibits a strong
temperature dependence (Reisen et al. 2006, Kilpatrick et al.
2008, Bolling et al. 2009). For example, at 18�C it takes around 30
days for Cx. tarsalis to be able transmit the virus, whereas at 30�C
it takes less than 1 week (Reisen et al. 2006). This temperature
dependence has been characterized using a degree-day model
(Allen 1976) where the number of days required for 50% of
mosquitoes to be able to transmit (EIP50) takes 109 accumulated
degree-days (109 DD) above a minimum development thresh-
old of 14.3�C (Reisen et al. 2006).

When combined with a measure of adult mosquito lon-
gevity, the degree-day model of the EIP provides a potential
tool to define the spatial and/or temporal limits for WNV
transmission (Reisen et al. 2006). That is, if conditions are too
cold to enable accumulation of sufficient degree-days within
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the average life span of a female mosquito, then the chances of
transmission are low (note the reverse is not true as more
factors are involved in transmission than simply exceeding
the thermal threshold). Several studies have used this ap-
proach to explore WNV risk. For example, Zou et al. (2007)
examined WNV occurrence in Wyoming between 2003 and
2005. Using the standard degree-day model and a 12-day av-
erage life span for Culex (Dohm et al. 2006b), they were able to
predict temporal ( – 1 week) and spatial variation in the first
week of potential WNV transmission in the year (measured as
the first positive samples of infected mosquitoes collected from
the field) with about 80% accuracy. Konrad et al. (2009) also used
this approach to explore WNV transmission dynamics in Cx.
tarsalis in Santa Barbara, California. In this case, however, model
accuracy was rather poor until the degree-day accumulation for
the EIP was adjusted to a much lower 76 DD.

Here, we investigate whether this type of degree-day
modeling method can be used to characterize the transmis-
sion period of WNV in Pennsylvania, where Cx. pipiens and
Cx. restuans, rather than Cx. tarsalis, are the dominant WNV
vectors. Our study draws on an extensive mosquito surveil-
lance data set collected between 2002 and 2008 across Penn-
sylvania by the Pennsylvania Department of Environmental
Protection. These data provide a measure of the time and
location of first and last positive mosquito samples collected
across each year. We begin using the standard degree-day
model (Zou et al. 2007) to explore the first and last detection
dates (hence the potential transmission period is between
these two dates) for WNV at 4 dispersed locations in Penn-
sylvania (Philadelphia, Harrisburg, Williamsport, and Pitts-
burgh) across 7 years (2002 to 2008). We then explore various
adjustments in model parameters to optimize model perfor-
mance. The major objective of this study was to evaluate the
robustness of previous degree-day approaches (Zou et al.
2007, Konrad et al. 2009) and provide an optimized degree-
day model to predict potential West Nile virus transmission
period in different locations in Pennsylvania.

Materials and Methods

Background environmental and mosquito data

We selected 4 sites to cover a range of latitudes and longi-
tudes across Pennsylvania: Harrisburg, Pittsburgh, Philadel-
phia, and Williamsport. Daily minimum and maximum
temperature data for meteorological stations at these sites
were obtained from National Oceanic and Atmospheric Ad-
ministration (NOAA) (www.noaa.gov).

Mosquito surveillance data collected between 2002 and
2008 were provided by the Pennsylvania Department of En-
vironmental Protection. Mosquito/WNV data for the current
analysis were selected from sampling sites within 15 km of the
4 meteorological stations. The surveillance data include:
Georeferenced trap location and type, number of mosquitoes
collected, life stage of mosquito sampled (egg, larvae, pupae,
adult) and their species habitat type, the number of mosquito
pools (batches) tested, and quantity of mosquitoes in each
pool (pool size). Mosquitoes were sorted by species and the
presence of WNV for each pool was determined using RT-
PCR. If the test result was positive, then the pool was con-
sidered to be WNV positive, regardless of pool size. Each pool
consists of only 1 species. For the purpose of this study, we
used data associated with the adult mosquitoes only.

