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Summary

1.

 

Recent theoretical studies on population synchrony have focused on the role of dis-
persal, environmental correlation and density dependence in single species. Trophic
interactions have received less attention. We explored how trophic interactions affect
spatial synchrony.

 

2.

 

We considered a host–parasitoid coupled map lattice to understand how the self-
organizing spatial patterns generated by such dynamics affect synchrony. In particular,
we calculated the spatial correlation functions (SCF) associated with travelling waves,
spatial chaos and crystal lattices.

 

3.

 

Travelling waves were associated with cyclic SCF (called second-order SCF) that
differed greatly from those seen in spatial chaos or crystal lattices. Such U-shaped
patterns of spatial synchrony, which have not been predicted by single-species models,
have been reported recently in real data. Thus, the shape of the SCF can provide a test
for trophically generated spatiotemporal dynamics.

 

4.

 

We also calculated the cross-correlation function between the parasitoid and the
host. Relatively high parasitoid mobility resulted in high within-patch synchrony of the
dynamics of the two species. However, with relatively high host mobility, the parasitoid
dynamics began to lag spatially behind those of the host.

 

5.

 

We speculated that this spatial lag between the host and parasitoid is the ultimate
source of travelling waves, because the spatial cross-correlation in turn affects host
dynamics.

 

6.

 

A new method to estimate the spatial cross-correlation function between two species
was developed as an integral part of the study.
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Introduction

 

The way ecological interactions generate population
synchrony has received much attention recently in the-
oretical ecology (reviewed in Bjørnstad, Ims & Lambin
1999). So much so that we can now see the outlines of
a general theory for how dispersal, environmental cor-
relation and density dependence mould synchrony in
single-species systems. Generically, such theoretical
populations tend to share the correlation of the envir-
onment. Dispersal enhances synchrony locally so that
the level of correlation in dynamics drops with distance
(Lande, Engen & Saether 1999; Bjørnstad & Bolker

2000). Population regulation, however, affects syn-
chronization. Synchrony may be enhanced if  density
dependence is strong enough to induce cycles (Bjørns-
tad 2000), but will otherwise decrease synchrony
(Kendall 

 

et al

 

. 2000). Chaotic populations are hard
to synchronize (Bjørnstad 

 

et al

 

. 1999). The theory of
population synchrony is less complete for systems
of interacting species. Ims & Steen (1990) studied tro-
phically induced synchrony and noted that migratory
predators could induce region-wide synchrony in prey
populations. Ranta, Kaitala & Lindström (1997a), in
contrast, found that the trophic interaction between
Canadian lynx (

 

Lynx canadensis

 

 Kerr) and snowshoe
hares (

 

Lepus americanus

 

 Erxleben) exhibited a U-
shaped relation between synchrony and distance. Gener-
ally, reaction–diffusion systems involving two species,
such as a predator and a prey, have the potential of
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generating a wide range of spatial dynamics including
travelling waves and stable patch formation (reviewed in
Bascompte & Solé 1995; Rohani 

 

et al

 

. 1997). However,
a gap still exists between these theoretical predictions
and field studies (see, however, Hastings, Harrison &
McCann 1997; Maron & Harrison 1997). An import-
ant step prior to exploring the possible existence of
self-organizing spatial patterns in nature is to under-
stand the relationship between the theoretical patterns
and the statistical measures of population synchrony
used in data analysis. In this study we help bridge the
gap between theory and data by studying the shape
of the spatial correlation function (SCF) and spatial
cross-correlation function (SCCF) in spatially extended
trophic interactions. We used a spatially extended host–
parasitoid system as a focal case (Hassell, Comins &
May 1991).

