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ABSTRACT We develop individual-based Monte Carlo methods to explore how climate change can
alter insect voltinism under varying greenhouse gas emissions scenarios by using input distributions
of diapause termination or spring emergence, development rate, and diapause initiation, linked to daily
temperature and photoperiod. We show concurrence of these projections with a Þeld dataset, and then
explore changes in grape berry moth, Paralobesia viteana (Clemens), voltinism that may occur with
climate projections developed from the average of three climate models using two different future
emissions scenarios from the International Panel of Climate Change (IPCC). Based on historical
climate data from 1960 to 2008, and projected downscaled climate data until 2099 under both high
(A1Þ) and low (B1) greenhouse gas emission scenarios, we used concepts of P. viteana biology to
estimate distributions of individuals entering successive generations per year. Under the low emissions
scenario, we observed an earlier emergence from diapause and a shift in mean voltinism from 2.8 to
3.1 generations per year, with a fraction of the population achieving a fourth generation. Under the
high emissions scenario, up to 3.6 mean generations per year were projected by the end of this century,
with a very small fraction of the population achieving a Þfth generation. Changes in voltinism in this
and other species in response to climate change likely will cause signiÞcant economic and ecological
impacts, and the methods presented here can be readily adapted to other species for which the input
distributions are reasonably approximated.
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There is much interest in understanding the ecological
effects of increasing concentrations of atmospheric
greenhouse gases forcing climate change (Bale et al.
2002, Karl and Trenberth 2003, Meehl and Tebaldi 2004,
Mills 2005, Curreano et al. 2008), Zwiers and Hegerl
2008.) The Intergovernmental Panel on Climate Change
(IPCC 2007a) projects increases in global mean surface
temperatures of 1.1Ð6.4�C by the end of the 21st century
if greenhouse gas emissions continue to increase at cur-
rent rates. Such changes in climate will likely impact
many ecosystem functions, especially many natural pro-
cesses thatare temperaturedependent(Wingetal. 2005,
Deutsch et al. 2008, Inouye 2008).

Insects are appropriate model candidates on which
to study the effects of climate change. First, insects are
poikilotherms and hence their internal temperature is
highly dependent on ambient temperature. Conse-
quently, insect development is driven primarily by
temperature (Stinner et al. 1975, Logan et al. 1976,
Pruess 1983, Tauber et al. 1986, Lowry and Lowry
1989, Wagner et al. 1984). Second, many insects have
relatively short life spans, which is conducive to the

development of laboratory and Þeld-based research
designed to measure the impact of climate change. In
multivoltine taxa, the number of generations per year
under current and projected climatic regimes can be
evaluated to quantify the inßuence of changing cli-
mates (Yamamura and Kiritani 1998, Van Asch et al.
2007, Post et al. 2008). However, many other factors,
both biotic and abiotic, could also inßuence insect
seasonality. For example, many insects diapause and
often the main induction factor is photoperiod
(Tauber et al. 1986, Denlinger 2002). Furthermore,
the nonlinear interaction of temperature and photo-
period makes it challenging to investigate and under-
stand changes in insect voltinism in response to cli-
mate change (Tobin et al. 2008). Although universal
predictions of how climate change would inßuence
insect phenology is not feasible, doing so for repre-
sentative insect species could be valuable in efforts to
understand the consequences of climate change in a
general context.

Understanding key drivers of insect voltinism, such
as development and diapause, are essential in efforts
to quantify the consequences of climate change on
insect seasonality (Logan et al. 2003). Such drivers are
known for the grape berry moth, Paralobesia viteana
(Clemens) (Lepidoptera: Tortricidae) (Nagarkatti et
al. 2001, Tobin et al. 2001, 2002, 2003). P. viteana is
native to North America and feeds on native wild and

1 Department of Entomology, the Pennsylvania State University,
University Park, PA 16802.

2 Corresponding author, e-mail: sxc445@psu.edu.
3 Forest Service, U.S. Department of Agriculture, Northern Re-

search Station, Morgantown, WV 26505.
This is an invited review article.