Modeling WNV transmission using original
degree-days model approach

We began with the basic model of Zou et al. (2007). This
approach estimated potential for WNV transmission on each
day of the transmission period by computing degree-day ac-
cumulation over a previous time frame as the vector mos-
quitoes’ adult longevity. That is, in each day the accumulated
degree-day is recorded by adding the net heat units above a
base development threshold (for example, if the average
temperature in the day is Td then the net heat unit in that day
is Td - 14.3�C, given Td > 14.3�C; otherwise net heat unit is 0),
plus the total net heat units in the previous 11 days, to rep-
resent the total heat units a mosquito could potentially accu-
mulate during its 12-days adult longevity. The degree-day
accumulation was then compared to the transmission
threshold defined by the extrinsic incubation period (actually
the EIP50) of the virus to see whether WNV transmission could
potentially occur that day. The first and last day for potential
WNV transmission confine the WNV transmission period in a
year. The EIP50 was set at 109 DD with a minimum temper-
ature threshold for development of 14.3�C (Reisen et al. 2006).
Mosquito longevity was set at 12 days (Dohm et al. 2006b),
and we did not consider vertical transmission because it is a
relatively rare event ( < 0.1%; Dohm et al. 2006a). Other
sources reported different extrinsic incubation (e.g., Richards
et al. 2007), but for the initial test we followed the approach of
Zou et al. (2007) and used the parameters reported under
nonconstant temperatures by Reisen et al. (2002) and Dohm
et al. (2006b).

We computed the degree-day accumulation for each day
across the season (from calendar day 150 to calendar day 300)
recording the first and last day in the season that the degree-day
accumulation was above the EIP50 threshold. Before day 150, the
temperature is too low for the mosquitoes to accumulate any
degree-days in Pennsylvania (i.e., daily mean temperature below
14.3�C, even in Philadelphia, the warmest location). So we
suggest that using day 150 as a starting point is adequate to
capture any potential WNV transmission. We then compared
these predicted dates with observed dates based on the RT-PCR
measures of the pooled mosquito samples (the first and last
dates when WNV positive pools occur in a specific year and
location), and computed the error (difference between the ob-
served and predicted days) and used this error as the criterion to
evaluate model performance. We considered a prediction to be
‘accurate’ if it was within – 10 days of the observed data (this
threshold was selected here as we felt 10 days was sufficient
resolution to make informed operational decisions regarding
surveillance and control).

To more precisely model degree-day accumulation we
used daily maximum and minimum temperatures at each site
to reconstruct the hourly temperature profile in a day, incor-
porating the influence of photoperiod (Parton and Logan
1981, Martinez 1991, Forsythe et al. 1995). The daily temper-
ature profile is given by:

Ti = (Tmax - Tmin) sin
pm

D + 2a

� �
+ Tmin (tn £ t < tx)

Ti = Tmin + (Ts - Tmin)e - bn
Z (tx £ t < tn¢ )

where Ti is the hourly temperature, Tmax and Tmin are daily
maximum and minimum temperature, respectively, D is
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FIG. 1. West Nile virus (WNV)-positive species composition in 4 locations from 2002 to 2008. (Upper panel) Number of positive
pools, regardless of pool size. Cx. pipiens is the most abundant species in all locations, followed by Cx. restuans, except in
Philadelphia. In Philadelphia, the second most abundant species is Cx. salinarius. (Lower panel) Number of total mosquitoes in
positive pools. Cx. salinarius is the most abundant in Philadelphia, but not present in Pittsburgh at all, and has a low quantity in
Harrisburg and Williamsport as well. This figure summarizes the species composition over entire 7-year period. We do not
observe substantial species composition change among different years.

Table 1. Predicted, Observed Detection Dates and Difference (in days) in Original Model

Harrisburg Philadelphia Pittsburgh Williamsport

Year Location First Last First Last First Last First Last

2002 Predicted 3-Jul 28-Aug 28-Jun 14-Sep 15-Jul 22-Aug 5-Jul 24-Aug
Observed 17-Jul 2-Oct 9-Jul 8-Oct 17-Aug 24-Sep 25-Jun 26-Sep
Difference 14 36 12 24 33 33 - 9 33

2003 Predicted 8-Jul 15-Aug 30-Jun 3-Sep 4-Aug 27-Oct 10-Apr 27-Oct
Observed 11-Jul 18-Sep 26-Jun 17-Oct 5-Aug 16-Sep 15-Jul 15-Sep
Difference 3 34 - 4 45 1 - 41 96 - 42

2004 Predicted 13-Jul 27-Oct 22-Jun 6-Sep 10-Apr 27-Oct 25-Aug 25-Oct
Observed 23-Aug 8-Sep 9-Jul 21-Sep 13-Jul 13-Sep 10-Aug 10-Aug
Difference - 41 - 49 17 15 94 - 44 - 15 NA*