The common way of studying spatial synchrony in
theoretical systems is by quantifying the spatial covari-
ance (or correlation) in abundance (reviewed in Bjørnstad

 

et al

 

. 1999; Koenig 1999). A detailed understanding of
population synchrony is achieved by analysing how the
correlation is a function of spatial distance: the SCF. In
addition to being a common way of quantifying spatial
synchrony, our focus on SCF is motivated by recent
work on moment equations for spatially extended eco-
logical systems (Bolker & Pacala 1999; Keeling, Wilson
& Pacala 2000; Snyder & Nisbet 2000; Bascompte
2001). These studies show how complicated spatiotem-
poral dynamics can be approximated by considering
the spatial mean and spatial correlation. This work
recasts the complicated spatial dynamics in terms of
how local density affects spatial correlation (‘the pat-
tern’) and how this spatial pattern in turn affects the
local interactions (‘the process’); the analogy to the
present setting is obvious.

We followed the convention of focusing on spatial
correlation in abundance in our study. In addition, we
characterized the pattern of spatial cross-correlation
between the interacting species (Bolker & Pacala 1999).
As indicated above, several of the detailed predictions
about synchrony in single-species systems diverge
when local dynamics bifurcate to cyclicity or chaos
(Bjørnstad 

 

et al

 

. 1999; Bjørnstad 2000). However,
across the divergent predictions, there are a few unify-
ing features: synchrony in single-species systems is pre-
dicted to be (i) positive and (ii) non-increasing with
distance. We showed these predictions to be violated in
spatially extended systems of interacting species.

Parasitoids engage in very intimate interactions with
their hosts. In uncoupled populations, the dynamics of
these systems relate to the way the parasitoids induce
delays in the regulation of the host. This delay causes
population cycles because it induces second-order
temporal autocorrelation (lagged density-dependence;
Royama 1992). The second-order temporal autocorre-
lation is characterized by the correlation cycling from
initially positive through an interval of  negativity
back to positive correlation with increasing time lag.

We conjectured that the second-order temporal auto-
correlation in trophic systems is the cause of the cyclic
spatial correlation. This motivated us to call the cyclic
(U-shaped) synchrony in reaction–diffusion systems
second-order spatial correlation. We used a coupled
map lattice model (Hassell 

 

et al

 

. 1991; Bascompte &
Solé 1995) in combination with the non-parametric
covariance function (Bjørnstad 

 

et al

 

. 1999) to clarify
the presence of second-order spatial correlation in
trophic reaction–diffusion systems.

In order to discuss the patterns of synchrony in spa-
tially extended trophic systems, we first briefly outline
our prototypical model and its dynamics. We then out-
line the relationship between synchrony and SCF, and
sketch out the non-parametric covariance function that
allows us to quantify the shape of the SCF. In addition
to studying the spatial correlation within each species,
we study the spatial cross-correlation between the
species and develop the non-parametric cross-correlation
function. In the Results we explore the classes of cor-
relation functions that arise from trophic interactions
and detail the emergence of second-order correlation.

 

A host–parasitoid coupled map lattice

 

In order to study patterns of  synchrony in trophic
systems, we use a well-known model of spatially
extended host–parasitoid interactions (Hassell 

 

et al

 

.
1991; Comins, Hassell & May 1992). The model describes
a two-dimensional universe comprising discrete patches.
Generations are non-overlapping. We start with an ini-
tial condition consisting of all but one patch empty,
and we follow the Hassell 

 

et al

 

. (1991) formulation.
The dynamics at each generation consist of two phases:
dispersal and interaction. In the first phase, a fraction

 

µ

 

h

 

 of  adult hosts and a fraction 

 

µ

 

p

 

 of  adult parasitoids
leave the patch where they were born and distribute
into the eight surrounding patches. The equations for
the dispersal stage can be written as:

 

H

 

′

 

i
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t
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µ
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eqn 2

where 

 

H

 

i

 

,

 

t

 

 and 

 

P

 

i

 

,

 

t

 

 denote the densities of adult host and
parasitoids at patch 

 

i

 

 and generation 

 

t

 

 prior to dispersal,
and 

 

H

 

′

 

i

 

,

 

t

 

 and 

 

P

 

′

 

i

 

,

 

t

 

 denote post-dispersal densities. The
quantities 

 

H

 

¯ and 

 

P

 

¯ are the neighbourhood host and
parasitoid densities (mean over the eight nearest neigh-
bouring patches). We use absorbing boundaries, i.e. we
assume that the boundary is surrounded by a ring of
permanently empty patches to which dispersers are lost.

