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Abstract
Here we demonstrate the feasibility of using an array of live insects to detect concentrated
packets of odor and infer the location of an odor source (∼15 m away) using a backward
Lagrangian dispersion model based on the Langevin equation. Bayesian inference allows
uncertainty to be quantified, which is useful for robotic planning. The electroantennogram
(EAG) is the biopotential developed between the tissue at the tip of an insect antenna and its
base, which is due to the massed response of the olfactory receptor neurons to an odor
stimulus. The EAG signal can carry tens of bits per second of information with a rise time as
short as 12 ms (K A Justice 2005 J. Neurophiol. 93 2233–9). Here, instrumentation including
a GPS with a digital compass and an ultrasonic 2D anemometer has been integrated with an
EAG odor detection scheme, allowing the location of an odor source to be estimated by
collecting data at several downwind locations. Bayesian inference in conjunction with a
Lagrangian dispersion model, taking into account detection errors, has been implemented
resulting in an estimate of the odor source location within 0.2 m of the actual location.

1. Introduction

The development of methods for locating the sources
of volatile compounds has many applications, including
environmental monitoring, security, and drug enforcement.
The source localization problem is a complex one that depends
on proper modeling of the flow of the medium around the
source. As a result, the problem of estimating the location
of an odor source has been an active area of research
[1–14]. Two main approaches to locating odor sources have
appeared in the literature: robotic approaches, addressed here,
and those that employ distributed arrays of static sensors.
Odor localization studies based on distributed odor sensors
utilize the expected values of concentration averaged over long
periods of time. While distributed array methods generally do
not use anemometric measurements, in robotic applications
many times velocity measurements of the transporting medium
are made available because of the closer range involved.
This difference makes the use of high time resolution odor
sensors such as the electroantennogram (EAG) critical to the
efficient use of the velocity measurements. The EAG is the

electrical potential measured at the severed tip of a living insect
antenna relative to the base of the antenna or other electrically
accessible region of the insect when a physiologically relevant
odor is passed over the antenna. High time resolution
allows the detector to resolve high concentration parcels
(due to what is described as turbulent intermittency) of odor
containing air in a plume emanating from a source and to
differentiate between parcels of air that have originated at the
source and those that have not. See [15] for high-resolution
measurements and characterization of intermittent plumes.
Robotic approaches to odor source localization with regard
to the inverse problem of locating the source from limited
data have lagged behind source localization studies that utilize
a set of distributed odor sensors. Recent work in the area
of source localization using static sensors includes Keats
et al [1], and later Yee et al [2] who use Bayesian inference
in conjunction with an atmospheric dispersion model to infer
source parameters using distributed chemo sensors in an urban
environment. See also Guo et al [16] who have extended
these methods to unsteady conditions. Some work has also
been done on strategic placement of sensors [17], which
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has applications to robotic source localization. While these
studies utilized detailed dispersion models, they are meant to
be applied over a larger time scale than a robotic entity might
use.

The robotic approach to source localization has been an
active area of research since the early 1990s. As a result of
turbulent intermittency, many localization algorithms under
turbulent conditions have focused on impulsive approaches
such as moving upwind upon detection of the source odorant.
See for instance [3–5]. The EAG has been used as a
detector to guide robots that mimic moth behavior toward
an odor source [7, 8]. Also, recently, chemosensors have
been used to guide a robot toward an odor source [9], as
well as photo-ionization detectors [10]. A recent review on
robotic odor localization includes references to many more
of these interesting approaches [6]. Accurate estimates of
the probability density of source parameters (such as location
and strength) allow a robotic planner to better strategize its
movements. A model also allows data collection locations to
be chosen to be far away from an odor source for standoff
detection of dangerous materials such as explosives [18].
Several authors [11–14] have begun development of statistical
models and search methods for the estimation of the location of
an odor source. Pang and Farrell [12] used a model of particles
emanating from a source in reverse time in conjunction with
Bayesian inference to create a posterior density function for the
location of an odor source. Their model assumed that the fluid
environment moved as a unit with the measured velocity over
the sensor in a strictly two-dimensional problem and lacked
documented model parameters. In another similar study,
Jakuba et al [19] created a forward model for the probability of
detecting intermittent strands without velocity measurements
of surrounding underwater fluid which was then used to fill
an occupancy grid map, or the posterior probability density of
source locations.