2005 Predicted 15-Jun 17-Oct 13-Jun 26-Sep 20-Jul 20-Aug 6-Jul 14-Aug
Observed NA NA 25-Jul 13-Sep 11-Jul 29-Sep 21-Jul 14-Sep
Difference NA NA 42 - 13 - 9 40 15 31

2006 Predicted 21-Jul 10-Aug 7-Jun 29-Aug 12-Jun 8-Aug 3-Jul 10-Aug
Observed 21-Jun 11-Oct 31-Aug 12-Sep 2-Aug 11-Oct 1-Aug 11-Sep
Difference - 30 61 NA* 15 52 64 29 33

2007 Predicted 6-Aug 10-Aug 14-Jul 18-Aug 7-Jul 12-Aug 5-Aug 3-Oct
Observed 25-Jul 4-Oct 24-Jul 18-Oct 30-Aug 26-Sep 7-Aug NA
Difference - 12 51 10 61 54 45 2 NA

2008 Predicted 18-Jun 23-Jul 13-Jun 11-Sep 16-Jun 27-Oct 20-Jun 25-Sep
Observed 22-Jul 23-Sep 24-Jun 25-Sep 31-Jul 30-Sep 28-Jul NA
Difference 35 61 11 14 44 - 27 38 NA

Note: Original model has a constant EIP50 (109 DD) and a constant adult longevity (12 days). NAs indicate no record in the field data. NA*s
indicate unreliable calculation due to suspicious outlier observations (i.e., the observed date varies substantially from both predicted date and
other years). First indicates first detection date of positive WNV incidence while Last indicates last detection date. We present predicted first
and last detection dates for 2002–2008. The difference is calculated as subtracting observed date (converted to calendar day in a year) from
predicted date for the first detections, and subtracting predicted date from observed date for the last detections.

EIP, extrinsic incubation perio; DD, degree-days.
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day length (determined by latitude and day in a year), Z is
night length, Ts is the temperature at the moment of sunset,
m is number of hours after minimum temperature until
sunset, n is number of hours after sunset until the time of
minimum temperature of the next day, a is the lag coefficient
for the maximum temperature, and b is the nighttime tem-
perature coefficient (Parton and Logan 1981, Forsythe et al.
1995). A detailed description and derivation of the degree-
day accumulation model is presented in Appendix A.

Improving model performance

As seen later, and consistent with the Californian study of
Konrad et al. (2009), the original degree-day model parame-
ters failed to capture the WNV transmission period in Penn-
sylvania adequately. There could be many reasons for this
inconsistency (e.g., different life history parameters in the field
compared with lab estimates, possibly different mosquito or
virus strains, effects of acclimation or local adaption, etc.), and
we have no robust data to adjust parameters empirically.
Hence, we applied an optimization technique and explored a
range of values for both mosquito longevity and EIP to
identify the optimal combination that minimizes the error
between predicted first and last WNV transmission dates and
field observations. To do this, we divided the potential
transmission period into 2 intervals—day 150 to day 210 (May
25 to July 29) representing the early period, and day 211 ( July
30) onward representing the late period. The logic here is that
we expect virus development and mosquito survival to be

depend on local biotic and abiotic factors, and there is no
reason to assume fixed parameters across the entire trans-
mission period. For instance, Richards et al. (2007) reported
variable EIP values. For each interval we explored a specific
value of EIP and longevity, allowing the EIP to vary from 89
DD to 129 DD, with a 10 DD step, and longevity to vary from
10 to 14 days with 1-day step. This creates 625 different
EIP · longevity parameter combinations. Each set of predic-
tions (first and last day of transmission period) from these
simulations was compared to the observed data. Optimal
parameter combinations were identified by selecting the
smallest total absolute error values between prediction and
observation over all 7 years.