The second phase to the dynamics is host reproduction
at 

 

per capita

 

 rate, 

 

λ

 

, and parasitoid 

 

per capita

 

 emergence
rate, 

 

c

 

. We assume the second phase to follow the
Nicholson–Bailey model (Hassell 

 

et al

 

. 1991), such that
the densities at the beginning of generation (

 

t 

 

+ 1) are:

 

H
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t
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cH
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aP
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t

 

) eqn 4

where 

 

H

 

′

 

i

 

,

 

t

 

 and 

 

P

 

′

 

i

 

,

 

t

 

 are as defined in equations 1 and 2
and 

 

a

 

 is the 

 

per capita

 

 parasitoid attack rate.
The non-spatial Nicholson–Bailey model gives rise

to divergent parasitoid–host cycles that eventually lead
to the extinction of the parasitoid or both the parasi-
toid and the host. It is easy to see (Nisbet & Gurney
1982) that the parasitoid induces a delay in the regula-
tion of the host. Indeed, in the vicinity of the unstable
equilibrium (

 

H

 

* = 

 

λ 

 

log 

 

λ

 

/a (

 

λ

 

 – 1), 

 

P

 

* = log 

 

λ

 

/a), the
regulation of the host is according to:

eqn 5

where 

 

h

 

 = log

 

H

 

. This represents a second-order tem-
poral autocorrelation that is cyclic (but divergent)
through time.

Once the spatial dimension is introduced and the
lattice is big enough (Hassell 

 

et al

 

. 1991), the full model
(equations 1–4) will more often than not result in in-
definite persistence of the parasitoid–host interaction.
Persistence is secured through the space–time inter-
action of  the two species (Hassell 

 

et al

 

. 1991; see
also Wood & Thomas 1996; Bolker & Pacala 1999).
This persistence is induced through a range of self-
organized spatial dynamics. Hassell 

 

et al

 

. (1991) studied
the spatial dynamics of the model (equations 1–4) and
showed that persistence is achieved through three qual-
itatively different self-organized spatial patterns (Fig. 1):   

h h ht t t    
log

  
  

log
  

= +
−







−
−− −1

1 11 2
λ

λ
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λ

Fig. 1. Self-organized spatial patterns in host density based on the model (equations 1–4). (a) Spiral wave; (b) crystal lattice; (c) spatial
chaos. Each figure corresponds to a snapshot of host density at generation 5000. Light shading represents low density and dark
shading represents high density. Simulation started with 20 hosts and parasitoids in a single patch with all the other patches empty.
Boundary conditions are absorbing and dispersal is to the eight nearest neighbours (see text). The lattice size is 30 × 30, and the
parameters are as follows: λ = 2, a = 1, c = 1, and (a) µh = 0·5, µp = 0·3, (b) µh = 0·05, µp = 1, (c) µh = 0·2, µp = 0·9. (d) The
qualitative types of spatial dynamics as a function of host and parasitoid mobility (adapted from Hassell et al. 1991). The dotted
areas represent crystal lattices. The hatched area represents ‘hard to start spirals’ (Hassell et al. 1991) where the system either goes
globally extinct or exhibits spiral waves (depending on parameters and initial conditions).
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(i) spiral waves, (ii) crystal lattices and (iii) spatial
chaos. The key parameter is partly, as indicated by
equation 5, the growth rate 

 

λ

 

 but, more importantly
(Hassell 

 

et al

 

. 1991), the dispersal rates 

 

µ

 

h

 

 and 

 

µ

 

p

 

. With
high host dispersal rates, population densities form
evolving spiral waves (Fig. 1a). The corresponding
local dynamics are periodic, quasiperiodic or chaotic
(Solé, Valls & Bascompte 1992). Crystal lattices, which
are stable patterns characterized by patches with high
densities surrounded by lower density patches (Fig. 1b;
Hastings 

 

et al

 

. 1997; Maron & Harrison 1997), arise
from extreme mobility of the parasitoid relative to that
of the host. Spatial chaos represents spatiotemporal
fluctuations that lack both spatial and temporal peri-
odicity (Fig. 1c). The latter resembles spatial random-
ness in that densities vary in space and time without
any clear pattern, although the model is deterministic
(Hassell 

 

et al

 

. 1991; Comins 

 

et al

 

. 1992). In Fig. 1d we
detail the parameter combinations that lead to the
different types of spatial dynamics.

