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C H A P T E R15
HYBRID OLFACTORY BIOSENSOR

USING MULTICHANNEL

ELECTROANTENNOGRAM:

DESIGN AND APPLICATION
John R. Hetling, Andrew J. Myrick, and Thomas C. Baker

15.1 INCORPORATING NEURAL CELLS AND TISSUE
IN HYBRID DEVICE DESIGNS

The term biosensor is used to describe a sensing system comprised in part of living matter

or of materials derived from living matter (e.g., enzymes, antibodies, nucleic acids).

Generally, the actual sensing element (i.e., front end) in the system is living, and the

response of the living component is transduced by a second conventional sensor (e.g.,

an electrode) and the signal is measured and stored electronically [1]. Living organisms

can be quite robust in terms of their ability to maintain homeostasis in a wide range of

environments, but isolated cells, tissues, and organs require special consideration to

keep alive when isolated from the parent organism. However, it is primarily single cells

that are targeted for inclusion in biosensors. A reasonable conclusion is that biosensors

are bulky given the significant amount of instrumentation required to keep isolated cells

alive and quite fragile under field conditions where a sensor might be used. So what motiv-

ates the development of biosensors? The answer includes high sensitivity, high specificity,

and speed. The same exquisite sensitivity to individual species of molecules in the

surrounding milieu which allows a cell to play its particular role in the physiology of

an organism can be exploited to detect those molecules in the parts-per-billion range,

and this can often be accomplished on a millisecond time scale.

All cells are sensitive to environmental parameters such as pH, temperature, and

toxins (any element or compound becomes a toxin at sufficiently high concentration) as

well as basic metabolic compounds (e.g., glucose, oxygen, carbon dioxide). However,

many cells are specifically sensitive to certain chemicals for which they express

membrane-bound receptors (e.g., glutamate receptors expressed by cortical neurons) or

certain types of energy (e.g., light sensitivity of retinal photoreceptor cells, stretch sensi-

tivity of muscle spindle cells). A principal design feature of a sensor is its specificity, or the

degree to which its output can be influenced by inputs other than the desired measurand. In

other words, if you are building a biosensor to measure glucose, you would not want the

sensor to also be sensitive to oxygen concentration unless you could absolutely control for
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oxygen concentration in your system. The specificity of membrane-bound receptor pro-

teins is another advantage of cell-based biosensors.

The choice to use a biosensor depends on whether the sensitivity, specificity, and

speed offset the fragility, bulky nature, and expense inherent to their use. A primary motiv-

ation in biosensor research is to improve durability and reduce size and cost. The specific

type of biosensor to be described here is designed to measure airborne chemicals, or odors.

The approach is slightly different from most biosensor development in that the living

component is the entire olfactory organ of an insect, the antenna. The biological response

to an odor is a change in membrane potential of olfactory neurons contained within the

antenna, and this biopotential can be recorded with electrodes. The system for recording

the electroantennogram (EAG) as well as an EAG analysis approach allowing discrimi-

nation between different analytes (airborne volatile compounds) will be described in

detail below.

15.2 APPLICATIONS FOR OLFACTORY SENSORS

Olfaction is the sensing of airborne molecules; an olfactory sensor is distinguished from a

taste sensor in that it does not need to contact the solid or liquid source of the detected

molecule. As many compounds of interest exhibit some degree of volatility, an olfactory

biosensor can be thought of as a remote sensor. Potential applications of olfactory

biosensors include and surpass applications of artificial sensors, assuming their inherent

disadvantages can be overcome (there are theoretical and technical limitations on the

size, sensitivity, specificity, and speed of artificial sensors). Industrial uses include

quality control of aromatic products (e.g., perfume, wine) and environmental safety (a

more refined approach to the canary in the coal mine). Airports routinely use an artificial

olfactory biosensor in screening luggage for explosives and drugs (your bag is swabbed

with a small white pad, which is then scanned for the illicit substance). Olfactory biosen-

sors are sensitive to a long list of anthropogenic compounds of interest to security and

defense, including drugs, explosives, and chemical warfare agents. For many insects, the

ability to locate specific species of plants, or even individual plants in a certain state of

health or maturity, is important for food or in their reproductive cycle; this is often accom-

plished by sensing airborne volatiles. Similarly, the body gives off specific odors depend-

ing on the state of health (e.g., ketones on the breath of diabetics). Olfactory biosensors

may find use in the clinic either for rapid screening or as a high-level diagnostic tool.

15.3 STRATEGIES FOR ARTIFICIAL NOSE DESIGN

The artificial nose, as presently conceived, can be distinguished from other chemical

detectors (such as pH or NO electrodes) by the promise of detecting an arbitrary

number of different compounds with the same device. Where single-chemical detectors

often rely on a semipermeable membrane specific to the molecule to be detected, artificial

noses generally consist of an array of semiselective, cross-reactive sensors which demon-

strate distributed specificity. There are a number of different artificial nose technologies

currently being developed (see Table 15.1) [2–5]. An array of different classes of

sensors yields a set of response vectors representing the sensor output, which must then

be interpreted by a pattern recognition scheme. This has been done by using pattern rec-

ognition methods based on statistical and computational neural network approaches [5].

Current trends in artificial nose development include the use of temporal features in the
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detector response and the development of neural networks which can learn new odors

on-line, without the need to retrain the entire odor library [5].

However, as noted in Table 15.1, there are three important limitations of artificial

nose technology. First, the long response times (tens of seconds to minutes) of most

approaches limit them to steady-state measurements, where the steady state may take

impractically long times to reach. Steady state is not often attained under many field

conditions where an artificial nose might find application (e.g., a turbulent wind

stream). Second, the number of sensor classes comprising the array is limited to about

three in present designs. This limits the number of compounds which can be distinguished

and generally requires advanced knowledge of the compounds to be detected. Third,

all artificial nose technologies exhibit low sensitivity as compared to most biological

olfactory sensors.

