
Abstract- Current trends in artificial nose research are 
strongly motivated by knowledge of biological olfactory 
systems, but are primarily confined to improving pattern 
recognition strategies for data derived from a relatively simple 
sensor array.  Biological olfactory systems are able to 
discriminate weak, transient, broad-band signals ranging over 
a poorly-defined parameter space, and therefore outperform 
current artificial nose systems in several respects.  Here, a 
biological olfactory sense organ, the insect antenna, has been 
exploited in a hybrid-device biosensor.  An algorithm was 
developed to analyze the electrophysiological responses 
recorded from a sensor array comprised of antennae from 
different species of insects.  A training period during which the 
array was exposed to known target odors established response 
signatures for those odors.  Subsequent odor stimuli were then 
classified using a forced-choice nearest-neighbor technique.  
As odorants arrived in discrete packets of air in the turbulent 
air stream, individual sensor response events lasted less than 
one second, and could be classified correctly nearly 100% of 
the time.  
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I. INTRODUCTION 
 

Detection and identification of chemical compounds via 
air-born volatiles (i.e. odor) have many potential 
applications in military, industrial, clinical and research 
arenas.  Biological noses are capable of detecting many 
odors of no possible evolutionary usefulness, including 
explosives and drugs.  Artificial nose technology takes 
many forms, but is universally characterized by slow 
response times, poor discrimination, low sensitivity, and a 
low number of identifiable odors.  The artificial nose, as 
presently conceived, can be distinguished from other 
chemical detectors (such as pH or NO electrodes) by the 
promise of detecting a number of different compounds with 
the same device.  Where single-chemical detectors often 
rely on a semi-permeable membrane specific to the 
molecule to be detected, artificial noses generally consist of 
an array of semi-selective, cross-reactive sensors which 
demonstrate distributed specificity.  There are a number of 
different artificial nose technologies currently being 
developed, including metal-oxide and MOSFET, 
conductive polymers, piezoelectric-based (acoustic wave 
devices) and fiber-optic / solyatochromic fluorescent dye 
sensors [1-4].  An array of different classes of sensors 
yields a set of response vectors representing the sensor 
output, which must then be interpreted by a pattern 
recognition scheme.  This has been done by using pattern 

recognition methods based on statistical and computational 
neural networks approaches [4]. 

However, there are three important limitations of 
artificial nose technology.  First, the long response times 
(tens of seconds to minutes) of most approaches limit them 
to steady-state measurements, where steady-state may take 
impractically long times to reach.  Steady-state is not often 
attained under many field conditions where an artificial 
nose might find application.  Second, the number of sensor 
classes comprising the array is limited to about three in 
present designs.  This limits the number of compounds 
which can be distinguished, and generally requires 
advanced knowledge of the compounds to be detected.  
Third, all artificial nose technologies exhibit low 
sensitivity. 

For the past several years, a hybrid system for odor 
detection based on the olfactory organs of insects has been 
under development [5].  Important aspects of the biological 
olfactory system are a short response time, high sensitivity, 
and broad-band discrimination.  It is thought that all three 
of these desirable qualities derive in part from the sensor-
level design of the olfactory system, and a biomimetic 
theme has strongly influenced artificial nose development.  
Here we describe early odor classification results deriving 
from a sensor array comprised of antennae from different 
species of insects.   

The principal arrangement of the biological olfactory 
system is quite well conserved across phyla, from insects to 
mammals.  Sensory neurons exhibit a response when 
airborne molecules bind to metabotropic membrane 
receptors and activate G-protein cascades, providing 
amplification and eventually leading to membrane potential 
changes and characteristic trains of action potentials [6-9].   
These sensory neurons synapse onto a variety of 
interneurons in the olfactory bulb, the output of which 
appears on mitral cells which lead to higher processing 
structures in the brain.  Sensory cells, numbering in the 
100’s of thousands, have overlapping, semi-selective, yet 
broad response spectra.  The result of the transduction-level 
coding and the olfactory bulb processing is a system that 
exhibits a remarkably high sensitivity with broad-band 
detection and discrimination.  These are desirable features 
in any detector system, and represent active areas of 
research in many areas of information technology. 

The parameter space of the system/model input 
(molecular properties of odorants to which the sensory 
neurons are sensitive) is not precisely defined.  However, 
structure-activity studies (chain-elongation, double-bond 
position, functionality) performed on noctuid olfactory 
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neurons in vivo have been particularly enlightening in 
understanding that ligand-receptor interactions can behave 
according to conformational energy and electron 
distribution models and not merely to space-filling [10-12].   

