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Two processes are universally recognized for inducing spatial synchrony in abundance: dispersal and
correlated environmental stochasticity. In the present study we seek the expected relationship between
synchrony and distance in populations that are synchronized by density-independent dispersal. In the
absence of dispersal, synchrony among populations with simple dynamics has been shown to echo the
correlation in the environment. We ask what functional form we may expect between synchrony and
distance when dispersal is the synchronizing agent. We formulate a continuous-space, continuous-time
model that explicitly represents the time evolution of the spatial covariance as a function of spatial
distance. Solving this model gives us two simple canonical functions for dispersal-induced covariance in
spatially extended populations. If dispersal is rare relative to birth and death, then covariances between
nearby points will follow the dispersal distance distribution. At long distances, however, the covariance
tails o¡ according to exponential or Bessel functions (depending on whether the population moves in one
or two dimensions). If dispersal is common, then the covariances will follow the mixture distribution that
is approximately Gaussian around the origin and with an exponential or Bessel tail. The latter mixture
results regardless of the original dispersal distance distribution. There are hence two canonical functions
for dispersal-induced synchrony.

Keywords: moment equations; spatial dynamics; autocorrelation ; di¡usion kernel;
dispersal distance distribution

1. INTRODUCTION

Environmental correlation and movement of individuals
are the two main classes of processes that synchronize
dynamics (Ranta et al. 1997, 1998). Moran (1953)
provided the ¢rst theoretical description of regionaliza-
tion through environmentally correlated forcing. The
`Moran theorem’ states that local populations sharing a
common structure of density dependence will be synchro-
nized according to the pattern of regional covariation in
the density-independent force (Royama 1992; Ranta et al.
1995; Lande et al. 1999). Strictly speaking, the Moran
theorem only holds for populations governed by linear
dynamics (see, for example, Grenfell et al. 1998; BjÖrnstad
et al. 1999; BjÖrnstad 2000), but it appears to work as a
heuristic for systems with simple dynamics (Lande et al.
1999). The patterns of regional correlation in climatic
factors have, in this way, a potential for providing the
functional form for synchrony in population dynamics
(Sutcli¡e et al. 1996; Williams & Liebhold 2000). In the
following, we explore whether there exists a c̀anonical
function’ to describe the pattern among populations that
are synchronized through individual movement rather
than environmental correlation. By c̀anonical function’
we mean an a priori family of functions to use when quan-
tifying synchrony in systems where dispersal is thought
important. Our study is directly motivated by a practical
problem. The last few years have seen a large number of
empirical enquiries into regional synchronization
(reviewed in BjÖrnstad et al. 1999; Koenig 1999). Most of
these studies have relied on non-parametric, i.e. curve-
free, descriptions of how synchrony changes with distance.

An important reason for this is a lack of theoretical
justi¢cation for any particular functional form (BjÖrnstad
et al. 1999). Our study is a ¢rst step towards ¢lling this
gap.

Synchrony and regionalization are usually studied by
describing patterns (and temporal changes in patterns) of
spatial covariance (Bolker & Pacala 1997, 1999; BjÖrnstad
et al. 1999; Lande et al. 1999; Kendall et al. 2000). We initi-
ally consider a very simple scenario of a regional popula-
tion that is distributed across a large (continuous) area.
The individuals comprising the population are assumed
to disperse according to some dispersal distance distribu-
tion, µ. We then consider the more complicated situation
that occurs in the presence of local dynamics. We model
the system using moment equations to show that there are
two canonical functions for dispersal-induced synchrony.
If dispersal is rare relative to birth and death, then the
local synchrony has approximately the same shape as the
dispersal distance distribution. If dispersal is frequent,
then the local synchrony is Gaussian (/ exp( ¡ cr 2),
where c is some constant and r is distance). The tails (i.e.
more distant synchrony) follow an exponential function
(/ exp( ¡ c 0r)) in one dimension or a Bessel function in
two dimensions in all cases. The Bessel function tails o¡
faster than the exponential, but is otherwise closely
related. Because we seek a full analytical solution, the
treatment is necessarily fairly technical. We have,
however, relegated many of the gory technicalities to a
sequence of appendices (Appendices A^D).

