
Abstract—  The use of insect antennae as an odor sensor array 

was evaluated as a means to advance the current capabilities of 

“artificial nose” technology.  A given species is highly sensitive 

to odors of survival interest (e.g. species-specific pheromones), 

but also to a broad range of other natural and anthropogenic 

compounds.  The sensitivity of the antennae to some odors 

extends to the parts per billion range [1].  In contrast, the best 

current artificial nose technology is able to detect compounds in 

the parts per million range.  Here, a system designed to utilize 

four antenna biopotential signals suitable for field use and a 

computational analysis strategy which allows discrimination 

between specific odors, and between odor and background or 

unknown compounds, with high fidelity and in real time, is 

described.  The automated analysis measures three parameters 

per odor response.  Following a training period, a K nearest-

neighbor (KNN) approach is used to classify an unknown odor, 

assuming equal prior probabilities.  The algorithm can also 

declare an odor as “unknown”.  System responses to single 

filaments in an odor plume can be analyzed and classified in less 

than one second. 

I. INTRODUCTION

etection and identification of chemical compounds have 

many potential applications in military, industrial, 

clinical and research areas.  A device used to detect and 

discriminate among airborne volatile compounds (i.e. odors) 

is generally referred to as an artificial nose.  As the name 

implies, artificial noses assume a bio-mimetic theme, 

generally consisting of an array of differentially selective 

sensors whose output is interpreted by a computer.  A variety 

of computing schemes have been applied to the classification 

problem that arises, a common method being the K-nearest 

neighbor technique (KNN) [2].  Fig. 1 illustrates the concept 

of distinguishing odors from the unique response pattern 

available from an array of different sensors. Such arrays have 

been constructed using several sensor types. [3]  Sensors that 

change in resistivity in response to odorants include 

conducting polymer, metal oxides, carbon black/polymer, 

intrinsically conducting polymers. Devices that detect minute 

changes in mass due to adsorption of various compounds 

include surface acoustic wave and quartz crystal devices. 

Other sensors include coated optical fiber sensor arrays, and 

porous gate MOSFETs. 

 The electroantennogram (EAG) is the biopotential 

developed between two points on an insect antenna, due to the 

massed response of the olfactory receptor neurons (ORNs) in 

response to an odor stimulus; the response to a single 

filament of odor is a depolarization approximately 200 ms in 

duration.  Although not entirely dedicated to olfaction, the 

antennae are the appendages containing the ORNs in insects 

[4].  Volatiles enter the sensillar lymph through pores in the 

cuticle, which are approximately 0.1 microns in diameter.  

The presence of a particular compound is detected by the 

sensory neurons that project dendrites into the sensilla.  In the 

moth manduca sexta, each antenna has approximately 10
5
 

sensilla associated with about 3 x 10
5
 olfactory neurons. 

 Chemisensory information is transmitted by various 

classes of olfactory nerves, which are defined by characteristic 

responses to various volatile compounds.  The response of the 

nerve to a particular compound is dependent on the olfactory 

receptors, specialized odor sensing proteins, expressed on its 

cell membrane.  In moths, sensillar lymph has been found to 

contain high concentrations of odorant binding proteins and 

pheromone binding proteins. [5]  The exact role of these 

unbound proteins in communicating information to the 

receptors is unknown. 

 The morphology and mechanisms of olfaction are 

similar across many insect species [6].  Information obtained 

by the olfactory nerves is organized and transmitted to 

distinct glomeruli within the insect’s brain.  The number of 

glomeruli in Drosophila is approximately the same as the 

number of receptor types.  The male moth Agrotis ipsilon 

contains 66 glomeruli, which gives an idea of the number of 

olfactory receptor types and thus sensor types available to this 

insect.  Indeed, access to the different individual olfactory 

neuron types or glomeruli would be desirable.  In fact, 

recordings from 21 individual glomeruli of honeybees has 

recently been used to classify several odors using principal 

component analysis (PCA) [7].  The problem with this 

arrangement is obviously the difficulty in the recording setup. 

The antennae of different species of insects exhibit 

differential sensitivity to a given compound.  Therefore, an 

array of antennae from various species can be used as a multi-

channel detector. 