In the following, we use 30 

 

×

 

 30 cell lattices and ana-
lyse 200 generations of data (from the 900 local popu-
lations) after allowing for a transient period of 1000
generations. We have checked, using larger lattices, that
the results we present below are not unduly influenced
by the extent and grain of the lattice, nor by edge
effects.

 

Spatial correlation functions

 

Spatial correlation has attained much recent focus
from two different angles. First, it is the central meas-
ure for quantifying spatial synchrony, a topic that has
received much attention during the last few years
(reviewed in Bjornstad 

 

et al

 

. 1999). Secondly, spatial
correlation is a quantity of central importance to
understanding,  and approximating, spatiotemporal
ecological interactions (Bolker & Pacala 1999; Keeling

 

et al

 

. 2000). We therefore follow recent efforts (Bjørnstad
& Bolker 2000) and consider the SCF of the spatially
extended system. We denote the space–time (marginal)
average host and parasitoid abundance by 

 

k

 

H

 

l 

 

and 

 

k

 

P

 

l

 

,
respectively. The synchrony between the two time series

 

H

 

i

 

 and 

 

H

 

j

 

 of  host populations at locations 

 

i

 

 and 

 

j

 

 are
then given by:

 

ρ

 

ij

 

 = (

 

H

 

i

 

 – 

 

k

 

H

 

l

 

) 

 

× (

 

H

 

j

 

 

 

–

 

 

 

k

 

H

 

l

 

)

 

Τ

 

/σ

 

2

 

Η

 

eqn 6

where underscored symbols represent vectors (time
series), 

 

×

 

 denotes matrix multiplication, 

 

T

 

 denotes
matrix transposition, and 

 

σ

 

2

 

Η

 

 represents the space–time
(marginal) variance in the host abundance. The defini-
tion in equation 6 is, thus, the algebraic shorthand
notation for the pairwise correlation of different time
series (with identical means and variances). In self-
organized ecological systems, the correlation typically
depends on the spatial distance, 

 

r

 

ij

 

, separating the
populations i and j. The function ρ(r) that governs
this dependence is called the SCF.

Under the anticipation that the SCF should be a
tractable function for simple dynamical systems,
Bjørnstad & Bolker (2000) pursued an analytic solu-
tion to the SCF of a spatially extended single-species
system. They assumed density-independent dispersal
and stable dynamics. However, even for this simplest
case it was difficult to find a closed-form solution to
the SCF. (In the limit of  frequent dispersal, the SCF
is approximately Gaussian locally but with expon-
ential or Bessel tails). In order to elucidate the SCF
in more complicated spatially extended systems, we
therefore rely on recent techniques to estimate the
SCF numerically, without assuming any a priori
functional form (such as the Gaussian or the Bessel).
The non-parametric covariance function (NCF)
effectively attains this estimate by employing a non-
parametric regression of ρij against rij (Hall & Patil
1994; Bjørnstad & Falck 2001) according to:

eqn 7

where K() is a kernel function (Härdle 1990) and h (> 0)
is its bandwidth. The bandwidth is a parameter that
adjusts the smoothness of the fitted curve. The estim-
ated function, ρ̃(r), is non-parametric in the sense of
not assuming any specific class of a priori parametric
models for the relation (Härdle 1990). Details are given
in Bjørnstad & Falck (2001). In all our calculations we
use smoothing splines with 25 ‘equivalent’ degrees of
freedom to estimate the correlation function.