Recent studies have produced a distinguished literature
on the synchronizing e¡ects of dispersal on metapopula-
tions (i.e. where the regional population is divided into
discrete, internally homogenous subpopulations) through
simulation (Ranta et al. 1997, 1998) or mathematical

Proc. R. Soc. Lond. B (2000) 267, 1787^1794 1787 © 2000 The Royal Society
Received 18 May 2000 Accepted 13 June 2000

doi 10.1098/rspb.2000.1211

*Author for correspondence.



analyses (Lande et al. 1999; Kendall et al. 2000). These
studies have generally not provided analytical solutions to
the functional form describing how covariance may be
expected to drop with distance. Following the recent work
of Bolker and co-workers (Bolker & Pacala 1997, 1999;
Bolker et al. 2000), we use moment equations to supple-
ment the current theory by explicitly modelling (i) spatial
covariance in abundance, (ii) how the covariance decays
with distance, (iii) how this covariance function will evolve
through time, and (iv) the covariance function when
populations experience both dispersal and stochastic
growth.

2. SPATIAL COVARIANCE

Synchrony is usually quanti¢ed by considering two
populations at di¡erent locations x and y and how their
abundances N(x) and N(y) covary. (The location
descriptors, x and y are written in bold-face type to
signify that they may be in a two-dimensional space.) We
assume that the organisms live in a homogenous environ-
ment, so that the covariance depends on the distance,
r ˆ jx ¡ yj, separating the two populations. Note that
this technical de¢nition of homogeneity (Cressie 1991)
does not preclude some kinds of exogenous (environ-
mental) heterogeneity, but it does mean that there are no
special places in the environment, such as refuges from
predation, that we must track separately (see BjÖrnstad et
al. (1999) for a population ecological discussion). The
covariance C(r) is de¢ned as

C(r) ˆ hN(x)N(y)i ¡ hN(x)ihN(y)i, (1)

where angled brackets denote the expectation over space.
The scaled covariance, or spatial correlation, is a
common measure of synchrony. In this case, the covar-
iance is scaled by the variance ¼ 2, de¢ned by

¼ 2 ˆ C(0) ˆ hN(x)2i ¡ hN(x)i2. (2)

Understanding synchrony involves understanding how the
covariance varies with the distance (or spatial lag), how
the covariance function evolves in time, and the equi-
librium shape of the covariance as a function of lag. We
investigate the e¡ect of dispersal on these aspects of
spatial dynamics. We ¢rst solve a simple continuous-time,
continuous-space redistribution model without popula-
tion dynamics. Next, we introduce stochastic local
dynamics, using the results from the simpler model to
help interpret the outcome in a system with both popula-
tion dynamics and redistribution.

3. THE REDISTRIBUTION MODEL

To develop a model for how dispersal induces and
shapes the spatial covariance in abundance, we consider a
randomly distributed initial population that disperses in
continuous time. If it moves, an individual is assumed to
be redistributed according to a dispersal distance distri-
bution or `dispersal kernel’, µ(r). This kernel describes the
probability that a moving individual will travel to a loca-
tion a distance r away. We assume that each individual
¢rst decides to move or not, with a density-independent
rate p per unit time, and upon moving it redistributes

(instantaneously) according to µ(r). We consider the
simple case of density-independent emigration and immi-
gration in a homogenous region. The expected emigration
per unit time from location x with N(x) individuals is thus
pN(x): the expected immigration is

R
y 6ˆx pN(y)µ(r)dy. In

a homogeneous landscape the expected number of indivi-
duals at each location is identical. Because we have not
yet introduced local dynamics, there is no change in the
regional population size. If we take a spatial average,
therefore, the expected emigration must balance the
immigration.

The temporal change in the covariance can be
expressed in terms of convolutions of the distance distri-
bution with the covariance functions. In one dimension,
the convolution of two distributions A and B is given by

(A £ B)(r) ˆ
Z 1

¡1
A(x)B(x ¡ r) dx. (3)

In two dimensions, the expression is more complicated
(equation (A2)), but the meaning is identical and all
conclusions carry over. Heuristically, convolving the
spatial covariance with the dispersal distribution corre-
sponds to ¢ltering or `smearing’ the spatial covariance ;
for example, if the dispersal distribution is uniform (up to
some maximum distance), the convolution corresponds to
taking a moving average of the covariance.

To understand the connection between movement and
convolution of the covariance with the dispersal kernel,
consider a pair of individuals that are situated a distance r
apart. Their mutual presence contributes to the positive
covariance at spatial lag r. If one individual moves, then
the contribution will shift to the post-dispersal distance
between them. The expected post-dispersal covariance is
thus spread according to the dispersal kernel over all
possible new spatial lags. This weighted sum of densities
across all new locations is exactly the convolution of the
pre-dispersal covariance and the dispersal kernel.