Several groups have shown the potential use of insect 
antennae in a hybrid-device biosensor [13-16].  However, 
each of these studies made use of a single antenna, which 
cannot provide discrimination between odors.  In work 
recently published [5], electroantennogram (EAG) response 
profiles of five different insect species, Drosophila 
melanogaster, Heliothis virescens, Helicoverpa zea, 
Ostrinia nubilalis and Microplitis croceipes, showed 
different, species-specific EAG response spectra to 20 
volatile compounds tested.  The EAG response profiles 
were then re-constructed for each compound across the five 
insect species. Most of the compounds could be 
distinguished by visually comparing the response spectra.  
A four-antenna array, called a Quadro-probe, was then 
implemented to discriminate among odorants based on the 
relative EAG amplitudes evoked when the probe was 
placed in plumes in a wind tunnel and in a field.  Stable 
EAG responses could be simultaneously and independently 
recorded with four different insect antennae mounted on the 
Quadro-probe, and different volatile compounds could be 
distinguished in real time by comparing relative EAG 
responses with a combination of differently tuned insect 
antennae.  Regardless of insect species or EAG amplitudes, 
antennae on the Quadro-probe maintained their 
responsiveness with higher than 1 peak/s of time resolution. 
 
II. METHODOLOGY 
 

Methods for recording electroantannogram (EAG) 
responses have been described in detail previously [25], and 
are summarized here.  The excised antennae from two 
species of insects were recorded from simultaneously to 
obtain a differential response to selected volatile 
compounds.  Species used were either Helicoverpa zea 
(corn earworm) and Ostrinia nubilalis (European corn 
borer), or H. zea and Trichoplusia ni (cabbage looper).  
Each antenna was fixed between a wire recording electrode 
near the base and a common ground wire electrode near the 
tip; electrical contact was made with a conductive gel.  This 
comprised a two-species antenna array; however, four 
antennae were routinely recorded from (two from each 
species) using the custom designed Quadro-probe EAG 
recording system (Syntech, The Netherlands).  A four-
species array has been utilized in previous work [5], but 
data presented here use only two species, which provided 
ample discrimination for the odorants used.  The 
Quadroprobe was positioned 1.5 m downwind from the 
odor source in a wind tunnel; flow rate 50 cm/sec.  The 
odor source consisted of 100 µg of a chosen compound in 
solvent (hexanol) applied to a piece of filter paper and 
placed in the tunnel after the solvent had evaporated.  
Compounds used represent major components in the 

pheromones of the insects used in this study:  (Z)-11-
hexadecenal, (Z)-11-tetradecenyl acetate, and (Z)-7-
dodecenyl acetate.   
 A data analysis algorithm was implemented in LabView 
(National Instruments).  Raw data consisted of four 
channels (from the four antennae) of voltage vs. time 
records from the Quadroprobe under each experimental 
condition (clean air, or a specific odor).  Data were 
digitized at 55.8 Hz for storage, and smoothed offline by 
applying a symmetric 5-point moving average.  When a 
filament of odor-containing air traversed the Quadroprobe, 
each antenna exhibited a depolarization of amplitude 
proportional to its sensitivity to the odorant and the 
concentration of the odorant in the filament.  A peak-
detection algorithm used a threshold of the second 
derivative of the voltage vs. time record, and peak times 
and amplitudes were stored in an array.  At least one 
channel (antenna) had to have a response peak above an 
arbitrary threshold for a response event to be 
acknowledged.  Coincident peaks (within + 55 ms of each 
other, to account for different arrival times of a single odor 
filament at each antenna) were analyzed for response 
amplitude.  If an event was acknowledged, only peaks 
above a second, smaller threshold were assigned a value 
above zero.  These amplitudes were plotted in an n-
dimensional space, where n is the number of antenna 
species in the array (n = 2 for data presented here).   

The system was trained by presenting target odors, one 
at a time, for approximately 30 seconds each, yielding 
approximately 20 sets of n coincident response peaks (one 
set of peaks for each filament of odor in the turbulent air 
stream).  The collection of response amplitudes from a 
training presentation formed a cluster of points representing 
the signature of that odor.  Test odors were then presented, 
and the response to each filament was classified (forced 
choice) using a modified distance-weighted k-nearest 
neighbor technique, where the classification was made 
based on the maximum value of X, where  
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where dk are the Euclidean distances to the 10 nearest points 
in each training set, and α  is a constant which avoids over-
weighting very close data points.  X was calculated for each 
training odor. 
 