Here, we use an approach to model turbulent dispersion
that is based on the Langevin equation. The Langevin
equation is commonly used in what are known as Lagrangian
atmospheric dispersion models to model odor parcel
movement. Lagrangian dispersion models have been primarily
used to model atmospheric transport of pollutants or other
material by tracking the position of individual particles.
Predictions of concentration fields usually employ Monte
Carlo techniques by simulating the position of many particles.
See [20, 21] and references therein for more examples of
these types of models. However the same model may be used
to infer source parameters by reversing time. Reverse-time
Lagrangian models were first used to quantify source strength
by Flesch et al [22]. However like other distributed sensor
studies, the model relied on averaged concentrations without
anemometric measurements.

Here, we use Bayesian inference to quantify, based on an
atmospheric model, the uncertainty in the source parameter
estimates. To utilize the extra information available from
high-time resolution measurements, time-dependent solutions
to the Langevin equation are used in reversed time to compute
the probability density of where a parcel with a measured
velocity might have originated. This probability density is

combined with Bayesian inference to estimate the location
of a single source in an open field. This provides a more
informative model than has been previously used to model odor
dispersion and whose parameters are based on atmospheric
measurements, allowing the source to be located through
triangulation.

In the problem of detecting a signal in the presence of
noise, there is always the possibility of making decisions that
a signal is present when it is not. These incorrect decisions are
known as false alarms. We take the effect of these false alarms
of odor detection into account by incorporating an unknown
probability of false alarm into the model and inferring its value
using Bayesian inference. False alarms tend to reduce the
effective range of the detector, where distant sources may give
rise to less detections than the false alarm rate itself.

A valuable tool for the development of methods requiring
sensitive and high bandwidth odor detection is the EAG. The
use of the EAG measurement was first published in 1957 [23]
and has since been used for many purposes, including the
investigation of insect behavior and identification of insect
pheromones and host odors for pest management. The values
of the EAG for locating odor sources are its high speed and
sensitivity, the same properties that insects rely on to locate
food and mates. For instance, in moths, the EAG’s rapid
rise time of approximately 15–75 ms in response to turbulent
plumes of pheromonal components was measured in two moth
species [24]. The same study estimated that the information
carrying capacity of those moth EAGs ranged from about 18 to
37 bits s−1, depending on species and pheromonal component.
In Drosophila [25], EAG channel capacities in excess of
50 bits s−1 were estimated. High olfactory channel capacity is
evidently important to some insects for relaying accurate high
time resolution concentration measurements as a function of
time.

EAG potentials, on the order of −1 mV at 1 M�, are likely
the result of the summation of many receptor neuron activities
that result when an odor is passed over the antenna [26]. Note
also there is a net movement of charge from the small amount
of extracellular fluid into a large number of rapidly firing
olfactory neurons. Some empirical models have been put
forward to describe the non-linear dose–response relationship
[27] of EAGs. Dynamically, at frequencies above 1 Hz in
Drosophila, the EAG voltage seems to be well approximated
by a linear low-pass filter at an operating point [28].

Although used only for the detection of one compound,
here we have employed EAG recordings from multiple live
insects’ antennae which can be used in an ‘artificial nose’
configuration. The artificial nose approach has previously
been proposed for the use in the odor localization problem
[29, 30]. The artificial nose was first proposed by Persaud
and Dodd in 1982 [31] and has since been utilized in
many applications including, among others, environmental
monitoring, medical diagnostics, food quality assessment,
explosives detection, and fragrance assessment [32]. For
reviews of sensors and pattern recognition algorithms applied
to artificial olfaction, see [32–35]. The EAG response of
different species of moths and insects exhibit fast, broadly
tuned responses to different odorants [36–38] and thus an array
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(A) (B )

Figure 1. (A) Photograph of the four-channel EAG pre-amplifier and holder for live moths. (B) Representative photograph of an
experimental setup showing the pheromone source (attached to the tripod), the GPS, the EAG sensor and the anemometer.

