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Abstract. Before the development of mass-vaccination campaigns, measles exhibited
persistent fluctuations (endemic dynamics) in large British cities, and recurrent outbreaks
(episodic dynamics) in smaller communities. The critical community size separating the
two regimes was ;300 000–500 000. We develop a model, the TSIR (Time-series Suscep-
tible–Infected–Recovered) model, that can capture both endemic cycles and episodic out-
breaks in measles. The model includes the stochasticity inherent in the disease transmission
(giving rise to a negative binomial conditional distribution) and random immigration. It is
thus a doubly stochastic model for disease dynamics. It further includes seasonality in the
transmission rates. All parameters of the model are estimated on the basis of time series
data on reported cases and reconstructed susceptible numbers from a set of cities in England
and Wales in the prevaccination era (1944–1966). The 60 cities analyzed span a size range
from London (3.3 3 106 inhabitants) to Teignmouth (10 500 inhabitants). The dynamics of
all cities fit the model well. Transmission rates scale with community size, as expected
from dynamics adhering closely to frequency dependent transmission (‘‘true mass action’’).
These rates are further found to reveal strong seasonal variation, corresponding to high
transmission during school terms and lower transmission during the school holidays. The
basic reproductive ratio, R0, is found to be invariant across the observed range of host
community size, and the mean proportion of susceptible individuals also appears to be
constant. Through the epidemic cycle, the susceptible population is kept within a 3%
interval. The disease is, thus, efficient in ‘‘regulating’’ the susceptible population—even
in small cities that undergo recurrent epidemics with frequent extinction of the disease
agent. Recolonization is highly sensitive to the random immigration process. The initial
phase of the epidemic is also stochastic (due to demographic stochasticity and random
immigration). However, the epidemic is nearly ‘‘deterministic’’ through most of the growth
and decline phase.

Key words: epidemic birth–death process; extinction–recolonization; noise and determinism;
nonlinear stochastic dynamics; persistence thresholds; population cycles; R0; spatial coupling; time
series analysis; TSIR model.

INTRODUCTION

Over the last two decades, infectious diseases have
gained increasing recognition as a key component in
the dynamics of populations (reviewed in Anderson and
May 1991, Grenfell and Dobson 1995). A number of
diseases are endemic in animal populations, that is,
they are persistent and almost never go locally extinct.
(Note, that we use the word ‘‘endemic’’ according to
the epidemiological tradition, which is unrelated to the
biogeographic usage). The interaction between hosts
and their endemic parasites has been modeled inten-
sively. Both host–parasite cycles and reduced host
abundance can result from such interactions (Anderson
1978, May and Anderson 1978, Anderson and May
1979). Endemism (local persistence) depends on par-
asite vital rates, host abundance and host reproduction
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(e.g., Anderson et al. 1981, Grenfell and Harwood
1997). In essence, such infections can invade if the
basic reproductive ratio of infection, R0, is greater than
unity (Anderson and May 1979, 1991, May and An-
derson 1979, Schenzle 1984, Heesterbeek and Roberts
1994). Persistence also depends on a sufficiently high
replenishment rate of susceptibles to maintain a ‘‘chain
of transmission’’ (Grenfell and Harwood 1997). A
number of diseases, however, appear to be non-endem-
ic. They are characterized by episodic outbreaks fol-
lowed by local stochastic extinction of the disease, as
the chain is broken. Disease persistence in such systems
therefore depends on reintroduction of the infection
(Cliff et al. 1993, Grenfell and Harwood 1997, Earn et
al. 1998). Successful reinvasion into the host popula-
tion depends again on R0 being larger than one as the
density of susceptibles exceeds some threshold density
(Anderson et al. 1981, Grenfell and Dobson 1995).
Dense populations are therefore more likely to sustain
a disease than sparse populations (Bartlett 1956, 1957,
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1960a). Endemic persistence is also promoted by a
suite of other parasite adaptations such as prolonged
infectious periods (Dietz and Schenzle 1985), carrier
hosts, etc. (Grenfell and Dobson 1995). The route to
local disease extinction is similar to that in predator–
prey metapopulations (Grenfell and Harwood 1997)—
after introduction, the host supply is depleted to a level
where the parasite, or both the host and the parasite,
go locally extinct.

The theory of disease dynamics, thus, parallels the
frontiers of population ecology at large, by focusing
on persistence, extinction, recolonization, and the dy-
namics of small populations (Earn et al. 1998, Hanski
1998). These processes are key components in a theory
for conservation where large-scale density-dependent
mechanisms scale down to enter the realm where sto-
chasticity is a major factor. For infectious diseases,
though, we are generally more interested in the extir-
pation of the agent rather than its preservation (Earn
et al. 1998, Shea et al. 2000). Understanding the range
of disease dynamics poses two challenges. First, we
need to understand the relative and absolute importance
of the regulatory (predator–prey-like interactions) and
the stochastic forces (immigration probabilities and en-
vironmental and demographic stochasticity). The sec-
ond challenge is to obtain reliable data, not only for
large/dense populations, but also on small/sparse pop-
ulations, for which data are difficult to obtain. We focus
here on a microparasitic (viral) infection, where the
pathogen reproduces in the host. Measles (and other
human childhood diseases) provides a unique oppor-
tunity for understanding microparasitic dynamics, be-
cause it exhibits both endemic and episodic dynamics
(Bartlett 1956), and because the data records are very
good for both large and small host communities (Cliff
et al. 1993, Bolker and Grenfell 1996, Grenfell and
Harwood 1997, Keeling and Grenfell 1997, Grenfell
and Bolker 1998). Large cities exhibit endemic cycles,
while small towns exhibit recurrent epidemics inter-
spersed with periods of local extinction.

The rich data base and cyclical dynamics of child-
hood infections have attracted the attention of nonlin-
ear dynamicists interested in chaos and other nonlinear
phenomena (Schwartz 1985, Olsen and Schaffer 1990,
Sugihara et al. 1990, Rand and Wilson 1991, Mollison
and Din 1993, Kendall et al. 1994, Ellner et al. 1995,
1998, Grenfell and Harwood 1997, Earn et al. 2000).
This work has followed two directions, focusing re-
spectively on mechanistic models and characterizing
the nonlinear behavior of epidemiological time series.
Recently, Ellner et al. (1998) integrated these ap-
proaches by developing ‘‘semi-mechanistic’’ time se-
ries modeling of the data. Finkenstädt and Grenfell
(2000) extended this to a fully mechanistic time series
model. Both these and other statistical approaches to
the nonlinear dynamics of measles have focused on the
endemic behavior of epidemics in large communities.
Here we use a mechanistic model that allows us to