15.4 BIOLOGY OF INSECT OLFACTORY SYSTEM

As stated above, the olfactory biosensor described here uses an insect olfactory organ, or

antenna, as the sensing element. A brief description of the anatomy and physiology of

this system will be helpful. The principal arrangement of the biological olfactory system

is quite well conserved across phyla, from insects to mammals. Olfactory receptor

neurons (ORNs) exhibit a response when airborne molecules bind to metabotropic

membrane receptors and activate G-protein cascades, providing amplification and even-

tually leading to membrane potential changes and characteristic trains of action potentials

TABLE 15.1 Signal Transduction Technologies in Use or Under Development for an Artificial Nose
[5]. Each Approach Incorporates Multiple Sensor Classes with Differing Sensitivity Spectra Based on
Variations in the Sensor Component which Interacts Directly with the Analyte (i.e., Odor). For
Example, Attachment of Various Functional Groups to the Backbone of Conducting Polymers to
Create Unique Polymers with Differing Affinity for a Given Analyte. Each Class of Sensor Within a
Given Approach Requires Individual Fabrication; Individual Sensors Then Need to be Combined
into One Device. This Labor-Intensive Process Imposes a Practical Limit of About Three Sensor
Classes within a Given Device. This in Turn Limits Discrimination Across Brad Categories of Analytes

Signal transduction

technology Principal of operation Primary limitations

Metal-oxide and MOSFET Electrical resistance of

semiconductor changes

when analyte molecules

are adsorbed onto surface

High power levels required

damaged by sulfur-

containing compounds

and weak acids

Low sensitivity

Conducting polymers Electrical conductance of film

changes with reversible

adsorption of analyte

molecules

Long response times

Drift

Poor reproducibility

Expensive

Piezoelectric-based (accoustic

wave devices)

Analyte molecules adsorbed by

thin films on crystals, altering

RF resonance frequency

Drift

Low sensitivity

Poor reproducibility

Fiber-optic/solvatochromic

fluorescent dye

Analyte molecules alter polarity

of dye’s surroundings,

affecting fluorescence

Low sensitivity

Long response times

Limited lifetime

(photobleaching)

15.4 BIOLOGY OF INSECT OLFACTORY SYSTEM 245



[6–8]. The antenna is Q1comprised of a cuticle layer, contiguous with the rest of the insect

exoskeleton, which contains the dendrites of the ORNs. Contact with the environment is

made through a large number of fenestrations or pores in the cuticle; airborne compounds

diffuse through the pores and to the dendrites. If the receptor protein expressed by an

individual ORN binds to the odorant molecule, a G-protein-mediated transduction

cascade, very similar to the phototransduction cascade in photoreceptor cells, results. A

single activated G-protein acts on many (hundreds to thousands) substrate molecules,

thereby providing a level of molecular amplification to the odor signal; this amplification

is one reason a biosensor is inherently very sensitive. If the stimulus is strong enough,

that is, enough receptor proteins were bound, threshold is reached and an action

potential results.

These sensory neurons synapse onto a variety of interneurons in the antennal lobe

(AL), the output of which appears on mitral cells which lead to higher processing struc-

tures in the brain. Sensory cells, numbering in the hundreds of thousands, have overlap-

ping, semiselective, yet broad response spectra. The result of the transduction-level

coding and the olfactory bulb processing is a system that exhibits a remarkably high

sensitivity with broadband detection and discrimination. These are desirable features in

any detector system and represent active areas of research in many areas of information

technology.

15.5 BIOLOGICAL OLFACTORY SIGNAL PROCESSING

The ORNs, numbering around a few hundred thousand, may be divided into a smaller

number of groups defined by the receptor protein expressed by each cell. There are

about a hundred individual receptor proteins for the average insect. Each ORN expressing

a given receptor protein projects axons to a specific glomerulus in the AL. These glomeruli

are the first synaptic relay in the insect olfactory system and are analogous to the olfactory

bulb in mammals. Each glomerulus is therefore “tuned” to the sensitivity spectrum of a

particular receptor protein. Projection neurons carry the olfactory information from the

AL to the mushroom body, where, through a set of feedback mechanisms, the represen-

tation of the odor in the neural coding space is refined before being passed on to higher

perceptual levels.

This refinement of the neural representation of an odor, well described in a

review by Laurent [9], is necessary because organisms are in general capable of

discriminating between a number of odors that greatly exceeds the number of different

receptor proteins. That is, each odor does not have a “hard-wired” connection to a

perceptual center. This is possible because each receptor protein does not bind to only

one specific molecule but has a finite sensitivity spectrum. A single receptor protein

can bind to a family of compounds which differ slightly in molecular shape and

charge distribution; these differences define the parameter space of odorant molecules.

The parameter space of odors (i.e., the molecular properties of odorants to which sensory

neurons are sensitive) is not precisely defined. However, structure–activity studies

(chain elongation, double-bond position, functionality) performed on noctuid olfactory

neurons in vivo have been particularly enlightening in understanding that ligand–

receptor interactions can behave according to conformational energy and electron

distribution models and not merely to space filling [10–12]. In short, some compounds

bind more strongly than others, and a plot of binding efficiency versus variation in

specific molecular parameters results in the sensitivity spectrum of a given receptor
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protein. By interpreting the relative responses of several ORNs, each expressing differ-

ent receptor proteins, a specific odor can be identified as unique.