III. RESULTS 
 
Figure 1 plots representative response records recorded 
simultaneously from the antennae of two species in the 
presence of clean air and two odorants.  Upper trace in each 
panel plots the response of T. ni, lower trace plots the 
response from H. zea.  Characteristic depolarizations in 
response to individual odorant filaments in the turbulent 
airflow arriving at the antenna array have durations of 
approximately 0.5 sec.  These data show an extreme case of 
one species being highly sensitive to a given odorant, and 
the other being minimally sensitive.   These odors were 
chosen to provide highly discriminable responses to use 
during the development of the analysis algorithm. 

The data shown in Fig. 1 were used as a training set, and 
the amplitudes of coincident peaks are plotted in two 
 

 
Fig. 1.  Simultaneous EAG responses in two species.  Upper trace in each 
panel from T. ni, lower trace from H. zea.  Top panel, responses to clean 
air.  Middle panel, responses to Z7-12:Ac, a major component in T. ni 
pheromone.  Bottom panel, responses to Z11-16:Ald, a major component 
in H. zea pheromone. 
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Fig. 2.  EAG response amplitudes from presentation of odorants for 
training (filled symbols, data of Fig. 1), and response amplitudes from 
presentations of the same odorants for testing (open symbols).  Open 
symbols were classified using the k-nearest neighbor technique described 
in the Methods. 
 
dimensions in Fig. 2 (filled circles and squares), where each 
axis corresponds to the relative amplitude of one antenna.  
If only one antenna in the array were sensitive to a given 
odor, all the responses of that odor would fall along one of 
the axes.  If the antennae were differentially sensitive to an 
odor, all points would lie along a line, the slope of which 
would represent the relative sensitivity of one antenna vs. 
the other; distance from the origin along this line would 
correspond to the strength of the stimulus (concentration of 
the odor).  Distance from the best-fit line through a group of 
data results from noise in the response. 

Following training, subsequent exposure to each of 
these odors served as a test; amplitudes from these 
responses are also plotted in Fig. 2 as open circles and 
squares.  Classification of these test data using the k-nearest 
neighbor technique described above (Eq. 1) was nearly 
100% accurate for this data set.  Similar results were 
obtained using a second array comprised of antennae from 
H. zea and Ostrinia nubilalis with odorants Z11-14:Ac and 
Z11-16:Ald (not shown).   

 
IV. DISCUSSION 
 

The results presented here demonstrate the ability to 
discriminate odorants by analyzing an electrophysiological 
signal derived from an array of differentially-tuned insect 
olfactory organs.  Using a relatively simple nearest-
neighbor classification technique, odors were distinguished 
with near-100% accuracy.  The odorants chosen represented 
compounds of great biological importance to one or the 
other insect used in the array, and are admittedly best-case 
scenarios.  However, it is known that insect olfactory 
systems are sensitive to a wide range of odorants, including 
many anthropogenic compounds.  In addition, this 
sensitivity is variable across species.  This suggests that a 
hybrid olfactory biosensor could be used to detect many 
volatile compounds of interest in a variety of applications, 
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including explosives, drugs, chemical warfare agents, 
environmental hazards, or indicators of clinically-relevant 
physiological states (e.g. diabetes).   

Like chemical differentiators, olfactory sensory neurons 
respond most strongly to the arrival of an odor, which is 
intuitive if one considers the turbulent airflow that carries 
odors under field conditions.  This leading-edge sensitivity 
results in a rapid response time of the olfactory system, 
where the response is fully-developed in less than one 
second.  The high single-peak accuracy attained with the 
two-species array used in this study demonstrates that under 
ideal conditions, sub-one-second odor classifications can be 
made.  This can be contrasted with artificial noses, which 
can detect only mean concentrations over tens of seconds or 
minutes.   

While the algorithm described here is straightforward, it 
appears to be robust in cases of less clear differential 
sensitivity between antennae (results not presented here).  
In addition, the algorithm is easily scalable to at least four 
channels while maintaining insignificant computational 
time for this time scale.  While implemented off-line for the 
results presented here, a real-time version of the software is 
under development for field application.  The use of four or 
five species of antenna has been shown to provide good 
discrimination of odorants of less evolutionary interest to 
insects than the pheromone components used in the present 
study [5].  This high discrimination, combined with rapid 
response times and high sensitivity, suggest that hybrid 
biosensors comprised of insect antennae may prove useful 
in several artificial nose applications. 
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