We let all individuals follow our simple rule (density-
independent movement at rate p, followed by dispersal
according to µ). The equations for how the variance ¼ 2

and covariance C(r) evolve through time are then
(Appendix B)

dV
dt

ˆ ¡2pV ‡ (µ £ C)(0) º ¡2pV , (4a)

dC(r)
dt

ˆ 2p( ¡ C(r) ‡ (µ £ C)(r) ‡ µ(r)V¢x), (4b)

where, for notational convenience, V ˆ ¼ 2 ¡ hN i repre-
sents the variance minus the mean. The equation for the
variance (equation (4a)) leads to (approximately) an
exponential decay. Thus, starting from a completely
random distributed regional population, the spatial
variance will decrease as mixing occurs. Equation (4b)
describes how local (and thereby average) spatial covar-
iance ¢rst increases and then decreases as the regional
population becomes homogenized. The build-up occurs
as individuals from initially dense locations spread out
across the neighbourhood to form clusters. Later, the
local covariance is eroded as redistribution continues.

We can solve the Fourier-transformed equations analy-
tically (Appendix B, ½(d)):
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V(t) ˆ V(0) exp ( ¡ 2pt), (5a)

~C(q, t) ˆ e¡2pt( ~µ(q)V(0) ‡ ke2p ~µt), (5b)

where a tilde denotes the Fourier transform, and q is the
spatial frequency. Unfortunately, it is not easy to express
the analytic solution to the covariance function (5b),
except in terms of the Fourier transform (or spatial power
spectrum). While we cannot ¢nd closed-form solutions for
the inverse Fourier transform of equations (5), we can
integrate the original equations numerically (Appendix
D). Figure 1 summarizes the space^time evolution of the
variance and covariance for a speci¢c set of parameters,
and illustrates the initial build-up and then smearing out
of the spatial covariance (¢gure 1a). During this
transition, the spatial variance undergoes an approxi-
mately exponential decay (¢gure 1b) and the average
covariance among all the populations ¢rst increases and
then dissipates (¢gure 1c).

While we have not managed to ¢nd closed forms for
the inverse Fourier transform of solutions (5) directly, we
can Taylor-expand the power spectrum solution
(Appendix B, ½(d)). The power spectrum contains a term
of the form exp(2 ~µ), which we can back-transform after
Taylor-expansion to

1‡ (2pt)µ‡
1
2

(2pt)2(µ £ µ)‡ . . . ‡
1
n!

(2pt)nµ£n ‡ . . . , (6)

where µ£n denotes the n-fold convolution of the
dispersal kernel with itself. This shows that in the

redistribution model, the covariance is a mixture of
di¡erent n-folded convolutions of the original dispersal
distribution µ. The mixture re£ects the distributions of
individuals that have moved di¡erent numbers of times.
The ¢rst-order term in equation (6) will dominate
when t is small. However, as time goes by, the higher-
order terms in the expansion (6) gain more and more
weight, until eventually all individuals have moved
many times, and the covariance is dominated by the
the µ£n term.

4. CANONICAL FORMS: REDISTRIBUTION

The results for the continuous-time system provide a
complete analytical solution for the magnitude and
shape of the spatial covariance through time in systems
governed by density-independent dispersal. However,
because we can only express the inverse Fourier trans-
form of equations (5) as a sum of convolutions, the chal-
lenge of understanding the shape of the covariance
function partially remains. We can interpret the
changing shape of the covariance function by consid-
ering the movement within pairs of individuals. As
discussed above, when one moves, the covariance
becomes convolved once by the dispersal kernel, µ.
When both move, or when one moves twice, the covar-
iance is convolved with µ twice. Hence, as time passes,
and all individuals are separated by many movement
events, the initial covariance becomes convolved with
the dispersal kernel many times. Because any function
convolved with itself many times becomes approximately
Gaussian, the change of weighting of terms in equation
(6) is associated with a transition in functional forms
(¢gure 2). The low-order terms dominating the covar-
iance function initially have the same shape as the
dispersal distance distribution, while the high-order
terms dominating the covariance function for later times
are Gaussian.

The pure redistribution model thus predicts that the
spatial covariance function will take the form of the
dispersal kernel initially (or if the system is frequently
disrupted) and the form of the Gaussian covariance func-
tion later.
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Figure 1. Numerical integration of the variance^covariance
equations (4) shows how the the covariance function changes
through time. (a) Contours of the covariance as a function of
spatial lag and time. Contours for small spatial lags and
intermediate times (t ˆ 0:5^2) show high covariance, while
those for large time contours show a smaller and more
distributed covariance. (b) The decay in spatial variance
with time. (c) The average covariance ¢rst builds up and
then declines with time. The build-up is due to individuals
from initial high-density locations di¡using out to form
high-density clusters that later dissipate with further
movement. The ¢gure is based on a one-dimensional arena
of total length 10, ¢x ˆ 0:05, p ˆ 1, and a standard
exponential dispersal kernel µ ˆ exp ( ¡ jxj)=2.
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Figure 2. Normalized spatial covariance functions from the
continuous-space model after di¡erent numbers of dispersal
events (convolutions). The dispersal kernel µ used in this
example is the standard exponential dispersal kernel
µ ˆ exp ( ¡ jxj)=2.