Understanding synchrony in multispecies systems
also involves the spatial correlation between species
(as a function of distance; Bolker & Pacala 1999). We
therefore used a new non-parametric method to estim-
ate the spatial cross-correlation function (SCCF). We
denote the space–time parasitoid mean and variance
by kPl and σ2

P, respectively. All other notation is as
given in the previous paragraphs. The cross-correlation,
wij, between the host population at location i and the
parasitoid population at location j (either at similar or
different locations) is then given by:

wij = (Hi – kH l) × (P–j – kP l)Τ/σΗσP. eqn 8

We measured within-patch synchrony of the para-
sitoid and host as the average correlation between the
two species in each patch (= mean wii for all i). More
generally, wij will depend on the spatial distance, rij,
according to the SCCF, C(r). By an extension of exist-
ing methodology (Hall & Patil 1994; Bjørnstad & Falck
2001), we can estimate the SCCF non-parametrically
according to:

eqn 9

The derivation follows directly that of Hall & Patil
(1994) and Bjørnstad & Falck (2001). However, the
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exact numerical properties of this estimator, in the face
of finite sample size, deserve future study. A library of
S-plus and R functions to calculate the non-parametric
SCCF is available from the authors upon request.

We can provide a crude summary statistic of the spa-
tial pattern by calculating the spatial correlation length
in the parasitoid–host model. We use the Le correlation
length, i.e. the distance at which the correlation falls
to 1/e (≈ 0·37). As a summary statistic for the cross-
correlation between species, we focus on the distance
at which the SCCF peaks. This reflects the distance
over which parasitoid build-up lags behind that of
the host.

Results

Figure 1 shows snap-shots of the three different spatial
dynamics that are generated by the model (equations
1–4). The SCF reveals that each of  the dynamic types
is associated with a distinct pattern of spatial syn-
chrony (Fig. 2a–c). Spatial chaos (Fig. 2c) is the only
pattern with SCF comparable with those described
from single-species systems (Bjørnstad & Bolker
2000; Bjørnstad 2000). The correlation function is
initially high and tails off  towards zero correlation
with distance.

Spiral waves resemble, initially, the decline from
locally high correlation that is seen in spatially chaotic
systems. However, for intermediate distances the SCF
diverges markedly by exhibiting conspicuous negative
correlation, which cycles back to positive at twice the
spatial lag (Fig. 2a). A randomization test reveals that
the negative correlation is highly significant in all sys-

tems with spiral waves. These cyclic SCF for dynamic
spatial waves bear an intriguing resemblance to the
cyclic temporal correlation function that results from
second-order (delayed density-dependent) processes
(Royama 1992; see the Discussion).

The last type of dynamics, the crystal lattices, is asso-
ciated with strong negative correlation between neigh-
bouring populations. We have, through an extensive
analysis across parameter space, confirmed that each
of the three different spatial dynamics (Fig. 1a–c) is
generally associated with the unique families of SCF
(Fig. 2a–c). For any given parameter value, the cor-
relation functions in parasitoid abundance are near
identical to those of the host. We have therefore elected
not to show these.

In addition to the unique SCF, each of the three spa-
tial dynamics (Fig. 1a–c) is associated with particular
SCCF between the host and its parasitoid. All types
exhibit positive SCCF at short spatial lags. However,
spiral waves are associated with cyclic SCCF, i.e. SCCF
that are positive at short spatial lags and then cycle
through negative and positive cross-correlations there-
after (Fig. 2a). Note, also, how the cross-correlation
increases initially. Spatially chaotic populations, in
contrast, have SCCF that start off  positive but the
SCCF does not become negative with distance
(Fig. 2c). Crystal lattices, finally, are characterized by
locally high cross-correlations. Through explorations
of parameter space we have confirmed that spatially
chaotic systems may have cross-correlation functions
that show a non-zero distance mode, i.e., as for spiral
waves, the SCCF may initially increase with distance
(Fig. 3b). We summarize the SCF and SCCF across a
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Fig. 2. Spatial correlation functions (SCF) (top row) and spatial cross-correlation functions (SCCF) (bottom row). Correlation
and cross-correlation is plotted as a function of distance. Each function corresponds to each of the patterns of Fig. 1. (a, d) Spiral
wave; (b, e) crystal lattice; (c, f ) spatial chaos. All patterns have very distinct correlation and cross-correlation functions (see text).
The dotted lines (near the y = 0 line) in (a–c) represent a typical correlation function under complete spatial randomization.
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transect of  different host dispersal rates (parasitoid
dispersal is kept constant at µp = 0·7) in Fig. 3. The
transect illustrates that the SCF and SCCF are in many
ways similar in shape; however, the functions never go
negative for spatially chaotic systems, while they cycle
through negative and positive for spiral waves.