0046-225X/11/0505Ð0515$04.00/0 � 2011 Entomological Society of America



cultivated (not necessarily native)Vitis host spp., and
can be an economically important pest in the latter
(Riedl and Taschenberg 1984). It is also nonmigratory,
and movement patterns are spatially limited; thus, life
stages are not subjected to different temperature pro-
Þles, and projections of P. viteana at a given location
are reasonable predictors of the effects of climate
change. Adults emerge in spring from diapausing pu-
pae, mate, and females oviposit onVitis spp. ßowers or
fruit. Upon hatching, larvae burrow into the fruit,
exiting to pupate in leaves or bark. Pupae emerge as
adults that initiate subsequent generations. As day-
length decreases after the summer solstice, there is a
critical photoperiod independent of temperature that
initiates diapause, and eggs deposited at these decreas-
ing photoperiods will develop into diapausing pupae
(Nagarkatti et al. 2001). Hence, as in many temperate
insect species, voltinism is inßuenced by the degree-
day accumulation before the arrival of photoperiodic
conditions that initiate diapause. There are generally
2Ð3 generations per year along the grape production
belt along Lake Erie (Tobin et al. 2003). Tobin et al.
(2008) previously highlighted the consequence of in-
teractions between temperature (subject to climate
change) and photoperiod (not subject to climate
change) in driving P. viteana voltinism. In this paper,
we extend this work by examining the interaction of
temperature and photoperiod based upon scenarios of
the rate of greenhouse gas emissions and their effect
on temperature (Hayhoe et al. 2007). We also present
an individual-based Monte Carlo approach to quantify
changes in voltinism and highlight not only general-
ized trends but the variability among individuals
within a population, and provide open-source com-
puter code to enable these methods to be extended to
other species.

Materials and Methods

We developed our model based upon prior studies
of P. viteana biology conducted at the Lake Erie Re-
gional Grape Laboratory in North East, PA (42.2 �N,
79.9 �W) that describe development and diapause as
functions of temperature and photoperiod (Nagar-
katti et al. 2001, Tobin et al. 2001, 2002). Photoperiods
for North East were obtained from the Naval Ocean-
ography Portal (2008). Projected monthly tempera-
ture data for this location, estimated to the end of this
century under both high (A1Þ) and low (B1) green-
house gas emissions scenarios of the IPCC Special
Report on Emissions Scenario (Nakicenovic et al.
2000), are available from the Northeast Climate Im-
pacts Assessment (2006). The A1Þ scenario simulates
climate under current economic development condi-
tions without reducing greenhouse gas emissions, and
the B1 scenario assumes signiÞcant global reductions
in greenhouse gas emissions; these scenarios have
been used previously to contrast climate-driven pro-
cesses under different greenhouse-gas emissions sce-
narios (Hayhoe et al. 2007, Kunkel et al. 2008).

We obtained higher resolution downscaled daily
weather data in the location of interest from 1960 to

2099 (M. F., personal communication) more detailed
description of climate data downscaling techniques
and applications is provided by Hewitson and Crane
(1996). The data are the average of three general
circulation modelsÐthe Geophysical Fluid Dynamics
Laboratory model (GFDL), the Hadley Centre for
Climate Prediction and Research model (HadCM3)
and the National Center for Atmospheric Research
Parallel Climate model (PCM)Ðeach with a different
sensitivity to changes in greenhouse gas amounts. Us-
ing these models with the A1Þ and B1 emission sce-
narios, daily mean temperatures were derived.

Our population model is individual based and di-
vided into three sub-models: diapause termination
(Tobin et al. 2002), degree-day development (Tobin
et al. 2001) and diapause induction (Nagarkatti et al.
2001). We focused our attention on modeling the
progression of individuals among life stages indepen-
dent of population density. These simulation pro-
cesses are presented in Fig. 1 as a conceptual model.
Diapause Termination. Diapause termination in P.
viteana is primarily driven by temperature, and initial
and 50% adult emergence generally occurs at 148 and
210 DD accumulated after 1 January, respectively
(base threshold � 8.4�C, Tobin et al. 2002). Because P.
viteana overwinters as a pupa, the total degree-day
requirement for adult emergence from diapausing pu-
pae is different from that of the subsequent genera-
tions, which develop from egg to adult. Also, because
the distribution of degree-day accumulation required
for adults to emerge from diapausing pupae is often
highly skewed, we used a negative binomial distribu-
tion with k � 2, which we estimated from Þeld ob-
servations of emerging adults reported in Tobin et al.
(2001), to simulate a distribution of the required de-
gree-days at which emergence would occur. Because
theminimumdegree-day requirement is 148 insteadof
0,which is typicalof abinomialdistribution,weshifted
the distribution to the right, accordingly. The calendar
day of emergence of each adult from a population of
10,000 diapausing pupae was then recorded. We de-
Þned this population of emerging adults as the Þrst
generation.
Development. After adult emergence, another 75