5. LOCAL DYNAMICS

When considering population redistribution only (no
local dynamics), two canonical functions for synchrony
arose. Individuals in real populations, of course, experi-
ence reproduction and population growth as well as
redistribution. Let us therefore assume that the indivi-
duals reproduce and die according to some density-
dependent per-capita growth function, R(N). We further
assume that the population growth is a¡ected by
(spatially and temporally uncorrelated) environmental
stochasticity of magnitude ¼ 2

R. The model for the local
dynamics is then

dN(x)
dt

ˆ N(x)R(N(x))|‚‚‚‚‚‚‚‚‚‚{z‚‚‚‚‚‚‚‚‚‚}
local population

dynamics

¡pN(x) ‡ p
Z

µ(jx ¡ zj)N(z)dz
|‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚{z‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚}

movement

‡ ¼R
dB(x)

dt|‚‚‚‚‚{z‚‚‚‚‚}
noise

, (7)

where dB(x)=dt is (as is customary in stochastic di¡eren-
tial models for population growth, e.g. Òksendal (1989)
and Lande et al. (1999)), the derivative of a random walk.

If we Taylor-expand the per-capita growth function
around the spatial average density hNi and discard
higher-order terms (Appendix C), we arrive at an equa-
tion for the covariance

dC(r)
dt

ˆ 2((R(hNi) ‡ hNiR0(hNi)C(r) ¡ pC(r))

‡ p(µ £ C)(r)) ‡ ¼ 2
R¯(r), (8)

where ¯(r) is the correlation function of the environ-
mental noise. Because our objective is to understand the
e¡ect of dispersal, we assume environmental noise to be
spatially uncorrelated: that is, ¯(r) is a delta-function that
is non-zero only at the origin. Note, how equation (8)
resembles the equation for the spatial covariance given by
Lande et al. (1999) despite the derivation being di¡erent
(Appendix C).

At equilibrium, R(hNi) ˆ 0 and the strength of
population regulation is ¡hNiR0(hNi). This quantity,
which we denote by ®, measures how e¤cient density
dependence is at suppressing local £uctuations away from
the equilibrium (Lande et al. 1999). (For example, if local
dynamics follow the logistic equation, then ® equals the
intrinsic growth rate.) We can rewrite equation (8) at
equilibrium as

dC(r)
dt

ˆ 2C(r)(® ¡ p) ‡ p(µ £ C(r)) ‡ ¼ 2
R¯(r). (9)

If we Fourier transform, solve for the equilibrium co-
variance (in the frequency domain), Taylor-expand and
back-transform (see ½ 3) we obtain

C * ˆ
¼ 2

R

2(® ‡ p)
1 ‡

X1

iˆn

p
® ‡ p

i

µ£n , (10)

where, as before, µ£ n is the n-fold convolution of µ with
itself.

Equation (10) for the covariance in the redistribution-
and-growth model is somewhat di¡erent from that found

for pure redistribution (equation 3). However, once again,
the shape of the spatial covariance is a weighted sum of
n-hop covariancesöthe covariances of pairs of indivi-
duals that are separated by n dispersal events. As before,
few-hop components are shaped like the dispersal kernel,
while many-hop components are Gaussian. In the
previous models, the balance between these two shapes
was governed by the elapsed time since redistribution
started. In the case of local population dynamics, it is
governed by the relative importance of population
redistribution and population regulation, p=(® ‡ p).
Strong regulation will tend to `reset the clock’ so that most
individuals are e¡ectively separated by fewer dispersal
events.

6. CANONICAL FORM: LOCAL DYNAMICS

While it is mathematically complete to express the exact
shape of the equilibrium covariance as a summation of
n-hop covariances (equation (10)), we would also like a
more heuristic description of this shape in di¡erent limits.
There are two obvious limiting cases: (i) regulation is
strong relative to redistribution, and (ii) redistribution is
important (frequent) relative to regulation.