explore the balance between noise and determinism
across the full range of endemic and episodic measles
dynamics. To achieve this synthesis, we develop a sta-
tistical SEIR (Susceptible–Exposed–Infectious–Re-
covered) model (the TSIR 5 the time series SIR [Sus-
ceptible–Infected–Recovered] model) that has a dual
role. First, it is a model that can be scaled by population
size to produce endemic and episodic dynamics (see
Bartlett 1956). Second, it provides a mechanistic bridge
between theoretical models and empirical data. We an-
alyze a large spatiotemporal data set of measles inci-
dence in England and Wales (Grenfell and Harwood
1997, Grenfell and Bolker 1998). In the present paper,
we derive the model and show that it successfully rep-
resents the continuum from episodic to endemic dy-
namics, as we scale from small towns to large cities.
The fitted model reveals a seasonally varying trans-
mission rate, which closely corresponds to the seasonal
aggregation of children at schools (Fine and Clarkson
1982a, Schenzle 1984, Finkenstädt and Grenfell 2000).
We further obtain estimates of the scaling of infection
rates—and thus reproductive ratios (R0)—with host
population size (De Jong et al. 1995). Finally, we use
the model to explore the extinction/recolonization dy-
namics that drive the dynamics of measles in small
places. In the companion paper (Grenfell et al. 2002),
we show that this simple modeling framework for mea-
sles is capable of reproducing highly predictable fluc-
tuations in large populations, and recurring episodic
outbreaks in small populations. The dynamics in the
large populations represents cyclic ‘‘predator–prey’’
dynamics involving the infected and susceptible indi-
viduals; the dynamics of the small populations resem-
bles predator–prey metapopulations with predator out-
breaks, host depletion, followed by predator extinction,
host buildup, and recolonization (Grenfell and Har-
wood 1997).

We first summarize the relevant natural history of
the microparasite (measles) and its host (humans), from
which we develop the mechanistic model for the dis-
ease dynamics. We use the model first to understand
endemic dynamics, where the deterministic component
(the transmission process) is dominant. We subsequent-
ly scale the model down to investigate the episodic
dynamics of small host communities for which de-
mographic stochasticity and unpredictable recoloni-
zation events predominate (see Bartlett 1956).

MATERIALS AND METHODS

Natural history and life cycle

The parasite.—Measles is caused by a highly infec-
tive single-stranded RNA virus belonging to the mor-
billivirus group (Barrett 1987). It may infect other pri-
mates, but is largely specialized on its human host. It
is a classical microparasite (Anderson and May 1991),
multiplying within the host with direct, mainly aerosol,
transmission. Upon infection, the virus passes through
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a latent period of ;6–9 d, followed by a 6–7 d infective
period (Anderson and May 1991). The characteristic
time scale of the transmission dynamics is thus ;2 wk.
The infection results in either death or full recovery of
the host. In immunocompetent and healthy individuals
recovery is the norm, after which effectively a life-
long immunity to reinfection is acquired. Immunocom-
promised individuals may die following infection. In
developing countries, measles is still a major cause of
mortality (McLean and Anderson 1988). Case fatality
in developed countries is very low (Anderson and May
1991). Thus, death due to disease is an unimportant
factor in the time series we analyze here.

Due to its host specificity, measles dynamics resem-
ble those of a simple two-species predator–prey system
(Grenfell and Harwood 1997, but see Rohani et al.
1998). The high transmissibility and short infectious
period of measles induce violent fluctuations in abun-
dance, akin to predator–prey cycles (Anderson and
May 1991, Grenfell and Harwood 1997). The cycles
are driven by a rapid (initially roughly exponential)
depletion of susceptible hosts through the course of an
outbreak, and a subsequent slower (linear) buildup of
susceptible through host reproduction and immigration
(Bartlett 1956, Grenfell and Harwood 1997). The re-
sultant tendency for cyclical dynamics is strengthened
by seasonal variations in the infection rate.

In order for the virus not to go extinct, the replen-
ishment rate of susceptibles must be quite high. Since
birth numbers in humans depend on the number of
adults in a community, there exists a critical community
size (CCS) below which measles goes extinct during
the epidemic troughs (Bartlett 1956, 1957, 1960a,
Keeling and Grenfell 1997). The CCS appears to be
;300 000–500 000 in England and Wales in the pre-
vaccination years. The dynamics in smaller commu-
nities depend to a great extent on repeated reintroduc-
tion of the virus into the host population through host
movement (Bartlett 1956, 1960a, Grenfell and Har-
wood 1997, Keeling and Grenfell 1997).

The host.—Our aim in the following will be some-
what more modest than to review the population ecol-
ogy, demography, and behavioral ecology (sociology)
of the host of this particular morbillivirus. We will,
instead, give a brief sketch of the important properties
of the British people, as seen from the point of view
of the single-strand of replicating RNA. We focus on
the prevaccination era covered by the years 1944–1966.

Passive immunity to measles is passed from recov-
ered mothers to their offspring via maternal antibodies.
The passive immunity is lost after ;4 mo (Black 1984).
Humans, thus, enter the susceptible host population
after a short delay. Following this, the high transmis-
sion rates ensured that 95% of all people in (prevac-
cination) urban areas were infected by the age of 15,
and essentially everybody by the age of 20 (Anderson
1982). In the prevaccination era, the mean age of in-
fection was ;4–5 yr (Anderson and May 1991). Se-

rological profiles showed a very conspicuous peak in
infections at the age of school entry (Grenfell and An-
derson 1985). Thus, birth rates and the behavior of
children, most notably school children, largely deter-
mined the dynamics of measles.

The annual per capita birth rates of range from
around 0.01 to 0.02 in Britain in the decades following
World War II (Office of Population Censuses and Sur-
veys; OPCS). The total production of susceptibles thus
scaled with city size. However, the birth rates do vary
geographically (Liverpool, for instance, has relatively
high rates) and temporally (the post-World War II baby
boom around 1947 resulted from a 30% increase in
birth rates as compared to earlier and later periods;
Grenfell et al. 1995, Finkenstädt et al. 1998, Finken-
städt and Grenfell 2000).

The core group for measles transmission was school-
aged children. Aggregation during school terms there-
fore induced strong seasonal forcing in the transmission
rates (Dietz 1976, Schenzle 1984, Grenfell et al. 1995).
Cases invariably fell to a minimum towards the end of
the summer holidays (a period during which the chil-
dren were less aggregated), and rose thereafter to reach
a peak in the early part of the calendar year (Fine and
Clarkson 1982a, Anderson and May 1991, Finkenstädt
and Grenfell 2000).

The final piece of the ecological jigsaw of measles
infection is host movement: repeated outbreaks in small
and rural areas require reintroduction of infection, gen-
erally from large population centers (Bartlett 1956,
Cliff et al. 1993, Rhodes and Anderson 1996a, Grenfell
and Harwood 1997, Grenfell and Bolker 1998). Bartlett
(1960a, see also Murray and Cliff 1975) conjectured
that the immigration rate of infected hosts scaled (but
slower than linearly) with population size. Olsen et al.
(1988) assumed the rate to be ;20 individuals/yr in a
population of one million; however, this was mainly
chosen to study aspects of the nonlinear dynamics of
infection. Developing methods to estimate the spatial
flux of infection from notification time series is a cen-
tral aim of this paper.

The data

Cases of measles have been registered on a weekly
basis by the UK Registrar General (OPCS). National
notification was made mandatory in 1944 in England
and Wales (Fine and Clarkson 1982a). The reporting
is not complete during the period of mandatory noti-
fication. It is, however, rather good (reporting rate
.50% in the prevaccination era; Clarkson and Fine
1985) and the underreporting can be corrected for
through the process of susceptible reconstruction.