15.6 PROOF OF CONCEPT FOR MULTICHANNEL
EAG: DIFFERENTIAL SENSITIVITY BETWEEN SPECIES

The potential utility of using insect antennae as sensitive and discriminating biosensors for

known agents in the environment stems from the successful use of the single-antenna

EAGs that have been used to monitor the relative concentrations and even plume struc-

tures of high concentrations of known pheromone odorants (to which the selected EAG

detector was tuned) [13–16]. An EAG response is thought to result from the summed

generator (DC) potentials of individual olfactory receptor neurons that have been depolar-

ized by exposure to an odorant, with the depolarizations of those receptor neurons closest

to the recording electrode contributing more to the amplitude than those further away [17].

It has long been known, however, that EAG responses to any series of compounds form a

graded series and are not compound specific. Even for sex pheromone components, the

most specific of behaviorally active odors for insects, anthropogenic analogs differing sig-

nificantly by chain length or functional group have been shown to be capable of generating

significant EAG responses having amplitudes that are only 50–25% reduced from the

natural pheromone compound itself [18].

Previous studies have hinted that EAG response spectra to a range of odorants can

be at least a little species specific [19–21]. However, the concept of creating a discrimi-

nating EAG biosensor system by using an array of antennae that compares response

amplitudes across the array had only very recently been suggested and attempted [22].

A discriminating EAG formed by antennae from multiple species would require exploit-

ing only very slight species-to-species differences in the EAG response. Obviously, a

single EAG signal from a very broadly tuned antenna responding in graded fashion to

a wide variety of odorants cannot be used to discriminate one volatile compound from

another.

Park et al. [22] created a discriminating EAG biosensor by utilizing differences in

the EAG responses of several antennae from different species of insects monitored simul-

taneously. Their system made optimal use of the ability of the EAG to respond to sharp

peaks in concentration such as those generated by the flux from individual odor strands

in an odor plume passing over the antennae [13]; two or three depolarizations (i.e., odor

strands) per second were registered. As shown by Baker and Haynes [13], the ability of

an insect antenna to respond quickly to peak concentration in the strands in a plume

makes it a much more sensitive system than slower responding artificial sensors whose

polymers can only take a reading of time-averaged mean concentrations [23, 24].

The proof of the insect antennal array concept came when Park et al. [22] were able

to discriminate most of the 20 different compounds they tested by comparing EAG

response spectra across only five different species. The 20 compounds were presented

as single puffs to individual antennae (Fig. 15.1), and the mean amplitudes of response

to each compound over several replicates were calculated and normalized with respect

to EAGs from a standard compound. The histograms developed from this process resulted

in clear patterns of relative EAG amplitudes across the five species’ antennae used. Most

of these were discriminable by eye (Fig. 15.2).

Park et al. [22] then used simple clustering algorithms on the EAG amplitude

information alone and confirmed what was apparent by eye. The cluster analysis
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clearly demonstrated that compounds from similar classes (such as medium-chain-length

aliphatic alcohols and longer chain length aliphatic alcohols) clustered together

(Fig. 15.3). They also showed that compounds within classes were distinguishable

based on characteristics such as chain length (Fig. 15.3).

Thus the proof of concept for using a multichannel EAG to discriminate between an

arbitrary number of odors had been established. However, several technological issues

needed to be addressed to make the EAG biosensor practical. Principal among these

were the design of a multichannel electrode array and preamplifier optimized for field

condition recording of the EAG and the automation of the odor discrimination analysis.

Electronic optimization of the preamplifier will assure that the extreme sensitivity of

the antenna can be exploited [i.e., maximize the signal-to-noise (SNR)]. Colocalization

of antennae will assure that an odor strand in a turbulent air stream is sensed by each

antenna at approximately the same time. Minimizing the size of the preamplifier will mini-

mize perturbations to the air stream. Automation is important in order to take advantage of

the inherent speed of the hybrid system and to fulfill many potential applications requiring

Figure 15.1 Differential EAG response

amplitudes when either cyclohexanone or

ocimene was puffed over antennae of

Microplitis croceipes (MC; parasitic wasp),

Heliothis virescens (HV; moth), Ostrinia

nubilalis (ON; moth), or Helicoverpa zea

(HZ; moth). Each horizontal division is

5 mV, and each vertical division is 10 s.

Figure 15.2 EAG response amplitudes from five different insect species’ male antennae

when presented with four different straight-chain alcohols: DM ¼ Drosophila melanogaster,

HV ¼ Heliothis virescens (moth), HZ ¼ Helicoverpa zea (moth), ON ¼ Ostrinia nubilalis

(moth), and MC ¼ Microplitis croceipes (parasitic wasp).
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autonomous operation (e.g., roving robots searching for land mines). Early answers to

each of these challenges are described in the following sections.

15.7 DESIGN OF MULTICHANNEL EAG SYSTEM

In the design of an EAG acquisition system, it is desirable to maximize the SNR obtained.

It is also desirable to eliminate or limit as many sources of interference as possible.

Minimization of noise and interference allows maximal information to be extracted

from the signal during postacquisition processing. The source of noise is in the physical

components that take part in processing the input signal, while interference originates

outside the signal path. Sources of interference include 60-Hz power-line radiation, radio-

frequency radiation, electronic changes due to temperature drift, mechanical agitation, and

power supply ripple. Noise sources are numerous but often include thermal (Johnson)

noise, 1/f or flicker noise, shot noise, and quantization noise.