DD were added for female sexual maturation (Luciani
1987, Tobin et al. 2003). If we assume that females
oviposit all eggs in a single day and only one offspring
survives to the adult stage (e.g., the population size
doesnÕt increase), we can treat the second generation
offspring as another generation of its parent. For the
second (and subsequent) generation(s), an average of
424 DD is required for development from egg to adult
(Tobin et al. 2001). This developmental rate, however,
also follows a negative binomial distribution, with a
mean of 424 and k � 2, as determined from initial
investigation of the Þeld data (Tobin et al. 2001). We
shifted this negative binomial distribution to the right
by 250 because the minimum degree-day requirement
for egg-to-adult development is 250 (Tobin et al.
2001). Each Þrst generation adult was advanced in-
dependently with respect to the distribution of egg-
to-adult development. This yielded the required cal-
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endar days for the development of the population of
second generation adults.
Diapause Induction. The egg is the sensitive stage

for diapause induction, and depending on the photo-
period at which an egg is laid, it will either eventually
develop into an adult or into a diapausing pupa (Na-
garkatti et al. 2001). In Þeld studies, eggs laid before 25
June at the latitude of North East, PA never entered
diapause, and after 11 August all eggs entered diapause
(Nagarkatti et al. 2001). The probability of entering
diapause, Pr, is thus a function of the change in pho-
toperiod (in hours) between a given date and its
precedent date after the summer solstice,Pc,when the
egg is laid,

Pr � 100(1 � e�3.957Pc). [1]

For any given individual, we used a uniform distri-
bution to run a Monte Carlo simulation to determine

whether the individual of the second generation or
later enters diapause. For instance, if the probability
(Pr) of entering diapause is 0.7, we chose a random
number generated from a uniform distribution [0,1].
If that random number was smaller than 0.7, then the
individual egg developed into a diapausing pupa; oth-
erwise, that egg matured into an adult. In the latter
case, an additional 424 DD (determined from the
development-rate distribution described above)
would be accumulated by that individual to reach the
adult stage, and another 75 DD would be accumulated
to allow for oviposition by that adult. This iterative
process was continued until all individuals were either
in diapause or dead (i.e., degree-day accumulation
was insufÞcient to complete the life cycle to an ovi-
positing adult).
Field Validation. Independent of these modeling

efforts and the published literature, we conducted a

Fig. 1. Conceptual model for a single simulation run to collect number of generations per year, initialized by a diapausing
overwintering life stage.
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Þeld study to determine the distribution of adult P.
viteana emergence dates at North East, PA, in 2007. By
using a combination of malaise traps and light traps, we
monitored female P. viteana at four locations in the
area of North East, PA. Unlike sex pheromone trap-
catch data of male moths, which is useful to determine
Þrst generation emergence (Tobin et al. 2003) but not
subsequent generations (M.C.S., unpublished data),
female trap catch data provided us with discrete gen-
erational peaks that could be compared with the re-
sults from our simulations.
Simulation Models and Analyses. We simulated a

population of 10,000 individuals, initialized as over-
wintering diapausing pupae, which progressed
through diapause termination, development, and dia-
pause initiation (Fig. 1). We Þrst tested whether the
negative binomial distribution was appropriate to sim-
ulate the degree-day requirement by conducting a
two-sided KolmogorovÐSmirnov test. To model the
inßuence of climate on the voltinism of this popula-
tion,wedetermined twooutcomes foreach individual:
1) the number of generations each individual and its
progeny could complete until it either entered dia-
pause or died, and 2) the calendar date of adult emer-
gence for each generation it experienced. Each indi-
vidual could only complete one generation and have
exactly one offspring, regardless of regulation factors
such as predation and disease. Hence, each offspring
represents a parent individual in the future genera-
tion, and we tracked the outcome for that individual.
We quantiÞed the number of generations from each
iteration, and then used 10,000 iterations to calculate
the distribution of the number of generations per year.
In each generation, we also determined the distribu-
tion of emergence dates and the number of completed
generations for the Þeld-collected data from 2007, and
two projected emission scenarios extending to the end
of the century. We also compared the predicted and
observed distribution of emergence dates using a two-
sided KolmogorovÐSmirnov test for that year. The
simulation code, presented in the Appendix, was writ-
ten in MATLAB 2007 (The MathWorks Inc., Natick,
MA). We summarized these outcomes as time-series
plots, graphing the mean number of completed gen-
erations, and the mean calendar day of adult emer-
gence extending to the end of this century, under the
low and high emission scenarios developed from the
average of GFDL, HadCM3, and PCM climate models.