(This figure is in colour only in the electronic version)

of antennae from different species [37] or different sensory
neurons [39] may be used in an artificial nose configuration.
It has been shown that a four- or eight-channel array of
excised insect antennae is useful for both odor detection and
recognition [40]. When recorded from live insects, consistent
EAG responses may be obtained for longer periods of time
[36], up to 8 h in aphids [38] and several days in moths such
as Helicoverpa zea and Trichloplusia ni [41].

2. Methods

2.1. Hardware

To demonstrate the utility of the methods outlined in this paper
in an outdoor environment, a pheromonal odor source whose
location was to be inferred was placed in an open grassy
field. Instrumentation placed on a hand-pushed mobile cart
included a four-channel antennal sensor an Airmar PB200
WeatherStation and a Gill WindSonic ultrasonic anemometer.
Included in the weatherstation is a 2D ultrasonic anemometer
that measures wind speed and direction, a WAAS-enabled
GPS unit and a three-axis digital compass (see figure 1).
The anemometric measurements obtained from the PB200
in its current proprietary configuration lacked sufficient
information carrying capacity and therefore anemometric data
were obtained from the Gill anemometer.

To record from live insects, an insect holder was
constructed. Live insects were immobilized in tapered, aerated
plastic tubes and placed in a custom four-channel preamplifier,
shown in figure 1(A). With an electrolytically sharpened
tungsten electrode inserted into the eye as a ground reference,
the antennae (tips intact) were draped over the amplifier
electrodes using electroconductive gel (Spectra 360, Parker
Laboratories Inc., USA) to establish a connection to the
amplifier.

As described in [40], the antennal sensor comprises a
low noise, high impedance four-channel CMOS pre-amplifier
connected through a second-stage amplifier with first-order
high- (0.15 Hz) and low-pass (34 Hz) filters. The total in-
band gain was 110 V/V, effectively swamping any digitizer
noise. EAG data were digitized for storage using the
National Instruments DAQCard-6036E into a Dell Inspiron

8200 Laptop PC running Labview 6.1. Data were sampled at
50 kSa s−1, filtered using a 25 Hz Butterworth low-pass filter
(20 pole IIR) and decimated to 100 Sa s−1.

Data from instruments were collected in synchrony using
a laptop PC. Communications between the PC and the PB200
were established over an RS-232 interface. Measurements
from the compass, GPS and anemometer were sent via NMEA
0183 messages to the PC at a rate of 10 Hz. Wind velocity
data from the Gill WindSonic anemometer were sent to the PC
over a second RS-232 connection. This anemometer samples
at 20 Sa s−1 and block averages to 4 Sa s−1. GPS, compass,
and anemometer data were recorded with timestamps that
correspond to the EAG sensor sample number (i.e. referenced
to the acquisition card sample clock).

2.2. Experimental setup

Experimental measurements were made on 10/08/09 starting
at 2:36 PM eastern standard time in State College, PA. The
sensor cart was moved to 13 locations for approximately 8 to
13 min each during recording. While standing at location
0, background EAG activity was recorded (source located
downwind). Following this, the source was waved upwind
from the sensor to cause EAG depolarizations for the purpose
of collecting training data for the classifier. Subsequently,
each recording location was generated from a normal density
centered 15 m downwind from the source with a standard
deviation of 10 m in the downwind direction and 5 m in
the crosswind direction. The mean downwind direction
was calculated using the last 10 min of anemometer data
prior to moving from the previous location. Navigation to
these locations was accomplished using the GPS, however its
accuracy was not sufficient to be utilized in the determination
of the source location. When the randomly generated
location was within about 1 m of a previously used location,
that location was used instead because the GPS lacked the
navigation accuracy to get to the new location. Instead
of using GPS measurements, distances between markers
at each location were measured using a laser rangefinder
(Craftsman model 320.48277) so that the locations could later
be determined accurately. Recording from location 1 was
started at 3:05 PM, and recording while standing at the last
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Figure 2. EAG recordings (prior to filtering) obtained while standing at location 2 (low pFA analysis). EAG channels are 1–4 from bottom to
top. Vertical lines indicate times when the classifier made the decision that pheromone had caused EAG depolarizations.

location ended at 5:45 PM. Using Turner’s stability criteria
[42], weather conditions were mildly unstable, changing over
to neutral at 5:15 PM.