Model validation

Model validation was carried out by cross-validation. We
split the data into 2 parts, picked 6 out of 7 years data (2002–
2007) for modeling (with 2008 data for validation), applied the
optimization process discussed above, and generated the new
optimal parameter combinations. The new parameters (see
Model validation section, below) were used to predict the
transmission period in 2008 and evaluated against actual 2008
observations. If the new parameters are similar or identical to
those derived from entire dataset, and the error between
prediction and 2008 observation is small, then our model is
accurate and robust. This validation process should ensure
that our model is capable of predicting future transmission
periods of WNV in Pennsylvania.
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FIG. 2. Difference of observation and model prediction in original model. (Upper panel) First detection dates of potential
West Nile virus (WNV) transmission. (Lower panel) Last detection dates. Two dashed lines: – 10 days interval of success
prediction. The last detection incidence dates are always poorly predicted in the original model.
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Results

Surveillance data

Across the various sites and years, a total of 790 pools were
diagnosed as WNV positive, consisting of 34,720 mosquitoes

in these pools. Pool size varied from 2 mosquitoes/pool to 120
mosquitoes/pool, with a mean pool size of 43 mosquitoes/
pool. The number of positive pools for WNV was generally
higher in Harrisburg and Philadelphia than Pittsburgh and
Williamsport (Fig. 1), and the number of total pools tested

Table 2. Predicted, Observed Detection Dates, and Difference in Adjusted Model

Harrisburg Philadelphia Pittsburgh Williamsport

Year Location First Last First Last First Last First Last

2002 Predicted 29-Jun 26-Sep 27-Jun 7-Sep 30-Jul 24-Sep 30-Jun 24-Sep
Observed 17-Jul 2-Oct 9-Jul 8-Oct 17-Aug 24-Sep 25-Jun 26-Sep
Difference 18 6 12 35 18 0 - 5 2

2003 Predicted 9-Jul 9-Sep 1-Jul 6-Sep 19-Aug 9-Sep 7-Jul 9-Sep
Observed 11-Jul 18-Sep 26-Jun 17-Oct 5-Aug 16-Sep 15-Jul 15-Sep
Difference 2 9 - 5 41 14 7 - 8 6

2004 Predicted 13-Jul 18-Sep 24-Jun 6-Sep 7-Jul 19-Sep 8-Aug 20-Sep
Observed 23-Aug 8-Sep 9-Jul 21-Sep 13-Jul 13-Sep 10-Aug 10-Aug
Difference NA* - 10 15 15 6 - 6 - 2 NA*

2005 Predicted 15-Jun 28-Sep 14-Jun 25-Sep 8-Jul 21-Sep 14-Jun 21-Sep
Observed NA NA 25-Jul 13-Sep 11-Jul 29-Sep 21-Jul 14-Sep
Difference NA NA 41 - 12 3 8 37 - 7

2006 Predicted 19-Jun 5-Sep 23-Jun 30-Aug 9-Aug 31-Aug 11-Aug 5-Sep
Observed 21-Jun 11-Oct 31-Aug 12-Sep 2-Aug 11-Oct 1-Aug 11-Sep
Difference 2 36 NA* 13 7 41 10 6

2007 Predicted 18-Jul 10-Oct 16-Jul 6-Sep 9-Jul 30-Sep 12-Jun 9-Oct
Observed 25-Jul 4-Oct 24-Jul 18-Oct 30-Aug 26-Sep 7-Aug NA
Difference 7 - 6 8 42 51 - 4 56 NA

2008 Predicted 25-Jul 15-Sep 13-Jun 10-Sep 29-Jul 24-Sep 28-Jul 17-Sep
Observed 22-Jul 23-Sep 24-Jun 25-Sep 31-Jul 30-Sep 28-Jul NA
Difference - 3 8 11 15 2 6 0 NA

Note: Adjusted model has variable EIP50 and longevity prior to day 210 (109 DD and 10 days) and thereafter (89 DD and 12 days). NA,
NA*, first, and last have the same meaning as in Table 1. The observed dates are the same as in Table 1.

EIP, extrinsic incubation period; DD, degree-days.
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FIG. 3. Difference of observation and model prediction in adjusted model. (Upper panel) First detection dates. (Lower panel) Last
detection dates. Two dashed lines: – 10 days interval of success prediction. Note substantial improve over the original model.
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does not vary substantially across the 4 locations. Cx. pipiens
and Cx. restuans were the dominant vector species in Harris-
burg, Pittsburgh, and Willamsport (i.e., these species com-
prised greater than 10% of the mosquitoes in WNV-positive
pools; Fig 1). Cx. salinarius was an additional potential vector
species in Philadelphia (Fig 1).