We used linear regression, using the mean number
of generations as a dependent variable and year as the
independent variable, to test whether there was a
signiÞcant increasing trend of mean generations per
year under the historical and low emission condition
projections. For the projected high emission condi-
tion, after initial scrutiny, we discovered a signiÞcant
nonlinear trend; thus, we used nonlinear regression by
Þtting a Gompertz function because a Gompertz curve
has asymptotic properties that are more realistic than
other unrestricted nonlinear functions (Laird 1964).

To explore the seasonal dynamics of different gen-
erations under our climate change scenarios, we used
the default kernel estimation function in R to estimate

the kernel density of each generation in 2007 (from
the Þeld data), and in the low and high conditions in
2099. These estimated kernel functions express the
proportion of the population that is present for every
date that each generation completes its life history.
The area under the curve for each generation sums to
one.

Under both the low and high emission scenarios, we
investigated the shift in emergence date for all four
generations throughout the simulation period, from
2009 to 2099. For each generation in both scenarios,
we used linear regression of emergence date by year
to test if therewasa signiÞcant trend.Furthermore,we
used Analysis of Covariance to test for differences in
the emergence date over year (as a covariate), using
the different emissions conditions (low and high emis-
sion) as a categorical main effect. All statistical anal-
yses were conducted in R 2.10 (R Core Development
Team 2010).

Results

The projected probability density function (PDF),
projected cumulative density function (CDF), and
observed CDF (Tobin et al. 2003) of adult emergence
from overwintering, diapausing pupae are shown in
Fig. 2 for 2001. The simulated distribution had pre-
dicted mean, minimum, and maximum degree-days of
210, 148, and 530, respectively, which coincides well
with the observed data (mean, minimum, and maxi-
mum degree-days of 210, 148, and 512, respectively
Tobin et al. 2003). We also observed congruence be-
tween model predictions and empirical observations
in the emergence proÞle by conducting a two sided
KolmogorovÐSmirnov test of the Þrst generation (Fig.
2). The results show no signiÞcant difference between
predicted and observed distributions (D � 0.05, P �
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Fig. 2. Degree Day requirement of Þrst generation emer-
gence of adult grape berry moth from overwintering dia-
pausing pupae. PDF is the density function, and CDF the
cumulative density function. For both functions, modeled
values are from Tobin et al. 2002, and observation are from
Þeld data collected in 2002.
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0.22), suggesting that the negative binomial distribu-
tion was appropriate in our efforts to simulate degree-
day requirements for diapause termination and emer-
gence of the Þrst generation, which were then
progressed through the development rate and dia-
pauses initiation subroutines.

Using this modeling framework (Fig. 1), the esti-
mated number of mean generations increased during
the recent historical past (from 1960 to 2008), and is
projected to continue to increase throughout the cen-
tury in both greenhouse gas emission scenarios (Fig.
3). From 1960Ð2008, there was a signiÞcant increase in
the number of generations (F � 5.32; df � 1, 47; P �
0.05). In both the low (F� 29.49; df � 1, 89: P� 0.001)
and high (F � 32.57; df � 1, 89; P � 0.001) emission
conditions, the number of generations was projected
to increase (Fig. 3). To iterate, the projected number
of generations in a speciÞc year is the mean based
upon 10,000 individual simulations.

The seasonal dynamics of different generations un-
der different climate change scenarios can be illus-
trated by the distribution of adult emergence for each
generation. The comparison between the simulated
density function of emergence date for each genera-
tion in 2007 and observations from the Þeld in 2007 is
presented in Fig. 4 (top panel). Note that the ampli-
tude of the Þrst generation does not imply that its
population size is larger than other generations;
rather, the curve is a density function, capturing the
total area under the curve such that the area sums to
one for each generation. The emergence timespan of
the Þrst generation is more narrowly distributed than
later generations, which leads to a higher amplitude.
The observation curve is scaled so that the maximum
number of observations in each generation is the same
as the maximum value of the projected density func-