A further source of interference arises from inside the “sensor” (i.e., the antenna),

which contains not only chemoreceptors but also mechanical receptors. As air is swept

across the antenna, mechanoreceptors are stimulated, giving rise to a source of interfer-

ence in this application that cannot be eliminated. A source of signal noise is likely to

be related to the origin of the signal. The EAG voltage changes are caused by ensembles

of individual action potentials. The number of neurons involved appears to be on the order

of 105, probably an order of magnitude less for any individual response (referred to below,

by convention, as a depolarization). Together, the number of neurons and their firing rate

Figure 15.3 Cluster analysis of five-species EAG response profiles to 20 different volatile

compounds. Decanol (10:OH) and nonanol (9:OH) cluster together but separate from octanol

(8:OH) and heptanol (7:OH). Visually this should be apparent in Figure 15.2. Compounds 8–11

and 13 are all monoterpenes, sitting in a separate cluster of EAG antennal array response

patterns than the aliphatic alcohols.
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present a fundamental limit to the amount of information that can be obtained from the

signal. Despite the inherent sources of distortion in the sensor, it is still desirable for

research purposes to provide the most accurate EAG measurements possible by limiting

electrical sources of interference and noise.

Biopotential amplifiers are traditionally located remotely from the signal source,

which is Q2connected via shielded cables to a differential amplifier. A long cable has a ten-

dency to pick up interference, or generate interference as a result of mechanical agitation,

known as the triboelectric effect. Further, a differential amplifier (two amplifiers per

channel) is needed to reduce power line interference. In the EAG application, a single

ended active probe can amplify the signal very close to its source, which is also physically

small, and send a much higher power signal through a cable for further amplification and

filtering. The power gain is high enough to overpower interference sources. For instance,

the power gain of the EAG active probe described here, with 500 kV input resistance, is

2 � 107. Another advantage to this approach is that only one preamplifier per channel is

needed. Further, amplifier bias current is provided through the antenna itself without the

need for biasing circuitry.

A good way to begin a design is to first draw a general block diagram (Fig. 15.4).

The hardware component to be described here is the “amplify-and-filter” section. The

PC-based converter is readily available from many vendors. The amplifier interfaces

with the antennae at its inputs and the data converter at its outputs. To begin designing,

it is first necessary to characterize both the antennae and the data converter.

Figure 15.5 shows a Thevenin equivalent circuit for a typical insect antenna. The

antenna acts as a voltage source, VA, in series with a source resistance, RA. The Thevenin

equivalent resistance can be expected to vary from approximately 100 to 10 MV. This

value also varies as the preparation becomes less viable through dehydration and so

cannot be easily predicted. Noise that is present across any source of real, finite impedance

is termed Johnson noise, which is created by thermal motion of charge carriers. This noise

cannot be avoided without reducing the temperature of the source. Johnson noise has equal

power density at all frequencies (up to the terahertz range) equal to 4kT watts per hertz.

Figure 15.4 EAG acquisition system block diagram.

Figure 15.5 Thevenin equivalent circuit for insect antenna.
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The root-mean-square (RMS) value of the Johnson noise voltage spectral density across

any resistor can be calculated using

VJ fð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
4kTR
p

V=
ffiffiffiffiffiffi
Hz
p

where k ¼ 1.38 � 10223 is Boltzmann’s constant and T is temperature in kelvin. For

example, the noise level of the resistor value RA ¼ 500 kV from 0.1 to 10 Hz at 298 K is

VJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð Þ 1:38� 10�23ð Þ 298ð Þ 500� 103ð Þ 10� 0:1ð Þ

p
¼ 285 nV RMS

The voltage VA may also be further characterized. The EAG signal has an approximate

“active” level of 400 mV RMS and occupies the frequency range of about 0.1–10 Hz.

The maximum signal swing expected is approximately 10 mV peak to peak (p-p). In

addition, a large DC offset on the order of 100 mV is typically present on the EAG signal.

A useful comparison between the signal and the noise is the SNR, often expressed in

decibels:

SNR ¼ 10 log10

S

N

� �
¼ 20 log10

VS

VN

� �

where S represents the signal power, N represents the noise power, and VS and VN are the

signal and noise voltages, respectively. Here, for example,

SNR ¼ 20 log10

400� 10�6

285� 10�9

� �
¼ 63 dB

Now the input characteristics of the data converter can be summarized. A simplified analy-

sis can be divided into two parts: the amplifier and the digitizer. Although it is difficult to

know the exact analog signal input chain to the analog-to-digital converter (ADC) within a

proprietary digitizer design, a good model may be constructed by treating each analog

channel as an independent amplifier followed by a first-order low-pass filter (LPF), with

negligible noise above the corner frequency of the LPF. Because the floating-point

digital output of the digitizer software driver is scaled to the input voltage, the gain of

the amplifier is unknown and does not need to be determined. If necessary, it would be

possible to determine the gain by measuring the quantization levels and opening the

digitizer case to find the ADC part number to determine its input range.

The greatest concern in designing the amplifier is the noise it adds to the input signal.

Generally, the input noise voltage VN and sometimes the input noise current IN of an ampli-

fier are specified as functions of frequency. Often VN consists of so-called flicker noise and

white-noise components. For input source impedances that are very high IN is a concern. In

this case, it is expected that the input of the digitizer amplifier will be driven by a low-

impedance amplifier output from the “amplify-and-filter” stage. Flicker noise density

can be approximated with the equation.