Mass vaccination started in 1968, after which the
incidence of measles changed radically. The number of
cases has been reduced from as much as 10 000 cases/
wk in England and Wales to ,100 cases/yr by the pre-
sent (Grenfell and Harwood 1997). The change in in-
cidence is followed by a shift in both temporal (Earn
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et al. 2000) and spatial dynamics (Bolker and Grenfell
1996). After mass vaccination started in the early
1960s, susceptible dynamics are no longer governed
by births alone. We, therefore, only consider prevac-
cination data spanning the time from 1944–1966 within
this paper.

The records for .1000 urban and rural locations
have been compiled (Grenfell and Bolker 1998). We
analyze a subset of 60 cities spanning three orders of
magnitude in population sizes, from 3.3 3 106 (London
before the administrative creation of greater London)
to 10 500 (Teignmouth). In 1965 ‘‘greater London’’ was
created, with completely new (and much larger) polit-
ical boundaries. (The birth rates and case counts reflect
this change by a dramatic increase for ‘‘London’’ there-
after.) In consequence, we only consider the London
data up until the end of 1964.

Along with the number of infected cases, the other
key state variable is the number of susceptibles (An-
derson and May 1991). Susceptibles are depleted
through epidemics, but replenished by host reproduc-
tion. We have, therefore, compiled the relevant birth
rates and number of births for each of the cities through
the years in question (Finkenstädt and Grenfell 1998,
Finkenstädt et al. 1998). The births themselves do not
represent a measure of the number of susceptibles, but
the records allow us to generate time series of suscep-
tibles through standard susceptible reconstruction al-
gorithms (Fine and Clarkson 1982a, Schenzle 1984,
Ellner et al. 1998, Bobashev et al. 2000, Finkenstädt
and Grenfell 2000). In principle, this can be achieved
without explicitly considering birth rates (Bobashev et
al. 2001). However, we shall subsequently want to sim-
ulate the epidemiological effects of changes in birth
rate. We, therefore, carry out susceptible reconstruction
using the algorithm proposed by Finkenstädt and Gren-
fell (2000). In summary, this method reconstructs the
dynamics of the unobserved susceptible class from data
on births and reported cases. The size of the susceptible
class reflects a balance between the rate of loss of pas-
sive maternal immunity of infants (assumed to occur
at 4 mo) and the recovery rate of recently infected
individuals (who have active immunity henceforth).
The susceptible reconstruction is achieved by regress-
ing cumulative births against cumulative case notifi-
cations (see Finkenstädt and Grenfell 2000 for details).
The residuals from this regression represent the cyclical
deviation of the susceptible class around the mean num-
ber of susceptibles, S̄, as driven by the epidemic dy-
namics. We denote the deviations by zt. The only as-
sumption necessary to make for this to work is that the
reporting rate is constant through time. Since the 1944–
1966 period showed significant changes in public
health and socioeconomic patterns, it makes sense to
allow for the possibility of smooth changes in reporting
rates. We do this by using a locally linear regression
of the cumulative–cumulative plot (Finkenstädt and
Grenfell 2000). Cross-validation is used to optimize

the bandwidth of the locally linear regression (Finken-
städt and Grenfell 2000). There is a valuable spinoff
of susceptible reconstruction for extremely contagious
diseases, like measles, in developed countries during
the prevaccination era. In such cases, it is reasonable
to assume that the number of individuals that die with-
out having contracted the disease is negligible. Thus,
the slope of the (global or local) cumulative–cumula-
tive regression is a direct reflection of the reporting
rate. We use the estimated reporting rate (of just over
50%); to calibrate the case counts. Note that susceptible
reconstruction will be less reliable in the earliest part
of the time series. A corollary to this is that ‘‘initial
conditions’’ are harder to estimate if no allowance is
made at the beginning of the series. A further potential
problem for susceptible reconstruction would be var-
iations in reporting rate with infection level (and there-
fore across the epidemic cycle; however, this does not
seem to be a major issue for measles (Clarkson and
Fine 1985).

The raw data for the 60 cities—the biweekly inci-
dences of measles and the annual data on human birth
rates—are available from the Department of Zoology
at Cambridge University.5

The model

A stochastic disease model.—The SEIR (Suscepti-
ble–Exposed–Infectious–Recovered) class of models is
a cornerstone of ecological epidemiology, as it provides
a simple mechanistic model for microparasite dynam-
ics. In the theoretical literature, deterministic contin-
uous-time, continuous-state-space formulations are the
most common (e.g., Schenzle 1984, Anderson and May
1991, Grenfell and Dobson 1995, Earn et al. 2000). We
will, however, extend the discrete-time model of Fin-
kenstädt and Grenfell (2000) to formulate a discrete
state-space model that can accommodate small popu-
lation sizes and disease recolonization.

The natural time scale for the disease is ;2 wk. We
therefore aggregate the weekly data into 2-wk intervals,
and use this as the time step in the model. The time
series for each of the 60 cities contains 598 two-week
intervals for the years 1944 through 1966.

We denote the number of resident infectious host at
time t (t 5 1, . . . , T) by It, and the number of immigrant
infections by ut. The force of infection, that is the in-
fection pressure experienced by one susceptible indi-
vidual, is then given by bs(It 1 ut)a, where bs is the
transmission rate. Here, the transmission rate is allowed
to vary through time with a 1-yr period to accommodate
the seasonal cycle of school terms (Fine and Clarkson
1982a, Grenfell et al. 1995, Earn et al. 2000). The
parameter a allows for the nonlinearities in contact
rates that may arise due to spatial substructuring or
other forms of nonhomogenous mixing (Fine and

5 URL: ^http://www.zoo.cam.ac.uk/zoostaff/grenfell/measles.
htm&
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Clarkson 1982a, Liu et al. 1986, 1987). Mass action
corresponds to a 5 1. Mixing effects can also result
in the susceptible, St (5S̄ 1 zt), entering the transmis-
sion equation in a nonlinear fashion. The overall epi-
demic intensity is thus given by

a g¯l 5 b (I 1 u ) (S 1 z )t11 s t t t (1)

where g allows for the further nonlinearities in trans-
mission. A way of conceptualizing a and g is to think
of schools as the hot spots for transmission of measles.
Whenever transmission among pupils that belong to
the same school classes (and within schools) is, on
average, greater than that between children of different
schools, the result is spatial substructuring between the
susceptible and infective class. This can, from a city-
wide perspective, lead to mixing coefficients that are
lower than unity. If the spatial component of trans-
mission dynamics were to be ‘‘symmetrical,’’ in the
sense of infected individuals being equally clustered
in the increase phase of the epidemic as susceptibles
are in during the decline phase, then a and g should
be identical. At a slightly more phenomenological lev-
el, a , 1 may also be seen as a conversion factor when
going from continuous to discrete time (K. Glass and
B. T. Grenfell, unpublished manuscript; see Discus-
sion). However, since S̄ is not easily identifiable when
g is unknown, we will set g equal to one during the
estimation. We revisit this assumption in the discus-
sion.