Fig. 3. Historical and projected number of mean gener-
ations of grape berry moth in North East, PA, under low and
high emission conditions (B1 and A1Þ emission conditions,
respectively) described by the Intergovernmental Panel on
Climate Change (IPCC 2007b). (Online Þgure in color.)
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Fig. 4. Density functions expressing the emergence date for all generations of grape berry moth in 2007 (top panel, for
observed data collected from malaise traps, and for simulated data), and for 2099 under low (middle panel) and high (lower
panel) emission conditions (B1 and A1Þ emission conditions, respectively) described by the Intergovernmental Panel on
Climate Change (IPCC 2007b).
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tion in that generation. Also, note that these curves
reßect the distribution, but not the number, of indi-
viduals contributing to each generation. For example,
in 2007, there were 13, 25, 38, and 11 individuals mea-
sured in the Þeld for generations 1, 2, 3, and 4, re-
spectively. The higher amplitude and shorter range
associated with the Þrst generation reßects the more
discrete timing over which the Þrst generation pres-
ents itself, in contrast to the wider ranges that result
in overlapping generations in subsequent generations.
We also ran a two sided KolmogorovÐSmirnov test and
found no signiÞcant differences between predicted
and observed distributions of emergence dates in all
fourgenerations(D�0.38, 0.87, 0.49, and0.21, andP�
0.35, 0.08, 0.19, and 0.56, for generations 1 through 4,
respectively). From these comparisons, we veriÞed
that our modeling predictions almost match the ob-
served Þeld data; generally with a deviation of � 3 d
(Fig. 4, top panel). The exception was that our pro-
jected emergence date for the second generation was
�5 d later than the observed date.

The estimated density functions of emergence date
for each generation in 2099 under both low and high
emission scenarios also are presented in Fig. 4 (middle
and bottom panels). By the end of the century and
under the low emission scenario, the initial emergence
dates of the Þrst two generations have advanced
�15Ð20 d relative to 2007. For example, in the Þrst and
second generation, the timing of their respective ini-
tial emergence in 2007 is approximately the time at
which 50% emergence is predicted to occur by 2099,
although the third and fourth generations are pre-
dicted to be advanced �20Ð30 d relative to the 2007
data under the low emission scenario.

Under the high emission scenario, this tendency for
advanced emergence is much more pronounced. All
four generations advanced almost 30 d compared with
2007, and under this scenario, adult emergence from
overwintering pupae is projected to be almost com-
pleted before observed emergence from 2007 would
have begun. Moreover, �30% of the second genera-
tion would be completed before a second generation
in 2007 would have begun. This advance of a full
generation follows throughout the time series, so by
the time a rare fourth generation conceivably could
have occurred in 2007, the model not only predicted
four full generations in 2099, but also sufÞcient time
for a partial Þfth generation. We suggest this advance
is because of a combination of earlier Þrst generation
emergence and faster developmental times in subse-
quent generations under climate warming.

The projected mean emergence dates from 2009 to
2099 under both emission scenarios are presented in
Figs. 5 and 6. Under both the low and high emissions
scenario, a very signiÞcant (P � 0.001) and negative
trend toward earlier emergence dates was observed in
all four generations as time progressed through the
21st century (Table 1). The slope estimates express
the rate of decrease in number of days needed to
complete each generation, and range from �0.120
to �0.278 under low emission conditions, and �0.316
to �0.548 in the high emission conditions. In both

emissions scenarios, there is a trend toward a faster de-
cline (i.e., steeper negative slopes) as generations in-
crease. Also, there is a consistent trend toward a more
predictive relationship (a higher R2) as generations in-
crease within each emission condition (Table 1). Rela-
tionships of emergence date with year were consistently
more predictive from simulations conducted under the
high-emission condition (R2 of 0.74Ð0.91) than the low-
emission condition (R2 of 0.31Ð0.58) (Table 1). When
comparing the effect of emissions conditions given the
time-dependent decrease for each generation using an
analysis of covariance (ANCOVA), both the categorical
variable (emission conditions) and covariate (year) had
a highly signiÞcant inßuence (P� 0.001) on emergence
dates (Table 2).
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Fig. 5. Projected mean emergence date for all genera-
tions of grape berry moth under low (B1) emission condi-
tions described by the Intergovernmental Panel on Climate
Change (IPCC 2007b). (Online Þgure in color.)
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Fig. 6. Projected mean emergence date for all genera-
tions of grape berry moth under high (A1Þ) emission con-
ditions described by the Intergovernmental Panel on Climate
Change (IPCC 2007b). (Online Þgure in color.)
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As noted by the density kernels (Fig. 4), there is an
opportunity for a Þfth generation to develop under the
high emission scenario by the end of the century. In
our summarization of mean emergence dates through
time, we saw a very small proportion (�50 out of
10,000 individuals) of the population entering a Þfth
generation under the high emission conditions, be-
ginning in 2050 (Fig. 6).