If p ½ ® (strong regulation), there will be many birth-
and-death events for every movement event. Most pairs
of individuals that are near each other will be separated
by only a few moves. The shape of the covariance is then
very similar to the shape of the dispersal kernel. If, in
contrast, p ¾ ®, there will be many movement events for
every birth and death. The local synchrony, i.e. the covar-
iance near the origin, is then weighted towards Gaussian
shapes. (Note, however, that exponential (in one
dimension) and Bessel (in two dimensions) dispersal
kernels break with this general pattern; see ½ 7.) Figure 3
illustrates how either the Gaussian or the dispersal kernel
will dominate the local synchrony. For a variety of
dispersal kernels, synchrony will approximate a Gaussian
function when dispersal dominates but will inherit its
shape from µ if population growth dominates.

There are thus two canonical functions for synchrony
also in the presence of local dynamics. There is an inter-
esting di¡erence, however, in the presence of population
growth. For long spatial lags (more than a few times the
average dispersal distance) most individuals are separated
by many dispersal events. Therefore, as before, the spatial
covariance (equation (10)) will be weighted towards
many-hop covariances. Each particular n-hop component
will tend towards the Gaussian shape (as soon as n is not
very small), but with di¡erent variances. The overall
covariance will thus be a mixture of Gaussian distribu-
tions with increasing variances. This leads to tails that
are exponential (one dimension) or Bessel (two dimen-
sions). The two canonical functions arising from equation
(10) both have exponential/Bessel tails but are locally
dominated by (i) the dispersal kernel (when local
dynamics dominates) and (ii) the Gaussian (when move-
ment dominates).

7. DISCUSSION

We have undertaken a theoretical investigation of how
spatial synchrony (and covariation) results from
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individual dispersal. We have addressed this by consid-
ering a homogeneous region of initially randomly distrib-
uted individuals that disperse according to some dispersal
kernel. In the absence of local dynamics, dispersal is
shown to reduce the spatial variance. The route to spatial
homogeneity is through locally high correlation that
subsequently smears out spatially and decays temporally.
The covariance function initially resembles the dispersal
kernel, but subsequently converges on the Gaussian covar-
iance function. When we introduce local population
growth, the form of the covariance function depends on
the balance between density-dependent regulation and
frequency of dispersal. With strong regulation, synchrony

will take the form of the dispersal distance distribution
(but with an exponential or Bessel tail). When movement
dominates, synchrony takes the form of a very particular
mixture distribution that is Gaussian near the origin but
with an exponential or Bessel tail. There are thus two
natural, or canonical, functions for dispersal-induced
synchrony.

We need to note that there is an exception to this rule.
In the presence of local dynamics, exponential (one
dimension) or Bessel (two dimensions) distribution
kernels remain exponential or Bessel regardless of the
strength of regulation (¢gure 3). Note that the Bessel
function tails o¡ slightly faster than the exponential, but
is otherwise closely related. (In fact, this function can be
approximated as r¡1=2e¡cr, where c is some constant; see,
for example, Turchin 1998.)

The dispersal distance distribution features centrally in
our attempts to understand spatial synchrony. Turchin
(1998) reviews how individual movement translates into
various theoretical redistribution kernels. We will not try
to repeat this discussion here. It is, however, useful to
discuss three prototypical models pertaining to dispersal
kernels resulting from simple rules of movement (in the
absence of reproduction).

(i) If individuals perform a random walk (many short
uncorrelated jumps) for a ¢xed length of time, the
kernel µ will be Gaussian (both in the one- and two-
dimensional case). (A motivation for this may be
found by a direct analogy to the above redistribution
model (½ 3).)

(ii) If individuals move with a constant velocity
outward, in a random direction with a constant stop-
ping probability, the kernel µ will follow an
exponential distribution (in both one and two
dimensions).

(iii) If individuals undergo a random walk with constant
stopping probability, the kernel µ will follow an
exponential distribution if the individuals live in a
one-dimensional habitat, but will follow a Bessel
distribution in two dimensions (Metz & Van den
Bosch 1995).

While many other special cases are conceivable and
may be of interest, we use these three to explain why the
exponential (or Bessel) and the Gaussian distributions are
plausible functional forms for the dispersal distance distri-
bution. (Note that Buechner’s (1987) geometric model is the
discrete version of the exponential distribution. For
further discussion, see for example, Portnoy & Willson
(1993) and Turchin (1998).)