Original degree-days model results

Comparing the first and last potential WNV transmission
dates in each year based on the Zou et al. (2007) model (109
DD for EIP and 12 days for longevity) with field observations
in all 4 locations generally overestimates the duration of the
WNV transmission period (Table 1 and Fig. 2). Across sites
and years, the model only predicts 7 of the first detection
points within 10 days, with the remaining 15 predictions
tending to predict earlier detection than observed, and 4 later
than observed. Even worse, the model completely fails to
predict the last potential transmission period within 10 days
interval, with 18 earlier predictions and 6 later predictions
(Table 1 and Fig. 2).

Variable EIP and longevity adjustment

The dataset from the 625 parameter combinations is too
large to show here and is available in Chen (2012). We found
that recalibrating the Zou et al. (2007) model to include an EIP
of 109 DD and mosquito longevity of 10 days at the beginning
of the season (up to day 210), and then an EIP of 89 DD and
longevity of 12 days thereafter, resulted in the smallest total
prediction error over all 4 locations during the 7 year sur-
veillance period.

These parameter adjustments improved the model fit
substantially (Table 2 and Fig. 3). For the 25 available first
detection data points, the adjusted model predicts 15 of them
within a 10-day window. The remaining 10 unsuccessful
predictions are all earlier than observed. For the 24 last
transmission dates, the adjusted model correctly reports 15
incidences. Of the 9 unsuccessful cases, 8 are earlier than ob-
served, and 1 is later. Interestingly, nearly 80% of these errors
(7 out of 9) in the adjusted model are associated with Phila-
delphia, suggesting that the model works well for the other
sites but Philadelphia is in some way unusual. The reasons for

Table 3. Predicted, Observed Detection Dates, and Difference for Philadelphia using Optimal Parameters

Year 2002 2003 2004 2005 2006 2007 2008

First Pred. 19-Jun 2-Jul 28-Jun 16-Jun 28-Jun 6-Aug 19-Jun
First Obs. 27-Jun 1-Jul 24-Jun 24-Jul 31-Aug 24-Jul 24-Jun
Difference 8 - 1 - 4 39 NA* - 13 5
Last Pred. 8-Oct 9-Oct 26-Sep 7-Oct 18-Sep 11-Oct 25-Sep
Last Obs. 8-Oct 17-Oct 21-Sep 13-Sep 12-Sep 18-Oct 25-Sep
Difference 0 8 - 5 - 24 - 6 7 0

Note: These specific optimal parameters (EIP50 = 159 DD and longevity = 10 days before day 210, EIP50 = 109 DD and longevity = 12 days
thereafter) are different from what were used previously (optimization for all locations). These parameters only apply to Philadelphia and do
not yield optimal results (minimizing total absolute error) for other locations.

EIP, extrinsic incubation period; DD, degree-days; NA, unreliable data.
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FIG. 4. Difference of observation and model prediction in adjusted model with calibration for Philadelphia. (Upper panel)
First detection dates. (Lower panel) Last detection dates. Two dashed lines: – 10 days interval of success prediction.
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the differences between sites are unclear but could include
both biotic and abiotic factors. Philadelphia, for example, had
a mean annual temperature approximately 3�C (significantly)
higher than the other locations during the 2002–2008 period.
In addition, the dominant species of infected mosquito late in
the season in Philadelphia is Cx. salinarius, whereas this spe-
cies is largely absent from the other sites. From a practical
point of view, to improve model fit, we examined optimum
longevity and EIP parameters for Philadelphia alone, re-
gardless of the mechanisms. The parameter combinations that
resulted in the lowest error were 159 DD for EIP and 10 days
for adult longevity for early season, and 109 DD EIP and 12
days adult longevity for late season. These adjustments pro-
vided a substantial improvementin the model fit for Phila-
delphia (Table 3 and Fig. 4), predicting 17 out of 25 (i.e., 68%)
first transmission dates and 20 out of 24 (i.e., 83%) last trans-
mission dates within 10 days, with combined successful rate
of 75% for both first and last potential transmission dates.

Model validation

The results of model validation are shown in Table 4. For
Harrisburg, Pittsburgh, and Williamsport, the model with the
optimized parameters described above worked very well,
with only 2 parameters estimated differently for 2008; mos-
quito longevity after day 210 optimized as 11 days in Wil-
liamsport, and EIP before day 210 optimized as 99 DD in
Pittsburgh (though note the original parameters were within
the 10-day accuracy target for Pittsburgh). Hence the model
appears robust in these 3 locations. For Philadelphia, the
model is less robust, with newly optimized parameters are
more variable and have lower accuracy of the predictions.