The epidemic intensity is never realized exactly in
a finite population because of the discreteness of in-
dividuals and demographic stochasticity. The demo-
graphic stochasticity that arises from an epidemic
birth–death process has been studied intensively (Ken-
dall 1949, Bartlett 1956, 1960b). If we assume that the
rates of the process are approximately the same through
the 2-wk interval, then the number of secondary cases
from a single infected individual will be geometrically
distributed (e.g., Kendall 1949). Starting with It in-
fected individuals, and assuming independence be-
tween them, the birth–death process will hence be re-
alized according to a negative binomial distribution
(Kendall 1949, Bartlett 1956, see also Renshaw 1991)

I ; NB(l , I )t21 t11 t (2)

where, NB(a, b) signifies a negative binomial process,
with expectation a and clumping parameter b. Note,
that this formulation is closely linked to the chain-
binomial model (Bailey 1957), but has the advantage
that its relation to the SEIR model is direct. It has the
additional advantage over the chain-binomial model
that it can be estimated with data from susceptible re-
construction.

We assume that the disease migration rate is an in-
dependent stochastic process. Migration rates of the
disease are believed to be quite low even in large cities,
and then to scale with population size (Bartlett 1960a).

As a simplification we will assume that within a 2-wk
window, the number of immigrant infections is

u ; Poisson(m)t (3)

where m is a time-invariant immigration intensity. The
TSIR model (Eqs. 1–3) for the disease dynamics is thus
a doubly stochastic model.

The susceptible dynamics are governed by

S 5 S 1 B 2 It11 t t t11 (4)

where Bt is the number of births into the host population
during the 2-wk interval t. This number varies through
time (see Materials and methods: Natural history and
life cycle: The host).

We will, for now, ignore any additional environ-
mental stochasticity in the disease dynamics. Eqs. 1–
4, thus, provide a simplified, yet fully specified, sto-
chastic model for the dynamics of measles that can
represent both small and large cities. There are two
snags to parameter estimation and statistical inference.

Estimation.—Eqs. 1–3 provide a fully specified sta-
tistical model for the parameters whenever records for
{It; t 5 1 . . . T} and {St; t 5 1 . . . T} exist. The
model equations represent a non-Gaussian, nonlinear,
hierarchical model for abundance data (e.g., Bjørnstad
et al. 1999). We outline the estimation framework in
Appendix A and Appendix B. Note though that we are
still working to improve this framework (Finkenstädt
et al. 2002). The seasonal transmission coefficients, bs,
are modeled as the most general sequence of trans-
mission rates that is ensured to have a period of 1 yr,
by allowing a unique parameter for each of the 26 two-
week periods of the year (which is repeated across all
years; Finkenstädt and Grenfell 2000). The immigra-
tion process is an unobserved stochastic process. In the
absence of underreporting, the immigration intensity
can be estimated using Markov chain Monte Carlo
methods. However, the estimator of the mean immi-
gration intensity, m̂, will be biased upwards in the pres-
ence of measurement error (see Appendix B). The cur-
rent results have been obtained using the moment ex-
pansion of Eq. 1 (see Appendix B):

am
log(l ) ø log b 1 a log I 1t11 s t It

¯1 log(S 1 z ). (5)t

Notice that we have set g to 1, so that we can uniquely
estimate the mean number of susceptibles, S̄. As de-
tailed in Appendix B, we estimate S̄ marginally on all
the other parameters (using profile likelihood; e.g., Hil-
born and Mangel 1997). The a and the seasonal b pa-
rameters, a total of 27 parameters, are estimated con-
ditionally on S̄, but marginally on m, using standard
linear likelihoods. Finally, we estimate m using a some-
what ad hoc nonlinear minimization (see Appendix B).
For each of the 60 time series we thus estimate 29
parameters on the basis of 597 observations. For all
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FIG. 1. Biweekly counts (in thousands) of measles cases from 1944–1964 for eight cities in England and Wales. The
numbers have been corrected for underreporting (mean reporting rate 5 52%). The cities are arranged by size. The three
first panels (top) represent the three biggest cities in England and Wales (London, Birmingham, Liverpool). The five subsequent
panels show a range of city size down to Teignmouth with 10 500 inhabitants. Black dots along the x-axis represent zero
counts. City names (and populations) are given above the panels. The y-axis numbers are in thousands of cases.

but one of these (m), one-step-ahead prediction (viz.
conditional least squares) is used for estimation. If this
seems like a large number of parameters, we ask the
reader to keep in mind that there are .20 observations
per parameter, and that there are .35 000 observations
in the full spatiotemporal data panel. Note also that we
do not use truly independent data sets to assess model
fit—rather we use the unusually high consistency
across different cities, and what effectively amounts to
a meta-analysis of independent data sets, to vouch for
the generality of the results. Judicious smoothing
would easily reduce the number of seasonal parameters;
however, we leave that as a task for the future.

Since periods of local extinction do not contain in-
formation about a, bs, and S̄, we omit these data points
during the likelihood estimation (Eq. 5). The whole
time series is used to estimate m.

Scaling of rates and parameters.—Several of the pa-
rameters may be expected to scale with city size (An-
derson and May 1991). The mean number of suscep-
tibles is the most obvious, as it depends directly on
population size. The relative importance of the de-
mographic stochasticity is likely to decrease with pop-
ulation size; since lt11 ø It for the measles epidemic,
the coefficient of variation (CV) of the negative bino-
mial process (see, for example, Evans et al. 1993) given
by Eq. 2 is approximately equal to . Note, thus,Ï2/It

that the CV changes through the epidemic cycle. The
population-level immigration rate may be expected to
increase with host community size, since smaller cities
have a lower number of potential ‘‘migrants’’. The rel-
ative importance of spatial (metapopulation) dynamics
vs. local regulatory (transmission) dynamics is likely
to be higher in small populations. The transmission
coefficients, b, may scale with population size de-

pending on whether the dynamics adhere to frequency
dependent transmission (‘‘true mass action’’: l 5 bIS/
N, where N is the host community size) or density
dependent transmission (‘‘pseudo mass action’’: l 5
bIS; De Jong et al. 1995, McCallum et al. 2001).
Whether the mixing coefficient, a, differs between
small and large host communities, is an open question.

RESULTS

The time series of biweekly counts for eight of the
60 populations are depicted in Fig. 1. These eight cities
represent the three largest cities in the England and
Wales data set and a range across other city sizes. The
selection spans the range from London (with .3 3 106

inhabitants prior to the agglomeration into Greater Lon-
don in 1965) to Teignmouth (with 10 000 inhabitants
in 1960). The large cities exhibit fairly regular, gen-
erally biennial, endemic disease cycles with few or no
fadeouts. Cities in the range 50 000 to ;300 000 in-
habitants exhibit occasional and brief fadeouts. The
smallest communities exhibit long fadeouts and irreg-
ular outbreaks. The transition in dynamics is reflected
in the mean number of biweekly cases and the fraction
of zero observations in the (biweekly) time series (Fig.
2). The mean case count rises linearly with city size
(Pearson correlation 5 0.996, P , 0.01). The propor-
tion of zeros declines exponentially up to a critical
community size, after which no zeros are recorded
(Spearman rank correlation 5 20.91, P , 0.01; see
also Bartlett 1960a).