Our study was speci¢cally framed to highlight plausible
functional forms for the spatial covariance in abundance
that results from dispersal. Obviously, real populations
extend across a heterogeneous environment. This hetero-
geneity may induce covariance in its own right. There are
a suite of other factors that a¡ect spatial covariance and
synchrony. Regionally correlated climatic forcing is one
that has received much attention recently (see ½ 1).
Related to that, a number of studies ask how nonlinear
population regulation interplays with synchronizing
agents (Grenfell et al. 1998; Ranta et al. 1998; BjÖrnstad
2000). This interaction will certainly be an important
area of future research.
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Figure 3. Synchrony from dispersal and local dynamics.
(a) Dispersal distributions: `top hat’ (µ(r) ˆ 1=«, if r < «,
otherwise zero), `tri-Gaussian’ (µ(r) ! exp (cr3)), Gaussian
and exponential. All distributions are scaled to µ(0) ˆ 1,
and unit average dispersal distance. (b) Equilibrium spatial
distributions for common movement: m=(® ‡ m) ˆ 0:8. Both
the top hat and Gaussian distributions lead to Gaussian
shapes near the origin and exponential tails; the exponential
distribution leads to an exponential everywhere.
(c) Equilibrium spatial distributions for rare movement:
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locally, but with exponential tails. The ¢gure is based on a
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We make the simplifying assumption that environ-
mental noise is spatially uncorrelated: that is, ¯(r) is a
delta-function of magnitude ¼ 2

R at the origin, and zero
elsewhere. We chose this to understand the e¡ect of
dispersal. Having said that, all calculations will directly
generalize to spatially correlated noise. We are currently
studying how we may use such more general formulations
to `deconvolve’ the signals of dispersal and correlated
environments in spatio-temporal abundance data.

Tilman & Kareiva (1997) characterized space as the
`last frontier’ in ecology. By deriving canonical forms
for the spatial covariance function arising from density-
independent dispersal, we hope to have helped push the
frontier on, one small step.
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APPENDIX A. CONVOLUTIONS

The one-dimensional convolution is de¢ned as in equa-
tion (3). It combines two spatial variables or kernels by
taking the integral of their product for every value of the
spatial lag, r. Convolution is equivalent to smoothing one
kernel using the second kernel as a moving window. The
most general de¢nition of the convolution is

(A £ B)(r) ˆ
Z

jy¡xjˆ r
A(x)B(y) dy. (A1)

The two-dimensional convolution is de¢ned in polar
coordinates as

(A £ B)(r) ˆ
Z Z

A(r 0)B(R(r, r 0, ³))r 0 dr 0 d³, (A2)

where R(r, r 0, ³) ˆ
����������������������������������������
r2 ‡ r 02 ¡ 2rr 0 cos ³

p
is the length of

the third side of a triangle with sides of length r and r 0

forming an angle ³. The notation of the two-dimensional
convolution looks ugly, but the meaning of convolutions
remains the same in any dimension.

APPENDIX B. REDISTRIBUTION MODEL

(a) De¢nitions
In this appendix we derive the continuous-time,

continuous-space redistribution model for changes in
covariance. To do so, we start from a de¢nition of changes
in (small) discrete patches of size ¢x that take place
during a (small) discrete time-step ¢t. We then take the
limit ¢x ! 0, ¢t ! 0 to derive the desired continuous-
time, continuous-space model. (Note that in contrast to
the standard derivation of di¡usion equations (e.g. Okubo
1980), we do not have to be particularly careful how we
take the space and time limits.) Using the process
described in the text for movement of individuals between
discrete patches in the environment, the probability of

dispersal from a patch located at y to a patch of size ¢x
located at x in time interval ¢t is

pN(y)µ(jy ¡ xj)¢x¢t. (B1)

The change in hN(x)i in ¢t is

( ¡ 1) ¢ pN(x) ‡ ( ‡ 1) ¢
X

y

pN(y)µ(jy ¡ xj)¢x, (B2)

which has expectation zero for spatial homogeneity
(hN(x)i ˆ hN(y)i ˆ hNi) because µ, as a probability
distribution function, is normalized to unity.

(b) Change in covariance
To ¢nd the laws governing the change in the covar-

iance, we calculate the change in hN(x)N(y)i for x 6ˆ y.
In so doing it is important to keep track of jumps from x
to y separately from jumps between x and y to all other
locations (denoted by z) in the habitat O. The change in
hN(x)N(y)i is then

h ¡ pN(x)N(y)(1 ¡ µ(jx ¡ yj)¢x)

(dispersal from x, not to y)

¡ pN(y)N(x)…1 ¡ µ(jy ¡ xj)¢x)

(dispersal from y, not to x)

‡ p
X

z2O, z 6ˆy

µ(jz ¡ xj)N(z)N(y)¢x

(dispersal from not-y to x)

‡ p
X

z2O, z 6ˆx

µ(jz ¡ yj)N(z)N(x)¢x

(dispersal from not-x to y)

‡ pN(x)( ¡ N(y) ‡ N(x) ¡ 1)µ(jx ¡ yj)¢x

(dispersal from x to y)

‡ pN(y)( ¡ N(x) ‡ N(y) ¡ 1)µ(jx ¡ yj)¢xi.
(dispersal from y to x)