Discussion

It is well established that the transmission dynamics of
mosquito-borne diseases such as WNV can be influenced by
environmental temperature. Most critically, because the rate
of pathogen development within the mosquito varies with
temperature and the duration of the incubation period tends
to be similar to the average mosquito life span (Kilpatrick et al.
2008), temperature strongly affects the proportion of mos-
quitoes that live long enough to potentially transmit the
disease. By taking this relationship into account, simple
degree-day models of pathogen development coupled with
estimates of mosquito longevity can potentially be used to
explore disease risk (at least as determined by the minimum

thermal requirements necessary to enable transmission) (Re-
isen et al. 2006, Zou et al. 2007, Konrad et al. 2009). Here we
followed this approach to examine WNV transmission po-
tential in Pennsylvania. Our final model provided reasonably
accurate ( – 10 day) predictions of the beginning and end of
the WNV transmission period across 3 locations over 7 years.
Slight adjustment of the parameters appeared to enable us to
extend the model with reasonable accuracy to a further site
(Philadelphia). Examinations of an even larger parameter
space with finer increments may yield a better fit, although
such efforts may exceed the biological resolution (which is
limited by sampling resolution) of these data.

To fit the model to the observed data, we optimized the
number of degree-days required to complete the EIP, and the
average adult mosquito longevity, across a range of param-
eter values. The best model fit resulted in selection of different
paired parameter combinations for the beginning and end of
the season. Although it is not unreasonable to expect baseline
adult longevity or EIP to vary across the season or with lo-
cation (see later discussion), we have no explicit biological
justification for the parameter values selected, or for the
transition in values mid season. As such, our model provides
a phenomenological description of the link between envi-
ronmental temperature and transmission potential. This ap-
proach contrasts with certain other studies that have
developed more complex mechanistic models to explore
WNV risk (e.g., Tachiiri et al. 2006, Gong et al. 2010). How-
ever, our aim is to explore the utility of this more generic
approach in an attempt to balance model accuracy and sim-
plicity, and to advance the potential of mining surveillance
data for estimating transmission period. To this end, we be-
lieve the model provides a number of valuable insights.

For example, on the basis of the surveillance data, trans-
mission can occur from mid-June through to mid-October,
giving a potential transmission window of around 120 days.
However, within any 1 season and/or location the actual
transmission period can start as late as mid-July and finish as
early as late August (Tables 1 and 2). As such, the model could
help inform surveillance practices, refining sampling efforts
from the current calendar-based approach (sampling generally
starts in May and progresses through to October) to a degree-
day approach that better reflects actual risk, optimizing allo-
cation of monitoring and control resources. The utility of this
approach in Philadelphia warrants further investigation.

From a more fundamental perspective, the model raises
interesting questions regarding mosquito and pathogen

Table 4. Results of Model Validation

Location EIP 1 Longevity 1 Error 1 EIP 2 Longevity 2 Error 2

Harrisburg 109 10 - 3 89 12 8
Pittsburgh 99 (109) 10 - 9 (2) 89 12 6
Williamsport 109 10 0 89 11 (12) NA
Philadelphia 139 (159) 12 (10) 17 (5) 79 (89) 12 - 12 (0)

Note: Model validation is performed by using the climate data between 2002 and 2007, and generating the optimal life history parameters
(EIP 1 represents EIP50 before day 210, EIP 2 represents EIP50 after day 210, longevity 1 represents adult longevity before day 210, and
longevity 2 represents adult longevity after day 210). After that we use the new life history parameters to predict the emergence dates in 2008.
The errors represent relative error between model prediction (using current parameters) and 2008 observation. Error 1 and error 2 represent
first and last emergence date error, respectively. The value with an asterisk mark (*) indicates that it’s different from the value reported in
section 3.3 (which is the value in the parentheses). Note that the model is relatively robust for Harrisburg, Pittsburgh, and Williamsport, but
not very robust for Philadelphia.

EIP, extrinsic incubation period.
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biology. Based on simulation, we suggest mosquito longevity
be 10 days at the beginning of the season (calendar day 150 to
calendar day 210) and 12 days later on. However, in labora-
tory studies (Reisen et al. 2006, Tachiiri et al. 2006), adult Culex
mosquitoes had better survival under cooler conditions (like
the early season) and reduced longevity under warmer con-
ditions (like the later part of the season). These potentially
conflicting results highlight a need for more detailed knowl-
edge of mosquito life history under field conditions.