We used the cross-correlation to quantify the within-
patch synchrony between the parasitoid and the host.
When we increment host and parasitoid dispersal rates
by 0·05 across parameter space we find a mean within-
patch cross-correlation of 0·14 (minimum = 0·00,
maximum = 0·99). This is highest in crystal lattices
(mean 0·67, range 0·30, 0·99) and lowest in spiral waves
(mean 0·12, range 0·00, 0·20). Spatial chaos has inter-
mediate cross-correlation (mean 0·18, range 0·08, 0·62).
A casual inspection shows that the local cross-correlation
is negatively affected by the host dispersal rate (Fig. 4).

The synchrony is, however, also positively affected by
parasitoid mobility. The partial correlation of local
cross-correlation and host and parasitoid mobility is
–0·69 (SE = 0·05) and 0·39 (SE = 0·05), respectively.

The decline in local cross-correlation is associated
with a shift in the mode of the SCCF away from zero.
For low host mobility, the mode is at zero, signifying
that the parasitoid abundance peaks in each patch at
the same time as the host. However, as host mobility
increases the parasitoid dynamics begin to lag the host
in space (Fig. 5; see also Fig. 3b). The lag is zero for
crystal lattices. The mean lag is 0·5 (units = number of
cells) for spatial chaos (note, however, that the median
is zero). The average mode in the SCCF of spiral waves
is 1·4 (median 1·7). A casual inspection of the mode
reveals that the spatial lag is most strongly determined
by the host mobility (Fig. 5) but it is also influenced by
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Fig. 3. (a) Spatial correlation functions (SCF) and (b) spatial cross-correlation functions (SCCF) along a transect of host
mobility. Parasitoid mobility is taken to be µp = 0·7 throughout. Host mobility is incremented from 0·05 to 0·95 by 0·1. The three
lowest levels of host mobility (dotted lines; µh = 0·05, 0·15, and 0·25) represent spatial chaos, neither the SCF or SCCF fall below
zero. Higher host mobility results in travelling waves, as apparent from cyclicity in both the SCF and SCCF. Note how increased
host mobility is associated with the mode of the SCCF being further away from zero.
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Fig. 4. Interspecific synchrony as a function of host mobility. Highest synchrony is associated with the crystal lattices (w). The
synchrony scales inversely with host mobility, µh, in spiral waves (d) and spatial chaos (s).
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the parasitoid mobility. The partial correlation of this
lag against host and parasitoid mobility is 0·80
(SE = 0·02) and 0·26 (SE = 0·02), respectively. Note,
thus, that the dependence on the host mobility is
opposite to that of the local synchrony.

The Le correlation length measures the scaling of the
pattern within each species. The mean host correlation
length across parameter space is 2·5 (range 0, 4) (units
= number of  cells). Crystal lattices have zero (or
undefined) Le, as the correlation function is negative

between neighbouring populations (Fig. 2b). The Le

correlation length is very similar for spatial chaos and
spiral waves, with means of 2·5 (range 0, 3·9) and 2·6
(range 1·5, 4·1), respectively. The parasitoid correlation
lengths (not shown) are almost identical to those of
the host. In contrast to the mode of  the SCCF, the
correlation length is most strongly influenced by the
parasitoid mobility (Fig. 6; partial correlation = 0·53,
SE = 0·05). However the Le also depends significantly
on host mobility (partial correlation = 0·22, SE = 0·05).
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Fig. 5. The mode of the spatial cross-correlation function (SCCF) as a function of host mobility. The mode is zero for low host
mobility (µh < 0·2), and increases with host mobility thereafter. Stars represent crystal lattices, filled circles represents spiral waves
and open circles represent spatial chaos.
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Fig. 6. The Le correlation length as a function of parasitoid mobility, µp. The SCF for crystal lattices (w) is singular at the origin,
the correlation length is thus zero (or undefined). Higher parasitoid mobility results in greater correlation length for both spatial
chaos (s) and travelling waves (d).
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A complication is that the correlation length appears
to scale nearly perfectly with parasitoid mobility in
spiral waves (correlation = 0·93) while it is more
strongly influenced by the host mobility in spatially
chaotic populations (partial correlation = 0·67).