VNf fð Þ ffi K

ffiffiffi
1

f

s

White noise, by definition, has a flat spectral density, as in the relation

VNW fð Þ ffi NW

The RMS values of two independent noise sources in series can be represented as a single

noise source with an RMS value equal to the sum of their squares. Therefore, the total
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equivalent input noise density is given by the formula

VN fð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

1

f
þ N2

W

s

Further, the bandwidth of any real amplifier is limited. A simple way to model this band-

width limitation is to place a first-order LPF on the output of the amplifier (gain 1). The

“output” noise spectral density curve shown in Figure 15.6 is an estimate of the amplifier

noise present at the scaled output of the digitizer with the amplifier input grounded. Such a

curve is plotted in the figure. Parameters of the input amplifier and multiplexer chain are as

follows:

Input referred white-noise spectral density 250 nV/
ffiffiffiffiffiffi
Hz
p

Input referred flicker noise coefficient 3.75 � 1026 W

Amplifier bandwidth 413 kHz

Input impedance 100 GV/100 pF

Bipolar input voltage ranges +50 mV, +0.5 V, +5 V, +10 V

Parameters of the digitizer are as follows:

Analog input channels 16

Maximum sample rate (total for all channels) 200,000 samples/s

Sampling resolution 16 bits

Accuracy +3 LSBs (least significant bits)

Typically, the signal power and the noise power are compared within a specified band-

width, where the signal power exists. A noise voltage spectral density may be integrated

across a frequency range using the equation

VNBW ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
BW

VN
2(f ) df

s

Fortunately, in this application, quantization noise is not a problem. At a sample rate of

12,500 samples/s, 67 aliased segments of the amplifier white noise integrate from 0.1

Figure 15.6 Spectral

density estimate of digitizer

output noise.
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to 10 Hz, resulting in 6.4 mV RMS. The 1/f noise integrates to 8.0 mV RMS. The total

noise is

VN ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6:4� 10�6ð Þ

2
þ 8:0� 10�6ð Þ

2

q
¼ 10:2mV RMS

Without precise knowledge of the source impedance of the antenna, an amplifier with very

high input impedance is desirable to measure the EAG voltage accurately. Illustrated in

Figure 15.7 is a model of an antenna connected to a noninverting high-input-impedance

amplifier. The performance of this amplifier construct is highly dependent on the perform-

ance of the operational amplifier (op amp). The performance of an op amp can be

evaluated by examining parameters assigned to its nonideal behavior.

Every op amp requires bias current to operate its input amplifiers. This is usually

specified on manufacturer’s specifications as “input bias current.” Further, each individual

amplifier has an impedance to ground and an impedance between itself and other amplifier

inputs on the same device. These are known as “common-mode input impedance,” and

“differential-mode input impedance,’” respectively. The degree of power supply ripple

and noise feedthrough to the op amp output is usually specified as the power supply rejec-

tion ratio (PSRR). Other parameters critical to this application include “input current

noise” and “input voltage noise.” These will be explained in further detail below.

Before selecting an amplifier, it is a good idea to list the few critical specifications,

which will aid in generating a list of candidate devices. Specifications of major concern are

listed below. A point should be made that datasheet noise data are representative of a

typical amplifier and are only approximate. Thus, consideration should be made for

variability between individual parts.

Parts per pkg 4 in this application Q3

Input bias current �1 nA

RCM �1 GV

In-band current noise �40 fA RMS

Voltage noise Evaluate

PSRR Maximize

Noise sources in the noninverting amplifier configuration (excluding thermal noise in the

antenna) (Fig. 15.7) include the resistors and the amplifier. Amplifier noise is measured

and usually published in the op amp specifications. Measured amplifier noise includes

input referred noise voltage and input referred noise current. In this application, the

Figure 15.7 Preamplifier

connected to antenna

equivalent circuit.
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noise at the amplifier output can be approximated using the equation

Vo ffi 1þ
Rf

Ri

� �
VNBW

This equation applies only because the component values and amplifier specifications have

been chosen properly. For more details on op amp noise analysis see Clayton [25] and the

application note by Bob Clark [26] listed in the references.

Two particular op amps considered for this design were the AD8608 and the

LMC6084. Integration of the noise from 0.1 to 10 Hz results in the following noise

specifications (data shown for the LF147, used in a circuit second stage, will become

relevant below):

Op amp PSRR, dB IN , fA=
ffiffiffiffiffiffi
Hz
p

K, nW VNBW, nV RMS

AD8608 77 10 91.7 197

LMC6084 72 0.2 285 611

LF147 10 164 353

The SNR at the output of each amplifier has been calculated for an “active” signal input of

400 mV RMS in the preamplifier for Ri ¼ 10 kV and Rf ¼ 100 kV and plotted in

Figure 15.8 as a function of the input resistance. The SNR is a decreasing function of

the input resistance because the available signal power is inversely proportional to the

input resistance but the noise power is constant. Q4

A figure of merit for an amplifier is its noise figure. The noise figure is expressed in

decibels as

NF ¼ 10 log10

Si=Ni

So=No

� �

where Si/Ni is the signal-to-thermal-noise ratio at the input of the amplifier. The noise

figure is a measure of how much noise the amplifier adds to the signal over the thermal

noise present at the input. The lower the noise figure, the better the amplifier. A perfect

amplifier has a noise figure of 0 dB. In this case, the NF can be calculated using the

Figure 15.8 Preamplifer

SNR as function of

antenna resistance: B,

AD8608; O, LMC6084.
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equation

NF ffi 10 log10

V2
NBW

4kTRABW

� �

The noise figure of each amplifier considering input current noise and resistor network

noise (i.e., not the equation above) as a function of the input resistance is plotted in

Figure 15.9a. The noise figures for the AD8608 and LMC6084 are decreasing functions

of the input resistance. There are two main contributors to noise for these two amplifiers:

VN and the Johnson noise of the antenna. As the resistance of the antenna increases, so

does the Johnson noise voltage, which eventually dominates the noise at the output of

the op amp. This means that the op amp does not add much significant power to the

noise signal, resulting in a near 0-dB noise figure at 10 MV. Conversely, at

RA ¼ 100 kV, the Johnson noise voltage of the antenna is reduced by a factor of 10,

and the amplifier input voltage noise dominates.

It is now appropriate to determine the necessary amount of preamplifier gain.