Similarly, the model works best when we assume the
degree-days necessary to complete the EIP vary across
the season. EIP is generally considered an intrinsic property of
the pathogen (or at least of a specific vector-pathogen com-
bination; Davis 1932), so identifying possible variation in the
temperature-dependence of EIP across the season is an in-
teresting finding. How various aspects of host and vector
condition might interact with temperature to determine EIP is
again an important area for future study.

Beyond these biological factors, certain aspects of the sur-
veillance data will also influence our results. For example,
sampling effort varies across the season and across sites and
detecting WNV-positive mosquitoes in the early part of the
year when prevalence is expected to be low potentially adds a
bias to the model. Similarly, control operations will alter
mosquito abundance and WNV prevalence above and be-
yond any effects of environmental temperature. Further ex-
ploration of such factors could improve model fit and increase
capacity of this simple modeling approach to predict potential
WNV transmission period.
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Appendix A. Degree-Day Modeling Procedure Incorporating Daily Temperature Range

Mean Temperature Model

This is the simplest model, which treats daily mean tem-
perature as the arithmetic mean of daily maximum and
minimum temperature:

Tmean =
Tmax + Tmin

2

The disadvantage of this model is obvious. Although Tmean is
derived from daily maximum and minimum temperature, it
does not contain any information about them, that is, we are
ignoring DTR information completely.

Sine-negative exponential model

To overcome the problem inherited in the mean tempera-
ture model, biometerologists have proposed sine curve model
(sinusoidal model) to simulate DTR profile, which has the
basic form as:

Ti = a sin bi + c

Four inputs are required to reconstruct DTR profile: daily
maximum temperature, minimum temperature to determine
coefficient a and c. Coefficient b is determined by photoperiod,
which itself is further considered as a function of latitude and
number of the day in the year. Thus, we will need daily
maximum, minimum temperature, latitude, and number of
day in the year as inputs. The accumulated degree-day is
basically the integration over basic development threshold.
To reduce computational effort we interpolate hourly tem-
peratures and use these temperatures to approximate degree-
day accumulation above threshold in a day. This is a direct
analog of Riemann Integral.

Forsythe et al. (1994) have proposed the following equa-
tions to calculate day length:

h = 0:2163108 + 2 arctan (0:9671396 tan (0:00860 · (J - 186)))

/ = arcsin (0:39795 cos h)

D = 24 -
24

p
cos - 1 sin pp

180 + sin Lp
180 sin /

cos Lp
180 cos /

where h is the revolution angle predicted by number of day in
the year (J), &phi; is the declination angle, L is latitude, and D
is the day length. p is the sun position constant and equals
0.8333 according to US government definition (Forsythe et al.
1994).

While we have calculated the day length, we could further
determine temperature profile in a day:

Ti = (Tmax - Tmin) sin
p(t - tr - b)

D + 2(a - b)

� �
+ Tmin (tn £ t < tx)

Ti =
1

2
(Tmax + Tmin¢ ) +

1

2
(Tmax - Tmin¢ ) cos

p(t - 1
2 (tr + ts) - a)

24 - D
2 - a + b

 !

(tx £ t < tn¢ )

where t is current time, D is day length, tr and ts are the sunrise
and sunset time derived from day length, Tmin’ is minimal
temperature of the next day, and a and b are predetermined
coefficients (Wann et al. 1985).

The sine-negative exponential model is a fine tuning
version of the original sine curve model. Field observation
data suggest that DTR is not necessarily symmetric in a day
and the temperature curve after sunset is better fitted with a
negative exponential curve. Thus, the final model is for-
mulated as:

Ti = (Tmax - Tmin) sin
pm

D + 2a

� �
+ Tmin (tn £ t < tx)

Ti = Tmin + (Ts - Tmin)e - bn
Z (tx £ t < tn¢ )

where D is day length (determined by latitude and day in a
year), Z is night length, Ts is the temperature at the moment of
sunset, m is number of hours after minimum temperature
until sunset, n is number of hours after sunset until the time of
minimum temperature of the next day, a is the lag coefficient
for the maximum temperature, and b is the nighttime tem-
perature coefficient (Parton and Logan 1981). Because sine-
negative exponential model is derived from sine curve model,
we will call it sine curve model in the following text for
simplicity.
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