
Appendix A: Details of the mathematical modeling 
Our model of the development and effect of immunity is similar to a standard model 

for gastrointestinal nematodes in ruminants (Roberts & Grenfell 1991).  Acquired 

immunity builds in response to the host’s history of parasite exposure, therefore 

cumulative exposure is a central quantity in the host-parasite interaction (Anderson & 

May 1985).  Generally, exposure is assumed to be affected by the environmental force 

of infection and host age according to )()( tFaφ , where F(t) is the abundance of 

infectious larvae per unit weight of comestible herbage (possibly seasonally varying – 

t represents the time of the year) and a is the rabbit’s age. The variate )(aφ  represents 

the age-specific monthly feeding rate. The product of F and φ is the season- and age- 

specific force of infection. Based on the above considerations, the general model for 

the host cumulative exposure to parasite infective stages, E, is: 

)()(),( tFa
dt

tadE φ= .         (1) 

 

The host’s acquired ability to mount a response to the parasite, I, will be proportional 

to E, according to ),(),,(),,( taEctactaI β= , but where the constant of proportionality 

β  (viz. ‘immunocompetence’), may depend on age, season, and cohort c(=t-a, i.e. 

month of birth). Immunity may wane, but since this happens at a slow rate (e.g. 0.01 

yr-1 according to Kao et al. (2000)) we neglect this since we consider rabbits no older 

than one year.  

 

If we assume that acquired immunity I(a,t,c) at time t of a cohort born in month c acts 

to inhibit (in an exponential fashion) the establishment of ingested parasites, then the 

infection rate is  

)).,,(exp()()(),,( ctaItFactaR −= φ  

We further assume that mature parasites have a constant mortality rate μ, independent 

of hosts’ immunity or intra-parasite density dependence. Consequently, the mean 

number of parasites at time t in the rabbit cohort born in month c will obey the 

following differential equation: 

),,()),,(exp()()(),,( ctaPctaItFa
dt

ctadP μφ −−= .   (2) 

 



Equations (1)-(2) represent our general model of parasite exposure and establishment. 

For model fitting and data analysis, however, we need to specify the functional forms 

of the various components of the model. In particular, we need to define candidate 

models for (i) how the force of infection varies through the year, F(t), (ii) how feeding 

rates depends on age, )(aφ , and (iii) how immunocompetence varies among 

individuals, ),,( ctaβ . A definition of the model parameters is reported in table 1 of 

the MS, and the meaning of the letters used to denote different components of the 

models is summarised in table 2. 

 

The force of infection, F, will itself depend on the history of reproductive adult 

parasites present in the host population.  Since we do not have available data on host 

density or a reliable measure of parasite fecundity (which will depend on the hosts 

immunity as well as the adults intestinal density), we are unable to model or estimate 

the force of infection independently. We therefore use a generic mathematical 

expression that encompasses three scenarios for the force of infection:  

})]3{2sin(}])3{sin[}3{sin(1[)( 2211 +−++−++−+= θωϑωθω tftftftF pp  

where t is the time in months  and ω=π/6 month-1 is the angular frequency 

corresponding to annual variation (there is no multiplicative constant in the 

expression for F as this would be indistinguishable from a constant in the feeding 

rate). 

 

This elaborate expression for the force of infection has the following three possible 

scenarios: 

(i) Sinusoidal: where p=f2=0, and the parameters f1 and θ1 are estimated through 

model fitting. This is denoted as model ‘F’, and θ1 represents the month where F is 

maximal.  

(ii) Sinusoidal plus second harmonic (denoted as model ‘FH’): where p=0, and the 

parameters f1, f2, θ1 and θ2 are estimated with model fitting.  

(iii) Sinusoidal phase modulation (denoted as model ‘FP’): where f1=0, and the 

parameters f1, p, θ1 and θp are estimated with model fitting. Models FH and FP are 

used to assess whether there is any significant non-sinusoidality in the force of 

infection, F . 

 



Though the feeding rate φ varies with rabbit age a, we can only infer individuals’ age 

indirectly from their body mass. While this adds some additional uncertainty to the 

analysis (discussed in some detail in Cattadori et al., 2005) we believe our results are 

robust enough to describe patterns of feeding rate and parasite infection with age. We 

use the age/body mass calibration of Cattadori et al. (2005) to obtain the following 

allometric model for feeding rate: 

φ = φ0
200 + 275a

3340( )γ
 

where φ0 and γ are constants. The constant γ is allowed to be nonzero if the age-

dependent feeding rate G is present in the model; the parameter φ0 needs to be fitted 

whatever the model.  