Discussion

This paper reports on a theoretical discussion of the
patterns of intra- and interspecific spatial synchrony
that result from the interaction between a host and
its parasitoid. We have used a coupled map lattice to
model the spatially extended trophic interaction, and
used spatial correlation and cross-correlation func-
tions to describe the patterns of synchrony. The results
can be summarized as follows.
1. Spatially extended host–parasitoid interactions can
lead to spatial chaos, spiral waves or crystal lattices
depending on the relative and absolute mobility of the
interacting species. Each type of behaviour is charac-
terized by distinct patterns of spatial synchrony within
and between species.
2. Spiral waves result in cyclic correlation and cross-
correlation functions, a result that differs qualitat-
ively from what can be obtained with single-species
interactions.
3. With increased host mobility, the parasitoid popu-
lation dynamics increasingly lag the host dynamics in
space. This is reflected in the SCCF having its mode
away from zero.
4. Crystal lattices exhibit negative synchrony between
neighbouring populations.

It is natural to ask whether the results obtained by
coupled map lattices are robust when considering
individual-based interactions and models. Bascompte,
Solé & Martínez (1997) show the presence of the same
self-organized spatial patterns in individual-based
models. Similarly, Rohani et al. (1997) have specific-
ally addressed the question of whether spatial self-
organizing patterns persist in the presence of  noise.
We are therefore confident that our results should gen-
eralize to other types of models. Note, though, that
much work remains to be done on how the interaction
between spatial dynamics and demographic stochastic-
ity affects host–parasitoid dynamics (Wilson & Hassell
1997).

Bolker & Pacala (1999) showed, using moment
equations, how spatiotemporal dynamics can be under-
stood by considering how local interactions affect
patterns of spatial correlation and cross-correlation,
and how these in turn affect local dynamics (see
also Keeling et al. 2000). Their perspective is a very
valuable tool in order to interpret both the pattern of
synchrony and the patterns of dynamics seen in our the-
oretical model. The local dynamics of the Nicholson–
Bailey model in the absence of any coupling show a
divergent cycle. Persistence can therefore only be
achieved due to spatial interactions. Because of the
inherent local instability, mobility of  the host and

parasitoid introduces spatially transient associations
between the host and parasitoid. This eventually ends
in local extinction. If  the spatial dimension is large
enough (Wood & Thomas 1996), however, indefinite
global persistence can be achieved through the move-
ment of  this unstable interaction through space. Low
to moderate mobility of both species induces spatial
aggregation of both species as well as positive local
cross-correlation of the two, leading to a space–time
interaction, called spatial chaos (Figs 1c, 2c,f) (Hassell
et al. 1991).

Keeping in mind that in the absence of any local
interactions dispersal will increase the extent of spatial
correlation in abundance, it is intuitive that if  parasi-
toid dispersal is very high relative to that of the host,
the parasitoid can effectively embrace patches of high
host abundance, leading to a cross-correlation that
extends further in space than the spatial correlation in
the host itself  (Fig. 2b,e). This results in a per capita
parasitization rate that increases as one moves away
from high-density host patches. Because any host
that attempts moving will rapidly fall victim to the
increased parasitization rates, and any parasitoid that
ventures too far away from a patch will run out of
resources, the spatial pattern gets effectively frozen
(Hastings et al. 1997; Maron & Harrison 1997).