Susceptible reconstruction reveals a mean reporting
rate of just over 52% (SE 5 0.01), ranging from as low
as 30% and as high as 65%. This accords with previ-
ously reported values (Clarkson and Fine 1985, Fin-
kenstädt and Grenfell 2000). There is no relation be-
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FIG. 2. (A) Mean number (across 1944–1967) of biweekly cases reported (not corrected for underreporting) against city
size (in thousands) for the 60 cities. The error bars represents twice the ‘‘naive’’ standard errors (calculated assuming
independence of observations; true errors are likely to be wider). (B) The proportion of the biweekly time series that are
zeros (across 1944–1967) plotted against city size in thousands (on a log scale). The error bars represent twice the ‘‘naive’’
standard errors for the proportion (calculated assuming independence of observations). The critical community size, above
which no fadeouts occurs, is ;300 000–500 000.

tween the reporting rate and city size (Spearman rank
correlation 520.04, P 5 0.73).

The correlation between observed and predicted is
generally very good (Fig. 3). The mean R2 (here mea-
sured as 1 2 [residual deviance/null deviance]) for the
60 fitted models is 0.85. The model fit scales directly
with population size from Teignmouth (R2 5 0.74) to
London (R2 5 0.98). The Spearman rank correlation
between the R2 and the population size is 0.92. This
indicates that the short-term predictability of the dy-
namics increases with population size.

The estimated mean number of susceptibles is pro-
portional to the community size (Pearson correlation
5 0.998, P , 0.01), so that the fraction of susceptibles
appears to be constant around 3.2% (SE 5 0.05; Fig.
4). Through an epidemic cycle, the proportion of the
population that is infected and susceptible appears to
be independent of population size (Fig. 5). The pro-
portions typically span 0% to ;0.3% (with a mean of
0.06%) in the former and 2.1% to ;4.2% in the latter.
This is a smaller proportion susceptible than is gen-
erally estimated for measles in developed countries
(Anderson and May 1991). We will return to this dis-
crepancy in the discussion.

Transmission

The estimated mixing parameter, a, is very close to
unity; The mixing between infected and susceptibles
is therefore close to homogenous. The weighted mean
(weighted, as in a meta-analysis, by the reciprocal of

the variance of the estimates) across the 60 cities is
1.006 (SE 5 0.004). There is weak evidence that a
decreases with community size (weighted Pearson cor-
relation r 5 0.28, P 5 0.03). However, the change
appears to be ecologically unimportant (Fig. 6).

The transmission parameters, bs, are both a function of
season and of community size. The annual mean trans-
mission parameter scales inversely with log(community
size) according to (weighted regression: R2 5 0.95, P ,
0.01; Fig. 7)

log(b̄) 5 3.64[60.39] 2 1.02[60.03] 3 log N (6)

where N is the community size. There is, however,
significant seasonal variation (P , 0.01 for all 60
cities). Fig. 7b shows the seasonal deviation around the
mean log-transmission rate of each city. The figure rep-
resents the (weighted) mean across all the 60 cities.
The signature of school-term aggregation is apparent
in that the realized transmission rates are low during
school holidays. The pattern appears, however, to be
more complex than a simple on/off situation (Finken-
städt and Grenfell 2000, see also Fine and Clarkson
1982a). Note that reporting is often delayed before the
New Year; the estimates during the first and last biweek
of the year are therefore less accurate, and are likely
to be biased.

The reproductive ratio, R0, is the expected number
of secondary cases resulting from one infected indi-
vidual in a community where all individuals are sus-
ceptible: R0 5 bNg. We cannot estimate R0 directly
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FIG. 3. The predicted vs. observed values for the TSIR model for the eight cities depicted in Fig. 1. The R2 values (on
a log scale, measured as 1 2 [residual deviance/null deviance]) are 0.98 (London), 0.96 (Birmingham), 0.92 (Liverpool),
0.95 (Leeds), 0.89 (Cardiff), 0.84 (Ipswitch), 0.79 (Chester), and 0.74 (Teignmouth), respectively. Note that the model fit is
assessed on a log scale, since that is the natural scale for estimation (Eq. 5). City names and populations are given above
the panels. The y-axis numbers are in thousands of cases.

FIG. 4. (A) The estimated mean numbers of susceptible individuals (in thousands) against city size (in thousands). Error
bars represent 95% confidence intervals as determined from likelihood profiles. (B) The same estimates as in (A), but
represented as a percentage of the city size. Note that the x-axis is on a log scale. The horizontal line represents the grand
mean at 3.2%. The y-axis numbers are in thousands of cases; the x-axis numbers are in thousands of individuals.



May 2002 177SCALING OF MEASLES TRANSMISSION

FIG. 5. The percentages of the populations that are in-
fected (y-axis) and susceptible (x-axis). Dots represent the
mean of each population. The sizes of the dots are propor-
tional to the city size. The horizontal bars represent the upper
and the lower fifth percentile in proportion susceptible. The
vertical bars represent the upper and the lower fifth percentile
in proportion infected.

FIG. 6. The estimated mixing coefficient, a, plotted
against city size in thousands (on a log scale). The x-axis
numbers are in thousands of individuals.

without knowing both mixing rates, a and g, of Eq. 1.
We can, however, estimate how the R0 varies as a func-
tion of population size. If we compare the R0s of all
the 60 cities relative to the mean ratio for London, there
appears to be no relationship between R0 and population
size (Fig. 8). Since the transmission rate varies sea-
sonally (Fig. 7), the actual R0 will depend somewhat
on when in the seasonal cycle the infection is intro-
duced. During the biweek of lowest transmission rate
(late August), the relative R0 is only 66.2% (SE 5 2.0%)
of the annual mean. Late December, in contrast, has a
relative R0 of 130.7% (SE 5 4.0%). We discuss the
absolute levels of the R0 in the Discussion.

Colonization and immigration

We found the biweekly immigration rate to scale with
population size. For the smallest community (Teign-
mouth; population 10 000) it is ;0.2 (95% CI 5 0.14,
0.27). In expectation, this yields less than one immi-
grant event about every 3 mo. Communities of
;100 000 have a biweekly rate of about unity. Gates-
head (population 111 000), for instance, has an esti-
mated rate of 0.96 (95% CI 5 0.77, 1.37), an immi-
gration event slightly more frequently than once a
month. Cities around the critical community size (pop-
ulation 300 000), have an estimated rate around four.
The confidence intervals are, however, huge for bigger
cities; Liverpool (population 764 000), for instance, has
an estimated rate of 2.9, that may be as low as 2.0 and
as high as 20. The wide confidence intervals in big
cities reflect how their dynamic trajectories provide
relatively small amounts of information about the im-
migration process. The estimated migration rate scales
roughly with the square root of the population size
(Pearson correlation 0.91, P , 0.01). Note, though, that

important issues remain unresolved with respect to es-
timating coupling; B. Finkenstädt, O. N. Bjørnstad, and
B. T. Grenfell, unpublished manuscript, use detailed
statistical simulation to show that the relationship be-
tween immigration rate and population size may be
spurious. Bias in this parameter, fortunately, does not
affect the other estimates (see Appendix B).