(B3)

The term ( ¡ N(x) ‡ N(y) ¡ 1) in the last line comes
from subtracting the old density product N(x)N(y) from
the new value (N(x) ‡ 1)(N(y) ¡ 1), after one individual
has moved from y to x (an analogous argument applies in
the second-to-last line). Assuming homogeneity (inter-
changing x and y as convenient) and simplifying, equa-
tion (B3) becomes

2p ¡ N(x)N(y) ‡
X

z2O

µ(jz ¡ xj)N(z)N(y)¢x

¡ N(x)µ(jx ¡ yj)¢x . (B4)

Note that the sum in the convolution omits the point
z ˆ y. Using the de¢nitions in the main text we then
obtain

¢C(jy ¡ xj) ˆ 2p( ¡ C(jy ¡ xj) ‡ (µ £ C)(jy ¡ xj)
‡ µ(jy ¡ xj)(¼ 2 ¡ hNi)¢x)¢t. (B5)

Letting ¢t go to zero, and de¢ning V ˆ ¼2 ¡ hNi as
the cumulant or `extra-Poisson variance’ we get an in¢nite
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set of ordinary di¡erential equations for C(r), one for
each value of r:

dC(r)
dt

ˆ 2p( ¡ C(r) ‡ (µ £ C)(r) ‡ µ(r)V¢x†. (B6)

If we let ¢x ! 0 then we can drop the last term on the
right-hand side and obtain the partial di¡erential
equation governing the change in covariance with time in
a continuous-time, continuous-space setting,

@C(r)
@t

ˆ 2p( ¡ C(r) ‡ (µ £ C)(r)). (B7)

In some of our numeric work (Appendix D), we have
found that as C becomes very small the µ(r)V¢x term in
equation (B6) can no longer be safely ignored. In these
cases we use equation (B6) instead of (B7). See Appendix
D for more details.

(c) Change in variance
We derive a separate equation for the variance,

¼ 2 ˆ C(0), by writing

hpN(x)( ¡ 2N(x) ‡ 1) (one jumps away)

‡ p
X

z2O

µ(jz ¡ xj)N(z)(2N(x) ‡ 1)¢xi; (B8)

(one jumps in from z)

without loss of generality we have set µ(0) ˆ 0 (because p
governs whether an individual jumps or not). Equation
(B8) is easily rewritten as

ph( ¡ 2N(x)2 ‡ N(x)) ‡
X

z2O

µ(jz ¡ xj)(2N(z)N(x)

‡ N(z))¢xi, (B9)

which simpli¢es to

¢¼ 2 ˆ 2p( ¡ ¼ 2 ‡ hNi ‡ ·C)¢t, (B10)

where ·C ˆ (µ £ C)(0) ˆ §z2Oµ(jzj)C(jzj)¢x.
Dividing both sides by ¢t and taking a continuous-

time limit, we obtain

d¼ 2

dt
ˆ 2p( ¡ ¼ 2 ‡ hNi ‡ ·C). (B11)

If need be, we may drop the ·C term because it is of order
¢x relative to the other terms in the equation. Thus we
may re-express the variance in terms of V ˆ ¼ 2 ¡ hNi as

dV
dt

º ¡2pV . (B12)

(d) Solution
Equation (B12) is easy to solve (V(t) ˆ V(0) exp (¡ 2pt)).

Applying a Fourier transform to equation (B6) turns the
convolution into a product ( James 1995),

d ~C(q)
dt

ˆ ( ~µ ¡ 1) ~C ‡ ~µV(t), (B13)

where a tilde denotes the Fourier-transformed variables.
The solution to this linear ¢rst-order di¡erential equation
is

~C(q, t) ˆ ~µ(q)V(0)e¡2pt ‡ ( ~C(0, q) ¡ 1)e¡2p(1¡ ~µ)t . (B14)

If the initial condition is a random spatial distribution,
then ~C(0, q) is constant with respect to q. Denoting this
initial condition as 1 ‡ k, we rewrite the solution as

~C(q, t) ˆ e¡2pt( ~µ(q)V(0) ‡ ke2p ~µt). (B15)

To obtain an approximation to equation (B15) in original
coordinates (i.e. back-transforming from the Fourier solu-
tion), we note that the Taylor expansion of exp(2p ~µt) is

1 ‡ (2pt) ~µ ‡
1
2

(2pt)2 ~µ2 ‡ . . . ‡
1
n!

(2pt)n ~µn ‡ . . . . (B16)

Because the Taylor expansion is linear, we can back-
transform (B16) to equation (6).