 

Our previous study on the T. retortaeformis-rabbit interaction highlighted the 

occurrence of heterogeneities (mainly related to season, age and sex) in infection 

intensity (Cattadori et al. 2005), so here we consider various scenarios for how 

immunocompetence  varies among individuals: 

Age-dependence (A): where aA 10 βββ += . This allows older rabbits to have a higher 

immunocompetence  than younger individuals. We denote by ‘I’ models where 

β0 ≠ 0  and by ‘A’ models where β1 ≠ 0. 

Season-dependent condition (T): where )))3(sin(1( 1 +−+= TTT t ψωββ , ψT being the 

month in which immunocompetence  is maximal. We denote by `S’ models where 

01 ≠Tβ . 

Cohort-dependent immunity (C): whereβC =1+ β1C sin(ω(b −ψC + 3)), ψC  being the 

month in which the most immuno-competent rabbits were born.  

 

In total, these components combine to form 72 possible models.  We have not tested 

all combinations, but the nested structure imposes bounds on the likelihoods that 

enable us to reject some of simpler models without explicit fitting. 

Statistical procedure 
Equation (2) may be interpreted as the first moment of a linear stochastic 

immigration-death process, in which case the parasite burdens would be distributed 

among hosts as a Poisson distribution with mean P.  However, our data, in common 

with many macroparasite systems, display aggregated distributions among hosts 



(Boag et al. 2001), so when fitting the data we shall assume a negative-binomial 

distribution among hosts (Grenfell et al. 1995). 

 

To estimate model parameters, we pick initial values for all parameters and integrate 

the differential equations (1) and (2) to give predicted mean infection levels for 

rabbits in different age and birth classes. The differential equations are well behaved, 

and may be robustly solved using fixed-step numerical integration. The likelihood of 

the model is then calculated by assuming that each rabbit’s parasite burden is drawn 

from a negative binomial with the predicted mean (appropriate to its age and cohort) 

and a shape parameter k. We then use standard multidimensional optimisation 

routines (Nelder-Mead Simplex and Conjugate Gradient (Press et al. 1992)) to update 

the values for the parameters and find the model parameters for which the likelihood 

is maximised. The Akaike Information Criterion (AIC=-2(log likelihood)+2(number 

of parameters)) was calculated for each model and the degree, ΔAIC, by which a 

model differs from the model with the lowest (best) AIC is used to evaluate the 

relative accuracy of these models (Burnham & Anderson 1998).  The standard rule of 

thumb is that models with ΔAIC values of 0-2 well predict the pattern observed in the 

raw data (`good support’), models with values of 4-7 poorly describe the pattern of 

the raw data (`some support’), and models with values of 10+ are not reliable (`no 

support’).  

 

References 
Anderson, R.M. & May, R.M. (1985) Herd immunity to helminth infection and 

implications for parasite control. Nature, 315, 493–496. 

Boag, B., Lello, J., Fenton, A., Tompkins, D.M. & Hudson, P.J. (2001) Patterns of 

parasite aggregation in the wild european rabbit (Oryctolagus cuniculus). Int J 

Parasitol, 31, 1421–1428. 

Burnham, K.P. & Anderson, D.A. (1998) Model Selection and Inference: a Practical 

Information Theoretic Approach. Springer-Verlag, New York. 

Cattadori, I.M., Boag, B., Bjørnstad, O.N., Cornell, S.J. & Hudson, P.J. 2005 

Immuno-epidemiology and peak shift in a seasonal host-nematode system. Proc 

Roy Soc London B 272, 1167-1169. 



Grenfell, B.T., Wilson, K., Isham, V.S., Boyd, H.E.G. & Dietz, K. (1995) 

Parasitology, 111, S135–S151.  

Kao, R.R., Leathwick, D.M., Roberts, M.G. & Sutherland, I.A. (2000) Nematode 

parasites of ruminants: a survey of epidemiological parameters and their 

application in a simple model. Parasitology, 121, 85–103. 

Press, W.H., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P. (1992) Numerical 

Recipes in Fortran: the Art of Scientific Computing, 2nd. Edition, Cambridge 

University Press, New York. 

Roberts, M.G. & Grenfell, B.T. (1991) The population dynamics of nematode 

infections of ruminants: periodic perturbations as a model for management. IMA J 

Math Appl Med Biol. 8, 83–93. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


	Appendix A: Details of the mathematical modeling
	Statistical procedure

	References