An immigration event will not always spark off an
epidemic in a community where measles has faded out.
The chance of sparking off an epidemic given one im-
migrant is determined according to a geometric distri-
bution with parameter bs(S̄ 1 zt) (see Materials and
methods: The model: A stochastic disease model). This
parameter depends on the number of susceptibles,
which is relatively low in the initial phase of the fade-
out period (typically ;2% of the population) and rises
as susceptibles build up through host reproduction (to
;4–5%). Looking at the smallest city, Teignmouth
(population 10 000) with an estimated minimum num-
ber of susceptibles of 68 and a maximum of 383, the
odds of sparking off an epidemic is ,1:5 with the low
number, and about 1:1 with the high number (using the
mean b-value). The odds are about 1:2 for the mean
number of susceptibles (5 216). The odds of sparking
off an epidemic from one immigrant for mean, low,
and high numbers of susceptibles is relatively invariant
across all the 60 populations at 1:1, 1:2, and 3:2.

More generally, the probability of stimulating an ep-
idemic from u immigrants, is given by 1 2 (1 1 l/u)u,
where l is as defined in Eq. 1. Scaling mean trans-
mission rates according to Eq. 6, we can tabulate the
odds of sparking off an epidemic from one and two
immigrants across a range of city sizes below the CCS
(Fig. 9a). The odds are governed by the proportion of
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FIG. 7. The estimated transmission rates. (A) The mean (across the seasonal cycle) transmission rate, b (on a log scale),
plotted against city size in thousands (on a log scale). The error bars represent the across-year standard deviation around the
mean. The x-axis numbers are in thousands of individuals. (B) The seasonal deviation (by 2-wk interval) around the mean
transmission rate. Estimates represent weighted means across the 60 cities. The error bars represent 1 SE around the mean.
The curve along the top shows school terms (high level) vs. major holidays (low levels) through the year (Fine and Clarkson
1982a).

FIG. 8. The relative basic reproductive ratio for the 60
cities, against city size in thousands (on a log scale). The
ratios have been scaled according to the mean in the largest
city (London). The circles represent estimates based on sea-
sonally averaged transmission rates. The vertical bars rep-
resent the relative R0 for the 2-wk period of lowest and highest
transmission rates (see Fig. 7). The x-axis numbers are in
thousands of individuals.

susceptibles; thus, when that proportion is relatively
invariant across the populations, the odds will be fairly
invariant. With proportions ranging from ;2% to just
over 4%, the odds are predicted to vary from 1:2 to

just over 1:1 with one immigration event, and from just
over 1:1 to ;4:1 with two (Fig. 9a).

Once an epidemic has started, the influence of any
additional immigrants is small. In fact, the relative in-
fluence of an immigrant in the subsequent growth of
the epidemic drops geometrically with the number of
local infecteds. (We here measure ‘‘relative influence’’
as the proportionate difference in the epidemic growth
from both local and immigrant infection relative to that
expected solely from local contagion.) An immigrant
will have ,5% influence on the growth rate as soon as
there are more than about five resident infected indi-
viduals. By ;20 resident infecteds the influence is
.1%. The relative influence of immigrants is tabulated
in Fig. 9b. Among the 60 cities, the influence of an
individual immigrant is ,10% all but 0–10% of the
time in the cities with populations .500 000. This ex-
plains why there is so little information pertaining to
the migration process in large cities, and why the con-
fidence intervals for m are so wide. For cities with
populations between 200 000 and 500 000, the influ-
ence is ,10% for ;80% of the time. Even for the very
smallest cities (population ,50 000), the influence is
negligible as soon as the epidemic has flared up and is
past a few resident infecteds (Fig. 9b). These results,
together with the -scaling of the CV of the de-Ï2/I
mographic stochasticity (see Materials and methods:
The model: Scaling of rates and parameters), indicate
that there is a threshold shortly after epidemic take off
where the dynamics are approximately ‘‘deterministic’’
(in all but the smallest communities; see Grenfell et al.
2002).
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FIG. 9. (A) The odds (on a log scale) of sparking off a new epidemic plotted against percentage of the population that
is susceptible given one immigrant (lower lines) or two immigrants (higher lines). The odds are relatively invariant across
community size (the cluster of lines represents six different community sizes below the CCS. The grey-shaded area represents
the range in susceptible proportions observed in the data. (B) The influence of one immigrant on the disease dynamics (as
a percentage of the growth rate; on a log scale) as a function of the proportion of resident individuals that are infected and
the size of the host community.

DISCUSSION

The dynamics of measles have played a key role in
theoretical epidemiology (Bartlett 1957, 1960a, Fine
and Clarkson 1982a, Schenzle 1984, Olsen and Schaf-
fer 1990, Sugihara and May 1990, Anderson and May
1991, Grenfell 1992, Bolker and Grenfell 1993, 1996,
Mollison and Din 1993, Kendall et al. 1994, Ellner et
al. 1995, 1998, Rhodes and Anderson 1996b, Keeling
and Grenfell 1997). This work parallels the develop-
ment of several ideas in ecological population dynam-
ics (intrinsic density dependence vs. extrinsic forcing,
deterministic vs. stochastic dynamics, spatial coupling
and synchrony, etc.), though we would argue that mea-
sles provides a less cluttered path between data and
mechanistic models than most other systems. Child-
hood infections have also been a key test bed for un-
derstanding dynamical systems and associated statis-
tical methodologies at the population level (Schaffer
and Kot 1985, Sugihara et al. 1990, Casdagli 1991,
Rand and Wilson 1991, Stone 1992, Drepper et al.
1994, Grenfell et al. 1994, Stone et al. 1996, Finken-
städt and Grenfell 2000). In this paper, we presented a
modeling framework that weds the theoretical and sta-
tistical approaches through a mechanistic, stochastic
model for measles epidemics (see also Finkenstädt and
Grenfell 2000). We subsequently developed and ap-
plied an estimation framework to quantify the param-
eters of the model. We fitted the model to data from
60 cities from England and Wales exhibiting the range
from endemic disease cycles (‘‘Type 1 dynamics’’ sen-
su Bartlett 1957) to irregular episodic outbreaks (‘‘Type
3 dynamics’’). In the companion paper (Grenfell et al.

2002), we show that the model is able to describe and
regenerate the quantitative and qualitative properties
of the different types of dynamics in these 60 cities.
In the current paper we have focused on how the dy-
namic rates scale with host community size, and their
associated implications for the ecology of the infec-
tious disease. An overarching finding is that certain
parameters scale in a simple fashion across three orders
of magnitude of host population sizes. Other parame-
ters/descriptors are fully invariant across the same
range. The case count, for instance, scales linearly with
city size (Fig. 2). This scaling is, however, not sur-
prising since it is well known that essentially all chil-
dren were infected with the virus in the prevaccination
era (Anderson 1982).