Following the law of superposition, the system noise figure can be calculated by

summing the noise sources at the output of the acquisition system and comparing it to

the component at the output due to thermal noise at the antenna. The system output

noise voltage VNS can be calculated using the equation

VNS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ve0A2A1ð Þ

2
þ Ve1A2ð Þ

2
þV2

e2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1A2
24kTRABWþ A2

1A2
2V2

NBW þ V2
e2

q

where

Ve0 ¼ antenna input thermal noise voltage

Ve1 ¼ equivalent output noise of preamplifier

Figure 15.9 (a) Preamplifier noise figure

as function of antenna resistance and (b)

system noise figure as a function of pre-

amp gain (RA ¼ 100 kV): B, AD8608;

O, LMC6084.
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Ve2 ¼ equivalent output noise of digitizer

A1 ¼ preamplifier gain

A2 ¼ digitizer gain ¼ 1

We have already calculated Ve2, the equivalent output noise of the digitizer. This is

10.2 mV. Since the output of the digitizer in the software is equal to the measured

input, the gain of the digitizer, A2, is 1. The system noise figure can be calculated using

the formula

NF ¼ 10 log10

V2
NS

A2
1A2

24kTRABW

� �
¼ 10 log10 1þ 2:41þ

80:0

A1

� �2
" #

where the worst-case antenna resistance value RA ¼ 100 kV has been selected. The first of

the three terms is the thermal noise; the second is the added preamplifier noise, which has

been minimized through selection of the amplifier; and the third contribution to the noise

figure is the digitizer noise. To approach a perfect amplifier, effort must be made to

minimize the second two terms. The second term is minimized by selecting the appropriate

preamplifier part. The third term is minimized by selecting the gain. Intuitively, A1 needs

to be increased until the noise due to the digitizer becomes insignificant compared to

preamplifier and thermal noise.

When the gain is adjusted by varying Ri, the NF varies as in Figure 15.9b. It can be

seen that the noise figure asymptotically approaches its minimum value as the gain is

increased. But unfortunately, the DC voltage offset at the input can be expected to be

up to 100 mV. The better device, the AD8608, can only operate at up to +3 V. So the

maximum gain possible is approximately 20 V/V. Without the ability to use a high-pass

filter (HPF) in this configuration with a reasonable capacitance value, the addition of a

second amplification stage is needed. So the first-stage amplifier design is finalized with

a gain of 21.

To squeeze out another 7 dB from the system, another gain stage is needed. But to

eliminate the large DC offset, it is necessary to use a HPF. A 0.1-Hz first-order HPF will

remove the DC offset and has a manageable settling time (t ¼ 1.6 s) but distorts frequen-

cies of interest in both magnitude and phase from 0.1 to �1 Hz. Even though component

tolerances for a HPF are on the order of +10%, it is possible to remove most of the

distortion in a software-implemented compensation filter [finite impulse response (FIR)

described below]. The SNR measurements are subject to variation. Thus, a safe margin

should be created in case the digitizer noise is higher or the preamplifier noise is lower

than expected. Also, digitizer flicker noise is higher at lower frequencies, but the signal

is attenuated more by the HPF. Using a gain of 11 V/V in the second stage results in

an overall gain of 231 V/V and a maximum peak-to-peak signal range of 2.31 V,

which is just outside the 2-V range of the digitizer. A HPF with a corner frequency of

0.1 Hz and a LPF of 20 Hz is used to help reject 60 Hz as well as an antialiasing filter

that removes high-frequency preamplifier noise and other high-frequency interference

that could alias into the 0.1–10-Hz band. To deal with all types of interference sources,

it is desirable to attenuate as much as possible signal frequencies above fs/2, where fs is

the sampling frequency. For instance, in our laboratory, a large (�10-mV) troublesome,

wide-bandwidth 50-kHz interference signal is present that must be highly attenuated to

avoid being aliased into the 0.1–10-Hz band when sampled at 12,500 samples/s. To

preserve simplicity, we use a first-order filter (Fig. 15.10).
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The general-purpose junction fielf-effect transister (JFET) quad op amp, the LF147,

is used for the second stage. Using the worst-case antenna resistance RA ¼ 100 kV, the

equations for the two-stage system output noise and noise figure are as follows:

VNS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ve0A3A2A1ð Þ

2
þ Ve1A3A2ð Þ

2
þ Ve2A3ð Þ

2
þV2

e3

q
¼ 55:3mV

NF ¼ 10 log10 1þ
Ve1

Ve0A1

� �2

þ
Ve2

Ve0A1A2

� �2

þ
Ve3

Ve0A3A2A1

� �2
" #

¼ 10 log10 1þ 2:41þ 0:018þ 0:121ð Þ ¼ 5:50 dB

Variable Ve0 A1 Ve1 A2 Ve2 A3 Ve3

Equation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kTRABW1

q
A1VNBW1 A2VNBW2 Q5

Value 0.127 mV 21 4.14 mV 11 3.9 mV 1 10.2 mV

There are four terms involved in the above equations: antenna thermal noise, amplifier 1,

amplifier 2, and the digitizer. It can be seen that most of the noise is due to the thermal

noise and the stage 1 amplifier. For higher values of RA, the noise performance of stage

1 will increase substantially.

Care is also taken to isolate the preamplifier from the power supply. Much of the

power supply noise is removed by a voltage regulator and the PSRR of the amplifier.

Fortunately, power supply ripple is �60 Hz and will be entirely removed by digital

filtering after acquisition. The final EAG amplifier has the block diagram shown in

Figure 15.11. The hardware design is complete; however, some signal processing is

performed in the software. A block diagram of the signal chain connected to the EAG

amplifier output is shown in Figure 15.12.