 For the past several years, a hybrid system for odor 

detection based on the olfactory organs of insects has been 

under development [8, 9].  Biological noses are capable of 
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detecting many odors of no possible evolutionary usefulness, 

including explosives and drugs. Under controlled 

circumstances, some compounds can be detected down to 1 

part per billion using EAG recordings [1].  Properties of the 

EAG sensor include short response time, low detection 

threshold, and sensitivity to a broad number of 

distinguishable compounds. 

II. SYSTEM DESIGN 



 

derivative at the maximum.   

 The primary feature, trough to peak magnitude, is then 

compared to a threshold.  Events with amplitudes larger than 

a user adjustable threshold are kept, while those smaller are 

thrown away.  The purpose of this is to remove data for 

marginal signal to noise ratios.   

 Finally, events are constructed by linking peak-trough 

events across channels that are within 160 ms.  Each event 

contains 12 features (4 channels x 3 features).   

 In order to associate the responses of the antennae with a 

particular odor, the system must be trained first.  Training is 

accomplished by collecting data while exposing the antennae 

to various known odor sources.  After training has been 

completed, each feature in the training set is scaled so that its 

standard deviation is equal to 1 across all odors.  

Classification is accomplished by implementing (3). for each 

odor and selecting the maximum probability estimate.   

 The classifier has the additional capability to classify 

odors that don’t look like any of the training odors as 

“unknown”.  The user may enter a “confidence” parameter, 

which sets a threshold for how close to an odor an 

unclassified event must be in order to be declared that odor.  

This is accomplished by calculating the probability estimates 

(3) of membership of each training point to its own class.  

These are then sorted.  The confidence parameter then selects 

a value within the sorted list as the threshold for class 

membership.  A high value of the confidence parameter will 

minimize false negatives (i.e. an odor classified as unknown), 

but maximize false positives. 

III. METHODS 

 The electroantennogram (EAG) was simultaneously 

recorded from excised antenna obtained from four insects of 

different species and sex, yielding a four-channel response to 

selected volatile compounds.  Two species configurations 

were employed:  Experiment 1 were used antennae from male 

insects of the following species: 1. Platynota ideusalis (tufted 

apple budmoth) 2. Heliocoverpa zea (corn earworm) 3. 

Ostrinia nubilalis (European cornborer) and 4. Cydia

pomonella (codling moth).  Experiment 2 (repeated twice) 

utilized antennae from the following species: 1. Male 

Trichoplusia ni (cabbage looper) 2. Male Helicoverpa zea  3. 

Female Helicoverpa zea 4. Female Trichoplusia ni.  Each 

antenna was fixed to the preamplifier; electrical contact was 

made with a conductive gel.  The antenna array was 

positioned 3 m downwind from the odor source in a wind 

tunnel; flow rate ∼1.5 m/sec.  The odor source consisted of 

100 µg of a chosen compound in solvent (hexane) applied to a 

piece of filter paper and placed in the tunnel after the solvent 

had evaporated. The compounds used in experiment 1 [(Z)-

11-hexadecenal (Z11-16:Ald), (Z)-11-tetradecenyl acetate 

(Z11-14:Ac), (E,E)-8,10-dodecadien-1-ol (E8, E10-12:OH), 

(E)-11-tetradecen-1-ol (E11-14:OH)] are major components 

in the pheromones of the insects used in this study.  

Compounds used in experiment 2 consisted of some 

pheremonal components [(Z)-8-Dodecenyl acetate (Z8-

12:Ac), Z11-16:Ald, Z11-14:Ac] and some components 

present in manure [dimethyl disulfide, butyric acid, 

putrescine and trimethyl-amine]. 

 Raw data consisted of voltage vs. time records from the 4 

channel-probe under each experimental condition.  EAG odor 

filament response events are classified using the modified K-

nearest neighbor (KNN) technique.  Each classification result 

is then weighed by the KNN estimate of the probability that 

the odor filament is correctly classified.  This gives the user a 

measure of how certain the algorithm is of its classification.  

During the testing phase, the probability estimates for each 

class are accumulated over time and presented as a histogram.  