Mixing, transmission, and R0

The mixing parameter (a) is found to be nearly in-
dependent of host community size and very close to
unity (Fig. 6). This indicates that the transmission dy-
namics are close to homogenous mixing. Note, though,
that analyses presented by Finkenstädt and Grenfell
(2000) suggest that a is slightly lower than unity (see
Discussion: Discrete time modeling). The seasonal pat-
tern of disease transmission is also similar across the
range of host population sizes (Fig. 7b). This pattern
is a fair reflection of the annual cycle of aggregation
among school children. Periods of low transmission
coincide with school holidays (see Discussion: Implicit
age structure).

In contrast to the seasonal pattern of transmission,
the mean transmission rate ( ) scales tightly with hostb̄
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community size. Log( ), is inversely proportional tob̄
log(size) (Fig. 7a). This scaling is consistent with fre-
quency dependent transmission (true mass action, the
force of infection is determined by bI/N) rather than
density dependent transmission (pseudo mass action,
the force of infection is given by bI; De Jong et al.
1995, McCallum et al. 2001). Frequency-dependent
transmission occurs where the local spatial density of
‘‘transmissive’’ contacts between susceptible and in-
fectious individuals is independent of population size
(Diekmann et al. 1996, Begon et al. 1998, 1999, Swin-
ton et al. 2002). Viewed in this context, our results
suggest at first glance an ‘‘urban population density’’
common across small towns and large cities. Generally,
this flies in the face of intuition about human diseases,
since we would expect a markedly higher density of
contacts in large cities, especially if we take into ac-
count local stochastic ‘‘gaps’’ in transmission in small
towns. (An important illustration of this latter epide-
miological effect of population density was provided
by Anderson and May [1991], who analyzed the dy-
namics of smallpox eradication. Regions with a higher
density of susceptibles required higher vaccine uptake
rates for local disease extirpation testifying to increased
transmission rates.) However, for measles, the scaling
of with population size is likely to arise because theb̄
effective density of the core group, children in school
classes and their epidemiologically coupled preschool
sibs, vary much less with urban population size than
the overall density of adult contacts. Thus, social or-
ganization appears to render the density and size of the
core group for disease transmission remarkably in-
variant. There is much scope for refining the TSIR
approach here, particularly in examining the scaling of
infection rate across a wider range of urban and rural
densities and analyzing the impact of cross-cultural
variations in family size and schooling patterns on dis-
ease transmission (Black 1984, Anderson and May
1991, Cliff et al. 1993, Grenfell and Bolker 1998).

One consequence of the scaling in transmission rates
is that the mean force of infection (mean across season)
is independent of host population size at 0.019 (SE ,
0.001). The basic reproductive ratio, R0, is similarly
relatively independent of population size (Fig. 8).

The exact value of R0 can only be estimated if all
mixing coefficients are known. If we assume mixing
to be homogenous, the R0 that would correspond to the
mean transmission rate is 29.9 (SE 5 0.9) and over the
seasonal cycle it would change from a minimum of
19.8 (SE 5 0.6) in August to a maximum of 39.1 (SE

5 1.2) in December. These estimates are significantly
higher than the standard estimates of ;14–18 (Ander-
son and May 1991). There are two possible biases in
our estimate. First, if the mixing rate, g, is smaller than
unity, then the R0 from the TSIR model will be lower
than numbers calculated. Second, the R0 will be lower
if the characteristic time scale is somewhat shorter than
14 d (see Discussion: Discrete time modeling).

The mean number of susceptibles is found to be di-
rectly proportional to the community size (Fig. 4). So
much so, that the mean proportion of susceptibles ap-
pears invariant at ;3% of the host population. Epi-
demiological theory (see Anderson and May 1991) pre-
dicts that the mean proportion of hosts susceptible to
a microparasite governed by simple SIR dynamics is
inversely related to R0. As a conjecture to more com-
plicated (seasonally forced) dynamics, this seems to
work for the current data set. Applying N/S̄ as a crude
estimator, R0 is predicted to be invariant of population
size at 31.9 (SE 5 0.6). Note, though, that a mean
susceptible proportion of 3% is significantly lower than
the 9% level concluded by Fine and Clarkson (1982b).
The discrepancy may be due to a number of factors; a
possible candidate is the collapsing of the age structure
implicit in the model (Earn et al. 2000). Second, the
problem could also arise from our assumption that the
‘‘mixing’’ parameter on susceptible density (g in Eq.
1) is unity. Finally, as is the case for R0, the estimate
of S̄ depends partly on the characteristic time scale
assumed. We explore this dependence below (see Dis-
cussion: Discrete time modeling).

Migration and coupling

The disease immigration rate is estimated to scale
with population size. As conjectured by Bartlett
(1960a), the immigration rate appears to scale slower
than linearly with population size. The pattern must be
viewed with caution, however, since Finkenstädt et al.
(2002) show that the relationship between immigration
rate and population size may partly be an artifact of
differential bias in small vs. large cities.

The odds of sparking off an epidemic (given one
immigrant and prior disease extinction) appears to be
relatively invariant to population size (Fig. 9a). This
seems to come about through balancing of the trans-
mission parameter against the mean number of sus-
ceptibles, so that the proportion of susceptibles remains
between 2% and just over 4%. Grenfell and Harwood
(1997), Grenfell and Bolker (1998), and Grenfell et al.
(2001) discuss the metapopulation dynamics of mea-
sles. The fact that the susceptible population size never
grows (through host reproduction) much above where
the odds of sparking off an epidemic are even, indicates
that the regulation through metapopulation dynamics
is rather efficient. Upon growing above a certain size,
the disease quickly ‘‘catches fire’’ to deplete the sus-
ceptible population size.

The influence of immigration is of little importance
in big cities (Fig. 9b), and even for small cities im-
migration is only important at the onset of epidemics.
Once the epidemic gains momentum additional im-
migrants have little influence on the course of the tra-
jectory. Thus, both the stochasticity due to the immi-
gration process as well as the stochasticity inherent in
the birth–death process decrease fairly rapidly with
community size and epidemic size. Above some thresh-
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old, we can thus think of the fate of the epidemic as
deterministic (in all but the smallest communities;
Grenfell and Harwood 1997).

In the model, we assumed time independence of the
immigration intensity. This is likely to be overly sim-
plified because the dynamics of measles in England
and Wales are highly synchronized between cities
(Bolker and Grenfell 1996, Grenfell et al. 2001). The
result is a country-wide pool of infecteds that varies
greatly through time. The true immigration intensity is
likely to vary as a function of changing donor popu-
lation size, and the pattern of coupling between cities.
We are currently working to understand better the cou-
pling in disease dynamics (Grenfell et al. 2001). A
consequence of time-varying immigration intensities
will be that the recolonization process will be more
predictable than assumed in our model (Eqs. 1–4).
‘‘Immigration’’ of infection to a town may in fact occur
by direct movement of nonresident infected individuals
or via temporary excursions by local susceptible in-
dividuals. In our current model formulation, we treat
these as synonymous. Teasing out any differences aris-
ing from these two modes of spatial transmission is an
important area for future work.