Discussion

There is a need to estimate the inßuence of climate
change on insect populations to provide guidance in
policy decisions, and to enable adaptations in agricul-
tural practices and public health efforts. Climate mod-
els under varying emissions scenarios are becoming
increasingly available and statistically downscaled,
both temporally and spatially, enabling abiotic drivers
(temperature and photoperiod) of insect phenology
models to connect to projections of climate change.
Among the variables that deÞne climate (i.e., temper-
ature, precipitation, and wind), temperature is often
the more tractable to predict as advances in statistical
downscaling enable more reasonable predictions of
local daily temperatures (Marshall et al. 2007), al-
though photoperiod remains effectively constant.
Thus, abiotic drivers of insect voltinism can be esti-
mated. The degree-day requirements for spring emer-
gence and in-season development have been esti-
mated for many insect species (Taylor 1981, Nietschke
et al. 2007); however, methods to connect these de-
gree-day based insect phenology models with models
of climate and climate projections still are needed.
Here, we provide an individual-based approach to
explore how climate change can alter insect voltinism
under varying emissions scenarios by using input dis-
tributions of diapause termination or spring emer-

gence, development rate, and diapause initiation,
linked to daily temperature and photoperiod. These
individual-based methods enable projection of both
means and distributions of emergence dates. We
showed concurrence of these projections with a Þeld
dataset, and explored projections in our model system.

Our model system assumes that development of indi-
viduals is driven solely by air temperature, and diapause
solely by photoperiod by using a population initialized at
10,000 individuals,whichcanonlybereducedbecauseof
individuals entering diapause or because of mortality
when individuals fail to complete development to a di-
apause-capable stage. We assumed no immigration, em-
igration, or variation among life stages in how they are
exposed to air temperature. These simplifying assump-
tions enabled us to develop a modeling framework for
examining the inßuence of future climates on voltinism
at a single spatial location. Future work should consider
climatic inßuences on populations over wider spatial
scales, incorporating variation in the drivers of insect
seasonality such as the effects of host quality (Hunter
and McNeil 1997), and geographic clines in diapause
initiation probabilities (Ruberson et al. 2001).

New York, Michigan, and Pennsylvania are respec-
tively the second, fourth, and Þfth largest grape pro-
ducing states in the United States, and the vast ma-
jority of the grapes in these states are grown along the
shores of Lake Michigan, Lake Erie, and in the Finger
Lakes region of New York. All of these grape growing
regions are close in latitude to North East, PA, from
where the Þeld study was based. In recent years, late
season infestations of P.viteana have surprised many
growers in this area, resulting in an increased amount
of fruit being rejected for consumption because of
insect damage (M.C.S., unpublished data). These late
season infestations have caused considerable conster-
nation to both growers and the industry. The timing of
insecticide sprays against P. viteana populations have
remained unchanged since 1991 with the introduction
of the Grape Berry Moth Risk Assessment Program
(Martinson et al. 1991). For a high risk vineyard, this
protocol calls for an insecticide application at 10-d
postbloom (targeting Þrst generationP. viteana), early
August (targeting the second generation), and if nec-
essary, late August (targeting the third generation).
Although the recommended Þrst spray is tied to bloom
time, which in turn, is driven by temperature, the
timing of subsequent treatments is currently based
solely on calendar date irrespective of temperature.
During a growing season with average temperatures,
these management guidelines could work fairly well,
but are inadequate when temperatures do not follow
an “average” year.

The reality of climate change will result in a need to
adjust overall management guidelines for many insect
species, including P. viteana, as well as dynamic strat-
egies within the growing season to account for devel-
opmental and climatic variability. Recent failures in P.
viteanamanagement programs suggest that this shift in
voltinism could already be happening. The economic
damages associated with future additional generations
of insect pests of agriculture, forestry, animal health,

Table 1. Regression of mean emergence dates (y) on years (x)
under low (B1) and high (A1fi) emission conditions

Emission
condition

Generation a b R2 F p

Low 1 �0.120 390 0.31 41 �0.001
2 �0.137 468 0.50 91 �0.001
3 �0.166 560 0.60 131 �0.001
4 �0.278 817 0.58 123 �0.001

High 1 �0.316 786 0.74 247 �0.001
2 �0.361 920 0.86 557 �0.001
3 �0.426 560 0.91 907 �0.001
4 �0.548 817 0.91 851 �0.001

The regression has the form y (emergence date) � ax (year) � b.