Each testing phase contains on the order of 100 events per 

odor.  The accuracy of the classification is the sum of the 

correct classification probability estimates over all the 

classification estimates during the presentation of a particular 

odor.  

IV. RESULTS 

 Raw EAG data from experiment 2 are shown in Fig. 3, 

where each trace plots the biopotential activity recorded on 

one antenna.  Panel A is typical of pheromonal responses.  It 

can be seen that Male H. Zea (Red) responds strongly to Z11-

16:Ald, which is present in Female H. Zea pheromone.  Male 

T. Ni responds as well, but less strongly.  The female 

antennae respond slightly if at all.  The EAG response to a 

non-pheromone stimulus is shown in panel B. Responses are 

much lower in magnitude and include a greater fraction of the 

response from female antennae (note the scale).  After the 

collection of training data, the user may view 2D projections 

of a feature type in the feature space.  Training data for the 

experiment 1 trough to peak size feature is shown in Fig. 4.  

In these data, each odorant is clearly distinguishable from the 

2D projections alone.  

 

 

 

Fig. 4.  2D projections of the normalized EAG response trough to peak 

amplitudes for experiment 1 training data. The amplitude of this feature on 

one channel is plotted vs. the amplitude on every other channel; each channel 

(1-4) represents the response of a different antenna.  Odor present during each 

event is coded by color: Blue = Z11-16:Ald; Red = Z11-14:Ac; Green = E8, 

E10-12:OH; Black=E11-14:OH.
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 In an effort to demonstrate the robustness of the approach, 

and to optimize the classifier, the overall accuracy of the 

classifier was tested as a function of several parameters 

including peak/event threshold (Fig. 5A), number of training 

points (Fig. 5B), number of nearest neighbors per odor (Fig. 

5C), and the confidence parameter (Fig. 5D).  When testing 

one parameter, the others remained at the default values, 

which were 100 µV for peak/event threshold, 100 for number 

of training points, 10 for number of nearest neighbors per 

odor, and 0.8 for the confidence parameter.  Each parameter 

was evaluated in three experiments, represented as the three 

symbols in each panel of Fig. 5. 

 Increasing the peak threshold had the general effect of 

ignoring weak EAG responses.  In evaluating this parameter, 

it was set to the same value for both the training and testing 

phases.  Fig. 5A shows that in both experiments of type 2, 

where small events are frequent, the optimal threshold 

appears to be around 100 µV.  As the threshold is increased, 

non-pheromonal odors, to which the system is generally less 

sensitive to, will tend to be classified as pheromonal odors, 

which dominate the feature space for larger amplitudes.  

Experiment 1 involves larger depolarization events; thus, 

elimination of low-amplitude events near the noise level 

continues to improve the accuracy over the investigated 

range.   

 The speed of training the system is determined in part by 

the number of training points required.  The overall accuracy 

of the classifier as a function of the number of training points 

is shown in Fig. 5B.  For all experiments, the accuracy 

continues to grow with increasing training set size, but in 

Experiment 1 the trend begins to asymptote near 70.  

 The accuracy as a function of nearest neighbors per odor is 

shown in Fig. 5C.  For our data, it appears that smaller 

numbers of neighbors are optimal. 

 The accuracy as a function of the confidence parameter is 

shown in Fig. 5D.  As the confidence parameter is decreased, 

the allowable distance between the unknown point and the 

centroid of the training data for a given odor is minimized, 

and so the classification accuracy increases, as expected.  

 

 

V. DISCUSSION 

 A real-time bioelectronic artificial nose system utilizing 

insect antenna as the odor sensor has been implemented using 

the KNN technique for classification.  The technique has been 

modified to declare odorants as unknown using a 

“confidence” parameter entered by the user, selected based on 

the relative cost of false positives or false negatives in a given 

application.  Further, the effects of several parameters on the 

accuracy of the system have been evaluated, including peak 

threshold, number of training points per odor, nearest 

neighbors per odor and a confidence parameter.  The overall 

accuracy of the system ranges from 50% - 100% in the 

experiments and conditions evaluated here; 50% accuracy is 

significantly better than chance with five possible classes 

(four odors or unknown).  Optimal classifier parameter values 

vary for different experimental conditions (species, odors), 

but general trends were consistent across experiments.   
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