In contrast, with increasing mobility of the host rel-
ative to the parasitoid, the parasitoid build-up begins
to lag spatially behind the build-up of the host. This
results in the spatial cross-correlation between the two
species, having a maximum away from zero (Figs 3 and
5). The per capita parasitization rates thus become rel-
atively lower in high host density patches and relatively
higher in the patches where the host density used to be
high (Fig. 2a,d). Effectively this pattern of  cross-
correlation results in negative spatial correlation in
host density at intermediate distances, due to the
increased rates of  parasitization in the wake of  the
host build-up. This intricate feedback of the trophic
interaction on the spatial correlation, which in turn
affects the trophic interaction, is the cause of  travel-
ling waves in abundance (Fig. 1a).

We have found that each of the three types of spatial
dynamics, spiral waves, spatial chaos and crystal lat-
tices, is connected with very distinct spatial correlation
and cross-correlation functions. One may therefore be
able to test for complex spatial dynamics through a
combined use of SCF and SCCF. In particular, two of
the three patterns are associated with SCF very differ-
ent from what can be found in single-species systems
(Bjørnstad et al. 1999). In particular, spiral waves
entertain a cyclic correlation function that has a min-
imum (which in the present case is always negative)
at intermediate distances. Ranta et al. (1997a), who
studied synchrony in the Canadian snowshoe hare,
called this a U-shaped pattern of synchrony. As cyclic
temporal autocorrelation results from second-order
interactions (see equation 5), we call the cyclic SCF
second-order spatial correlation. Ranta et al. (1997b)
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and Bascompte et al. (1997) both took the U-shaped
pattern in synchrony of the snowshoe hares as possible
evidence for travelling waves in abundance. At a first
glance the present study supports this notion. Note,
however, that the second-order SCF seen in the present
model cycles around zero, while the U-shaped syn-
chrony in the snowshoe hare never drops below 0·5.
We have explored whether regionally correlated sto-
chastic forcing on the parasitoid–host system could
serve to raise the SCF above zero (cf. the Moran effect;
Royama 1992). However, we have not found any case in
which the SCF becomes positive in its entire domain
due to the effect of global noise. Whether this is a general
feature of host–parasitoid travelling waves remains to
be investigated.

Spatial chaos is a deterministic, random-like pattern
of variation in population abundance through space.
An important task that remains to be done is to
develop rigorous statistical methods to distinguish self-
organizing deterministic spatial chaos from spatial
randomness (Bascompte & Solé 1995; May 1999). If
we compare the SCF in the self-organized dynamical
systems with comparable SCF of spatially randomized
systems (Fig. 2c), we see a startling contrast. This sug-
gests that we should be able to develop a test based on
the SCF. However, distinguishing self-organized spatial
chaos (Fig. 2c) from more simple dispersal-induced
synchronization of stochastic systems (Bjørnstad &
Bolker 2000) will be a more serious challenge.

Lambin et al. (1998) recently provided a dedicated
statistical test for travelling waves in abundance. The
method is fine-tuned to analyse data from directed
travelling waves going through a study area (rather
than radial waves or entire spirals). For such data, their
method is likely to be more powerful and less ambiguous
than inspecting correlation functions. They furthermore
point out a very interesting phenomenon: when the
study area is only a small portion of the entire dynamic
area, the data may be anisotropic. That is, the SCF will
drop more quickly in one direction (perpendicular to
the wave) than in others (more parallel to the wave).
This is an important point worthy of further study.

The local association between the parasitoid and its
host is only high when the host mobility is low (Fig. 4).
This is because when the host becomes more mobile,
the parasitoid dynamics begin to lag spatially behind
that of the host. This raises an important cautionary
note for the study of a parasitoid and its ‘habitat’. A
naive correlational analysis of the spatial relationship
between a parasitoid and its host may falsely indicate a
low association between the two (whenever the host is
mobile).

The number of studies of spatial synchrony has
increased dramatically over the last few years. At the
same time the focus of  the studies has gone through
a natural progression, asking first what are the pat-
terns of synchrony, then focusing on potential causes of
synchrony. The challenge for the years to come is to ask
what the consequences of spatial synchrony, or, more

generally the feedback of patterns of spatial correlation,
are on the temporal dynamics of populations.
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