Table 2. Influence of low or high emission condition (modeled
as a categorical variable) and year (modeled as a covariate) on mean
emergence dates

Generation R2 F
p (emission
condition)

p (year)

1 0.667 119 �0.001 �0.001
2 0.819 269 �0.001 �0.001
3 0.877 421 �0.001 �0.001
4 0.841 312 �0.001 �0.001
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and other sectors are likely to be severe (Walther et
al. 2002, Kiritani 2006, Reisen et al. 2006, Kilpatrick et
al. 2008, Lafferty 2009). We note that in P. viteana, the
inherent lag associated with climate suggests that we
will see increasing numbers of individuals reaching a
third generation in North East, PA, regardless of policy
or other factors that might inßuence emissions, until
approximately mid-century (Fig. 3). It is not unrea-
sonable to assume similar shifts in volintism in other
systems. After 2050, however, there is likely to be a
dramatic inßuence of emission scenarios on P. viteana
voltinism, particularly under the high emission sce-
nario. It is important to note that we are deÞning the
“high” emission scenario as a continuation of the status
quo in emission rates, which is fossil-fuel intensive and
is the highest future emission trajectory considered by
the IPCC (Nakicenovic et al. 2000). However, recent
observations show global emissions have been higher
than this “high” emission scenario since 2004 (Ca-
nadell et al. 2007, Raupach et al. 2007).

In addition to the mean temperature, daily temper-
ature variability also could signiÞcantly inßuence in-
sect life history. Past work has demonstrated that
changes in the range of daily temperatures can affect
the longevity, mortality, and other life history variables
in mosquitoes, which could in turn affect mosquito-
bornediseasedynamics(Paaijmans2009,2010).Because
increasing climate variability is an important aspect of
global climate change (IPCC 2007b), future studies also
should focus on the inßuence of climate variability on
insect voltinism in this and other systems.

Increasing levels of greenhouse gases likely will
result in increases in annual global average tempera-
ture. This increase in turn will affect many aspects of
ecosystem function, and will alter the dynamics and
distribution of individual species and the communities
in which they interact (IPCC 2007a,b). Here, we fo-
cusedourattention to twoemission scenarios:A1Þand
B1. Although insect voltinism is strongly determined
by temperature and thus also would be affected by
increasing temperatures, other factors such as photo-
period, which is not inßuenced by global climate
change, also play an important role in insect season-
ality. We show here how the nonlinear interaction
between temperature and photoperiod is critical in
understanding the link between climate change and
voltinism. We also provide projected patterns of vol-
tinism for a representative multivoltine insect species
under these two climate change scenarios. Moreover,
we also propose a conceptual framework, through the
incorporation of diapause termination, degree-day de-
velopment, and diapause induction for addressing cli-
mate change and voltinism in other insect systems.
The conceptual framework, and the source code pro-
vided in the Appendix, could be readily modiÞed for
use in other systems.
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Appendix MATLAB code

% This code is made by MATLAB 2008a student
version. Run and test under Ubuntu Linux 8.04.

% Further statistical analysis is made by R 2.10.1
under Ubuntu Linux 8.04.

%For any year:
%1 Read Photoperiod Data (Available)
data � csvread(Ôphoto.csvÕ);
for i � 1:366
daytime � data(i,1:2); % read sunrise and sunset

data
sunrise � daytime(1);
sunset � daytime(2);
minuterise � mod(sunrise,100); % convert into dec-

imal
hourise � (sunrise-minuterise)/100;
minuteset � mod(sunset,100);
hourset � (sunset-minuteset)/100;
hours � hourset-hourise;
if minuteset�minuterise
minutes � minuteset-minuterise;
else
minutes � minuteset�60-minuterise;
hours � hours-1;
end
photoperiod(i) � hours�minutes/60; % calculate

photoperiod
end
%2 Read Temperature Data (Daily Max/Min/Avg)
rawdata � csvread(Ôuntil2050.csvÕ); % read raw

temperature data
alltemp � reshape(rawdata,365,42); % make annual

data
e1 � [];
e2 � [];
e3 � [];
e4 � []; % initiate each generation vector
gens � []; % initiate generations vector
for year � 1:42% simulation throughout 2050
%initiate ermerge time dataset
temperature � alltemp(1:365,year);
emergetime1 � [];
emergetime2 � [];
emergetime3 � [];
emergetime4 � []; % initiate emergence date vec-

tor
%Sub-model one Diapause Termination of Þrst

Generation
clear meanemerge1;
clear meanemerge2;
clear meanemerge3;
clear meanemerge4;
clear generation;
threshold � 8.4; % threshold
eggtemp � 75; % DD required for egg laying
for N � 1:10000
DD � 0;
day � 1;
termtemp � random(ÔnbinÕ,2,2/62)�148; %simu-

late a speciÞc DD requirement for an individual using
negative binomial distri.