APPENDIX C. LOCAL DYNAMICS

Equation (7) describes the dynamics of local popula-
tions governed by density-dependent growth NR(N) and
coupled by dispersal. We measure the environmental
correlation in the noise as hdB(x)dB(y)i ˆ ¯(x ¡ y). In
this study we make the simplifying assumption that envir-
onmental noise is spatially uncorrelated (see ½ 7): that is,
¯(x ¡ y) is a delta-function that is non-zero only at the
origin and integrates to unity. If dB is independent of all
other quantities, we can calculate the change in the joint
product d(hN(x)N(y)i)=dt (and discarding terms of order
dt 2),

hd(N(x)N(y))i
dt

ˆ hN(x)¢N(y)R(N(y))i

‡ hN(y)¢N(x)R(N(x))i ‡ ¼ 2
R¯(x ¡ y).

(C1)

Given homogeneity, i.e. N forms an isotropic stationary
random ¢eld (x and y are exchangeable; hN(x)i
ˆ hN( y)i ˆ hNi) and subtracting dhNi2=dt as in
Appendix B, we can write

dC(jx ¡ yj)
dt

ˆ 2hN(x) ¢ N(y)R(N(y))i

‡ 2hNi dhNi
dt

¡ ¼ 2
R¯(x ¡ y). (C2)

To simplify hN(x) ¢ N(y)R(N(y))i we Taylor-expand R
around hNi and obtain

R(N(y)) º R(hNi) ‡ R 0(hNi)(N(y) ¡ hNi)
‡ 1=2R00(hNi)(N(y) ¡ hNi)2,

(C3)

where R0 and R00 represent the ¢rst and second derivative
of R( ) with respect to hNi, respectively. In addition, we
have to expand out and simplify all terms of the form
hN(x)N(y)i, hN(x)N(y)2i, and hN(x)N(y)3i. The
expectation of N(x)N(y) is, as before, C(jx ¡ yj) ‡ hNi2.
The higher-order products are more tedious, but never-
theless straightforward to simplify in terms of higher
moments M.

Mxyz ˆ h(N(x) ¡ ·N)(N(y) ¡ ·N)(N(z) ¡ ·N)i. (C4)

We get the full expressions for hN(x)N(y)2i and
hN(x)N(y)3i by writing out the de¢nition for Mxy2 and
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Mxy3 and expanding the right-hand sides. We can then
write equation (C2) as

dC(jx ¡ yj)
dt

ˆ 2 R(hNi)C(jx ¡ yj) ‡ R0(hNi)(Mxy2

‡ hNiC(jx ¡ yj)) ‡
R00(hNi)

2
(Mxy3

‡ hNiMxy2) ¡ pC(jx ¡ yj)

‡ p(µ £ C)(jx ¡ yj) ‡ ¼ 2
R¯(x ¡ y). (C5)

Dropping the higher moment termsöessentially, assuming
that the variances and higher-order moments of the
density at x are independent of the density at yögives us
equation (8). Note, that in contrast to the redistribution
case, we have to resort to moment closure to obtain a
solution to the redistribution-and-growth problem
(Bolker & Pacala 1997, 1999; Bolker et al. 2000).

Because equation (8) has only linear expressions and
convolutions of C, Fourier transforming as in Appendix
B, ½(d) is easy. Note that the delta-function involving
exogenous population £uctuations, ¼ 2

R¯(x ¡ y), becomes
a constant ¼ 2

R when we transform. Solving for the equili-
brium C when hNi is at equilibrium (so that R(hNi) ˆ 0)
gives

~C*(q) ˆ
¼ 2

R

2( ¡ hNiR 0(hNi)hNi ‡ p) ¡ 2p ~µ(q)

ˆ
¼ 2

R

2(® ‡ p) ¡ 2p ~µ(q)

ˆ
¼ 2

R

2(® ‡ p)
1

(1 ¡ (p/® ‡ p)) ~µ(q)
, (C6)

which, upon expanding according to (1 ¡ X)¡1 ˆ 1
‡ §1

nˆ1X n, gives the equilibrium solution in the space
domain (10).

APPENDIX D. NUMERIC INTEGRATION

We numerically integrated the covariance equations
using xtc, a one-dimensional PDE integrator written by
Bard Ermentrout that runs on Unix workstations (avail-
able from http://www2.pitt.edu/ ¬ phase/). A typical input
¢le for our system is available from the authors.

As mentioned above, we found it useful to retain terms
of order ¢x in the equations when integrating equation
(4) numerically. This is because although C is negligible
relative to V for small t, it decreases more slowly than the
exponential decline of V ; if we run simulations for long
enough, V eventually becomes so small that we have to
take C into account to obtain an accurate answer.
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