Implicit age structure

The transmission rate of measles is known to be age
structured (Fine and Clarkson 1982b, Schenzle 1984,
Grenfell and Anderson 1985, Anderson and May 1991,
Grenfell 1992). The contact rate is highest among
school children, because the schools represent a de-
mographic hot spot for mixing between infecteds and
susceptibles. School-related aggregation of children in-
duces a strong seasonal forcing on the transmission
rates as evidenced in the data (Fig. 7b, see also Fin-
kenstädt and Grenfell 2000). The correspondence be-
tween the estimated transmission rates and the term
time is, however, less than perfect. While the school
aggregation is an on/off process, the seasonal transition
changes more gradually. The transmission rates are
generally lower during school holidays than during
term, and the transmission rates peak in the beginning
of school term. However, the transmission appears to
drop gradually through the term. A probable reason for
this lies in the age structure; high risk (i.e., high con-
tact) individuals are removed from the susceptible pop-
ulation at a higher rate than low risk individuals. The
mean (realized) contact rates will therefore drop with
time. (Such effects of heterogeneity are well known in
statistical demography; see for example, Vaupel et al.
1979, Keyfitz and Littman 1980, Vaupel and Yashin
1985). In line with this, we have analyzed data from
an age-structured model (the RAS [Realistic Age-
Structured] model) with discrete school terms and
found that the realized transmission rates also here de-
cline through the term as a consequence of the hetero-
geneity induced by age structure (B. Finkenstadt and
B. Grenfell, unpublished results). Earn et al. (2000)

develop this further to show that age structure can the-
oretically be collapsed to a simple homogenous-mixing
model by making the transmission parameters variable
with time. This set of results offers a way to understand
the systematic temporal variation in transmission rates.
At a deeper level, Earn et al.’s (2000) result motivates
how we can fit a nonstructured model, such as that
described by Eqs. 1–4, to a phenomenon that is known
to be age structured; the nonstructured model with
transformed transmission coefficients may be thought
of as having an implicit age structure.

Discrete time modeling

In response to Fine and Clarkson’s (1982a) original
discrete time model, Mollison and Din (1993) argued
that the characteristic time scale of measles might be
somewhat less than 14 d. To explore whether our results
depend critically on the characteristic time scale, we
carried out an analysis using 36 time steps/yr (just over
10-d time steps). Since the data are reported on a week-
ly basis, we obtained 10-d step time series by fitting
an interpolating (cubic) spline through each time series
and then integrating within each 10-d time step. (This
inevitably introduces an additional level of sampling
error because the output interval [10 d] is not a multiple
of the observational interval [7 d]. The results appear
to be qualitatively robust to this added error). Applying
susceptible reconstruction and the TSIR model to this
new set of data, we find that most parameter estimates
are unaffected. The mixing coefficient, a, is still close
to unity (mean 5 0.96, SE 5 0.01); The seasonal pattern
of transmission maps closely onto that revealed by the
14-d analysis; The mean transmission is, on average,
20% lower (the expectation given the shorter epidemic
period is 29%), and scales inversely with population
size. We have also checked that the dynamic behavior
of the 10-d model corresponds to that of the 14-d mod-
el—annual cycles for high birth rates and/or low sea-
sonality and biannual cycles for low birth rates and/or
high seasonality (Grenfell et al. 2002).

The two parameters that do appear to depend on time
step length are the reproductive ratio, R0, and the mean
number of susceptibles, S̄. The profile likelihood es-
timates of the mean proportion of susceptibles based
on the 10-d model range from 3.5% to 8.5% with a
global mean of 5.0% (SE 5 0.1%). The estimates are
more heterogeneous than for the 14-d analysis. This is
possibly due to the error added through the re-aggre-
gation of the data. The estimated proportions for the
four larger cities (London, Birmingham, Liverpool, and
Manchester) are 7.1%, 5.9%, 7.2%, and 6.0%, respec-
tively. These estimates are closer to, but still signifi-
cantly lower than, the 9% level concluded by Fine and
Clarkson (1982b).

The invariance of R0 with population size remains
for 10-d-based estimates. The estimates, however, have
lower precision for all but the biggest cities. In the four
biggest cities the mean R0 is estimated to 17.9, 18.8,
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17.6, and 16.8—estimates in close agreement with the
conventionally accepted values for prevaccination
measles. Thus, future analysis of the TSIR model in
conjunction with age-structured serological data, and
more detailed clinical data may be needed. Fortunately,
all but two of the parameters are robust to the char-
acteristic time scale of the infection.

We have used a discrete time model to understand a
process that is inherently continuous in time. Prelim-
inary work comparing the TSIR model and a contin-
uous-time SIR model with mass action transmission
(K. Glass and B. Grenfell, unpublished manuscript),
indicates that reducing a slightly below unity in the
former may act as a correction for the discretization of
the continuous-time infectious process. However, with
careful choice of a (K. Glass and B. Grenfell, unpub-
lished manuscript), the dynamics of the TSIR model
is qualitative and quantitative mirroring the behavior
(including bifurcation patterns and existence of mul-
tiple attractors) to the continuous-time age-structured
model (Earn et al. 2000). A separate motivation for the
discrete model is provided by the strong pulsing of the
dynamics associated with school transmission (espe-
cially weekend breaks), and the relatively low vari-
ances in the durations of the incubation and infectious
periods (Keeling 1997). The detailed high-frequency
signature in the data (Keeling and Grenfell 1997) tes-
tifies to some level of generation separation in the con-
tinuous-time process. (For further discussion of gen-
eration separation in continuous systems see Gurney
and Nisbet 1985, Jansen et al. 1990). However, to ac-
knowledge the continuous nature of the birth–death
process, we have formulated the model with a condi-
tional variance (the negative binomial) as predicted
from the theory of a discretely sampled continuous-
time birth–death process (Kendall 1949). The model
may therefore also be seen as a generalized birth–death
process that is approximated by a piecewise (simple)
constant birth–death process. Further formal compar-
isons of these models are in progress.

In conclusion, this paper illustrates the simple epi-
demic clockwork that underlies the dramatic cyclical
behavior of measles. The patterns themselves, and their
implications for vaccination, have generated a large
and distinguished literature, in both modeling and data
analysis. Here, we have developed a mechanistic time-
series model that makes a first step towards unifying
these approaches. The model captures the short-term
(generation step) behavior of our 60 city data set re-
markably well. In particular, it allows us to explore, in
the largest such analysis to date, the scaling of epi-
demiological parameters with population size across
three orders of magnitude in host population size. In a
companion paper (Grenfell et al. 2002) we show how
the TSIR model captures the long-term dynamical be-
havior of measles, and discuss how the balance between
noise and determinism scales in this highly nonlinear
ecological system.
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APPENDIX A

A description of the assumptions made in order to estimate the parameters of disease transmission in Eq. 1 is available
in ESA’s Electronic Data Archive: Ecological Archives M072-002-A1.

APPENDIX B

The development of the estimating equation is available in ESA’s Electronic Data Archive: Ecological Archives M072-
002-A2.