Figure 15.10 Second-stage amplifier

schematic; first-order bandpass filter with

gain.
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Because we have more than adequate processing power in the average PC, a very

sharp infinite-impulse-response (IIR) Butterworth LPF is employed (characteristics

shown in Fig. 15.13). This filter will reduce any 60-Hz signal to well below the

in-band amplifier noise level. After decimation, a FIR compensation filter removes dis-

tortion introduced by the 0.1-Hz HPF and the 20-Hz LPF in the second-stage amplifier.

Nonuniform phase delay in the FIR filter is also compensated for. Compensation is

applied from 0.1 to 30 Hz. It is after the compensation filter that the data are considered

properly acquired and are recorded to disk for future review. The final design, after

assembly on a printed circuit board, is shown in Figure 15.14. The circuit is contained

in a slim aluminum case, and four antennae make electrical contact with the four ampli-

fier input electrodes and the common ground electrode via conductive gel (as used with

clinical electrocardiogram electrodes). The amplifier is connected via a seven-conductor

cable (Vþ, V2, ground, and four single-ended data channels) to the data acquisition card

in a laptop computer for digital signal processing (Fig. 15.13) and execution of the algor-

ithm which discriminates between odors based on the four-channel EAG data, as

described in the following section.

Figure 15.11 EAG amplifier block

diagram: RA, source impedance of

antenna; HPF, high-pass filter; LPF,

low-pass filter; fc, cutoff frequency;

G, gain.

Figure 15.12 Data acquisition and processing system block diagram: FIR, finite-impulse-response

filter.
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15.8 SIGNAL PROCESSING OF MULTICHANNEL EAG:
AUTOMATED ODOR DISCRIMINATION

After the data are acquired, they are further processed to discriminate between odors. This

is accomplished by identifying and measuring features of each response (depolarization)

and then applying a relatively common pattern recognition technique. It should be noted

that several strategies could be employed to discriminate odors based on EAG data,

and the methods described below are only one solution. Other approaches are being

investigated in our laboratory in an effort to maximize robustness, speed, and ease of

implementation.

The objective of the signal processing level of the system is to identify EAG

depolarizations, measure their amplitude, and group time-correlated depolarizations

recorded from the four antennae. The time-correlated depolarizations correspond to a

single odor strand passing the array of antennae. The correlated groupings of depolariz-

ations are termed events. In order to associate the responses of the antennae with a particu-

lar odor, the system must first be trained. Training is accomplished by collecting data

while subjecting the antennae to various known odor sources. After training has been com-

pleted, a classifier uses the training data to identify the odor that gave rise to the recorded

event. The classification is performed on-line within 1 s after the data have been acquired.

The 0.3–8-Hz filter is noncausal and has approximately the frequency response

depicted in Figure 15.15. The filter was constructed empirically and assists in peak-to-trough

Figure 15.14 Final circuit design executed on custom printed circuit board using surface-mount

components to minimize outside dimensions of entire package. The top of the case is removed;

shown next to a U.S. dime for size comparison. When assembled, the case is less than 5 mm thick.

Figure 15.15 The 0.3–8-Hz bandpass

filter frequency response.
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detection by creating troughs that precede the peaks (purposeful distortion of the signal) and

by smoothing the waveform. Most bandpass functions would accomplish these tasks.

A peak detection algorithm finds maxima and minima of polynomials fit to the data;

the result is identification of the locations and values of the depolarizations. An example

of this step is shown in Figure 15.16. The data are greatly reduced as only the

peak-to-nearest-preceding-trough amplitude is retained, along with the time of the peak.

These data are then compared to a threshold. Peak–trough events with an amplitude

larger than a user-adjustable threshold are kept, while those smaller are considered to

be unreliable and ignored.

Recall that events are comprised of the responses of the four antennae to a single

strand of odor, which passes transiently across the array. Because the antennae cannot

occupy the same point in space, the time of arrival of the odor strand and therefore the

time of the four EAG response peaks are not coincident but depend on the air speed

and the spacing of the antennae relative to the wind direction (and possibly, to a lesser

degree, on species). Event identification is accomplished by associating peak–trough

events that are close in time. The user may adjust this correlation time. The largest

depolarization within a presumed event is then evaluated by another threshold to retain

only events containing significant energy on at least one channel. Figure 15.17 depicts

the result of evaluating the four EAG signals for “near-simultaneous” EAG responses

which would comprise an event. Only the trough-to-peak amplitudes for the four channels

are plotted (filled symbols), along with markers to denote the time of detected events (open

circles). Note that in this example the event time window is 16 ms, and the event markers

are plotted 16 ms following the last depolarization which is a component of each detected

event. That is, depolarizations recorded more than 16 ms apart would not be considered to

arise from the same odor strand. The choice of time window is influenced by wind speed

and the distance between the most upwind and downwind antennae in the array.

Classification techniques utilize “features” and “classes,” where it is hoped to clas-

sify an event based on its features. In this application, the features used to describe the odor

are the depolarization (peak-to-trough) amplitudes of the four preconditioned EAG

signals. Thus, each event is described by four features. Each feature can be considered

one dimension in a multidimensional feature space. Odors that can be discriminated

have high probability density in different regions of the feature space. Bayes’s theorem

can be used for classification if the probability distributions of each class are known.

Ideally, during training, a four-dimensional histogram could be produced. Unfortunately,

Figure 15.16 Segment from typical one-channel EAG recording. Light trace is the raw signal,

dark trace is after filtering. Filled circles indicate times and trough-to-peak magnitudes of

responses which were above the user-defined threshold (100 mV in this case).
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the number of data points required to create an accurate four-dimensional histogram (or up

to 16 dimensions) is prohibitive. Thus, alternate classification techniques are available.