while DD�termtemp % start DD accumulation
if temperature(day)�threshold
DD � DD�temperature(day)-threshold;
end
day � day�1;
end
t1 � day; % record current date
emergetime1 � [emergetime1 t1]; % put emerge

time into dataset
%Egg laying times
Ddegg � 0; % initiate egg laying DD
while DDegg�eggtemp
if temperature(day)�threshold
DDegg � DDegg�temperature(day)-threshold;
end
day � day�1;
end
%Here completes Þrst Generation, including Egg

laying time
%Sub-model two Development (second Genera-

tion)
DD2 � 0;
devtemp2 � random(ÔnbinÕ,2,2/174)�250; %75 as

DD required for egg deposition to cmoplete one gen-
eration from egg to egg

while DD2�devtemp2% DD required for second
Gen. development

if temperature(day)�threshold
DD2 � DD2�temperature(day)-threshold;
end
day � day�1;
if day �364
break; % check if it exceeds the boundary
end
end
t2 � day;
emergetime2 � [emergetime2 t2];
%Egg laying times for gen 2.
DDegg2 � 0;
while DDegg2�eggtemp
if temperature(day)�threshold
DDegg2 � DDegg2�temperature(day)-threshold;
end
day � day�1;
if day �364
break;
end
end
eggdate � day; % record current day
%Here completes Second Generation, including

Egg laying time
% What is the time now? Day? Notice the day is the

time when the egg is laid.
night � 24-photoperiod(eggdate); % adjust to

nightlength
basenight � 9.07; % This is what Tobin did.
if eggdate �197
choice � 1; % Choice one means continue devel-

opment
elseif eggdate �234
choice � 0; % Choice 0 means going to diapause
else
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change � night-basenight;
percent � 1-exp(�3.957*change); % Simulation

equation from Tobin
seed � random(ÔunifÕ,0,1); % Pick up a uniform RV
if seed�percent % Monte Carlo Simulation
choice � 0;
else
choice � 1;
end
end
% For the third Generation
if choice � � 1
DD3 � 0;
devtemp3 � random(ÔnbinÕ,2,2/174)�250;
while DD3�devtemp3
if temperature(day)�threshold
DD3 � DD3�temperature(day)-threshold;
end
day � day�1;
if day �364
break;
end
end
t3 � day;
emergetime3 � [emergetime3 t3];
%Egg laying times for the third generation
DDegg3 � 0;
while DDegg3�eggtemp
if temperature(day)�threshold
DDegg3 � DDegg3�temperature(day)-threshold;
end
day � day�1;
if day �364
break;
end
end
eggdate2 � day;
night2 � 24-photoperiod(eggdate2); % adjust to

nightlength
basenight � 9.07; %Tobin et al. 2003.
if eggdate2 � 197
choice2 � 1; % Choice one means continue devel-

opment
elseif eggdate2 � 234
choice2 � 0; % Choice 0 means going to diapause
else
change2 � night2-basenight;

percent2 � 1-exp(�3.957*change2); % Tobin et al.
2003

seed2 � random(ÔunifÕ,0,1); % Pick up a uniform RV
if seed2�percent2% Monte Carlo Simulation
choice2 � 0;
else
choice2 � 1;
end
end
if choice2 � � 1
DD4 � 0;
devtemp4 � random(ÔnbinÕ,2,2/174)�250;
while DD4�devtemp4
if temperature(day)�threshold
DD4 � DD4�temperature(day)-threshold;
end
day � day�1;
if day �364
break;
end
end
t4 � day;
emergetime4 � [emergetime4 t4];
end
end
end
meanemerge1 � mean(emergetime1);
meanemerge2 � mean(emergetime2);
meanemerge3 � mean(emergetime3);
meanemerge4 � mean(emergetime4);
e1 � [e1 meanemerge1];
e2 � [e2 meanemerge2];
e3 � [e3 meanemerge3];
e4 � [e4 meanemerge4];
% caculate # of generations in one simulation
generation � size(emergetime(4,2)*4/10000�

(size(emergetime(3,2)-size(emergetime(4,2))*3/
10000�(1000-emergetime(3,2))*2/1000

gens � [gens,generation];
end
end
end
e1
e2
e3
e4
gens
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