One such technique, known as the “k-nearest-neighbor” technique, was employed here.

The measured features of each event are plotted in four-dimensional space, where

each dimension represents one channel (i.e., antenna). The training data are collected

first, which involves exposing the sensor to known odors, sequentially, until a requisite

number of training events have been collected. In the example presented here, 100 training

events were recorded for each odor, which took 1–2 min per odor; any number of odors

can be contained in the training set.

The classification technique uses the weighting function Xd1-d10 ¼ 1/(dþ 20 mV),

where d is the “city block” distance of the point to be classified to training data points

in the four-dimensional feature space. The city block distance between two points is the

sum of the absolute value of the difference between every dimension. For instance, in

just two dimensions, d ¼ jx2 2 x1j þ jy2 2 y1j, which is the distance you would have to

travel in most places in Chicago to get from p1 to p2. Ten values of X are calculated for

each odor in the training data. These 10 values are summed for each training odor, and

the unknown point is classified as being the training odor associated with the maximum

sum. Presently, the classifier assumes equal prior probabilities, and the training data are

not normalized. Also, the coefficient in the weighting function is chosen manually. Auto-

mating these aspects of the algorithm is a future goal.

The results of a simple classification experiment are shown in Figure 15.18. Here,

the system was trained with three odors. The odor stream was created by placing a drop

of one of three volatile liquids on each of three pieces of filter paper that were placed,

in turn, about 5 ft upwind in an indoor wind tunnel, giving rise to odor A, odor B, and

odor AB. Exhaust from the wind tunnel was vented to the outside, preventing an odor

from recirculating in the air stream. Due to turbulent flow, at times the antennae are stimu-

lated by the introduced odor strands, while at others, the array is detecting only com-

ponents of the room air. As a result, the training data are not pure and represent

mixtures of room air and the intended odorant. This presents a problem, because an

Figure 15.17 Trough-to-peak values (filled symbols) and event time markers (open circles)

obtained with a 16-ms correlation time. Events markers are located 16 ms after the last

trough-to-peak value contained in that event.
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unknown portion of the events in the training set contain events due to room air only. The

classification scheme described here is a forced-choice algorithm, and with three training

sets, any event will be classified as one of those three odors, even if the stimulus is actually

a component of the background room air. By adding a fourth training set comprised of

responses to room air (RA) only, it is more probable that RA will be correctly classified.

The results of Figure 15.17 are typical when this technique is applied. It can be seen that

odor A is correctly classified 95% of the time, odor B is correctly classified 83% of the

time, and odor AB is correctly classified 64% of the time. Odor AB was a mixture of

odor A and odor B, and while the pure mixture should give rise to a novel EAG response,

the presumed classification mistakes occurring when odor AB was introduced were

components odor A or odor B, as opposed to RA.

It is important to remember that each classification event takes less than 1 s. Unfor-

tunately, even if the odors are highly distinguishable from RA, it is still possible for RA to

be incorrectly classified as one of the training odors. One way to address this problem is to

remove the clean-air events from the known odor training sets by reclassifying each train-

ing event as either clean air or the intended odor and then using these “verified” training

data to classify unknown events. This represents just one possible refinement to this inter-

esting pattern recognition problem.

15.9 FUTURE TRENDS

We have described the advantages, applications, technology, and methodology for

incorporating a living olfactory organ into a hybrid-device biosensor. Fast, sensitive,

and discriminating are all words that can be used to describe this sensor, but there is

much yet to be done. Work is ongoing to refine the algorithm used to classify odors in

order to increase accuracy. This includes the evaluation of features of the EAG signal

other than peak amplitude and more robust pattern recognition strategies. Automating

selection of thresholds and filter parameters and providing statistics describing the

Figure 15.18 Classification results when system was trained on three odors (A, B, and AB) as

well as ambient room air that carries odors in wind tunnel (RA). The four-antenna array was then

exposed to each of the four conditions until approximately 100 events had been detected for

each condition. Every event was classified as A, B, AB, or RA.
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confidence of a given classification are also being pursued. One fundamental challenge is

the absence of a “gold standard” for odor strand composition under most field and labora-

tory conditions; that is, it is very difficult to know what the true odor is in a packet of air

that elicits a response from the four-channel EAG biosensor. One method employed by

Park et al. [22] was to bifurcate the air stream, passing half to an antenna and the other

half to the flame ionization detector (FID) of a gas chromatograph. The arrival of a

packet of air to each sensor (antenna and FID) was time locked, allowing unambiguous

identification of the odor eliciting each antenna response. However, this arrangement is

cumbersome and not easily translated to other settings.

Another aspect under development is the inclusion of wind direction and wind speed

sensors. For an array of static sensors, for example, spaced 10 m apart along the edge of a

field, wind information and triangulation can be used to locate the distant source of an

odor. Incorporated into a single sensor, wind information could be used to guide a

robotic mobile autonomous odor seeker (MAOS) in situations where approaching the

odor source would present a high risk to people or trained dogs, for example, locating

land mines or toxic chemical spills. Using Global Positioning System (GPS) technology,

telemetry, and cameras, such a roving sensor could be deployed in military reconnaissance

and search-and-rescue missions or to gather information near natural disaster areas. The

extreme sensitivity could provide unexpected diagnostic benefits. The applications of

olfactory biosensors are potentially quite broad, and it will likely be some time before

artificial olfactory sensors can compare in performance. Perhaps the greatest limitation

on this approach is the short-lived nature of the antennae (less than 1 h when removed

from the insect); increasing the useful life of the hybrid sensor is also being pursued.

Potential strategies include leaving the antenna attached to the insect, which increases

the lifespan to several days, or using a supported olfactory receptor neuron culture

system. The bioengineering challenges of this last approach are significant.
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