The EAG was simultaneously recorded from four moths of
two different species for the purpose of detecting the presence
of (Z)-11-hexadecenal (Z11–16:Ald). Channels 1 and 2 each
measured signals from two male Heliothis virescens (tobacco
budworm), while channels 3 and 4 measured responses from
two male H. zea (corn earworm). Both are insects whose
female counterparts incorporate Z11–16:Ald as the major
pheromone component. Two different species were used on
the basis of their availability from our insect colonies. Because
they are very similar species, significant differences in the
EAGs obtained was not expected or observed. References
documenting pheromonal components present in the female
glands of moth species used in this study follow: H. zea [43]
H. virescens [44].

The outdoor source consisted of a bundle of 100 plastic
drinking straws whose surfaces had been coated with Z11–
16:Ald by shaking in a solution of hexane (∼50 ml) and Z11–
16:Ald (200 mg) and allowing the hexane solvent to evaporate.
The source was oriented so that the straws were parallel to the
average wind direction and placed at the height of the EAG
sensor, 1.5 m.

2.3. Preliminary data processing

Raw EAG sensor data consist of voltage versus time records
from the four-channel probe sampled at 100 Sa s−1. These
records are later loaded from disk and passed through a
0.8–5 Hz (−3 dB) finite impulse response (FIR) symmetric
linear phase bandpass filter to remove noise and baseline
drift in the EAG signal. Brownian-type noise and more
thoroughly mixed background odors especially contribute to
low frequency components of the EAG signal, which are
removed by this filter. Feature extraction and subsequent
detection of possible depolarizations were performed using the
stage 1 classifier described in [40]. The false alarm rate was
manipulated by adjusting the background prior probability.
The representative results of the detection procedure while
standing at location 2 (ca 10 m from the source) are shown in
figure 2.

Output from the detector was then combined with data
from the Gill WindSonic anemometer and location data from

the GPS resulting in a sequence of random vectors with tim-
ing governed by the anemometer sampling interval, T. Each
1.0 s interval includes an average anemometric velocity,
u(kT) a detector location rD(kT), and a detection measure-
ment D(kT). Two-dimensional anemometric measurements
(north/south and east/west) ns (kT ) and ew (kT ) were trans-
formed into components u1(kT) and u2(kT), which point in the
mean wind direction and the horizontal crosswind direction,
respectively. If one or more ‘hits’ (strand of concentrated
odor passes over the probe) occurs during an interval, the
variable in the random process D(kT) is assigned a value of
1 otherwise D(kT) is assigned a value of 0. Although the
GPS readings were recorded, locations calculated using the
laser range finder were used to record the detection locations,
rD(kT). The recorded sequences are designated as uk , rDk and
Dk throughout this manuscript.

3. Dispersion model

The goal is to estimate the source location utilizing the data
sequences described in section 2.3. It is shown, under certain
assumptions, in section 4 that to use Bayesian inference to
solve for the source location, a probabilistic model for the
dispersion of odor containing parcels of air from the source
location to the anemometer/detector is necessary. This is
described by the probability density fD (Dk |uk, rS, rDk, θ ).
This is the probability density of obtaining a detection (or
no detection) at location rDk during the kth time interval
from a parcel originating at the source location, rS , given
the wind velocity measurement, uk , made at the detection
location. The parameter vector θ describes the size of the
odor parcels and probability of false alarm, which are also
unknown. The way this expression is obtained is described
in sections 3.2 through 3.6. Note that the probability of
detection is dependent on only one velocity measurement.
This is due to the representation of the movement of air
parcels with the Langevin equation for which only one
velocity measurement gives all the information necessary
for estimation of a parcel’s location. Solving the Langevin
equation results in an expression for the probability density that
a parcel intersects location rI at time t given its velocity was u0

at location r0 at time 0, or fRI
(rI |u0, r0, t ). The solution to

the Langevin equation is dependent on atmospheric parameters
whose estimation is described in section 3.4. In section 3.5,
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an expression is developed for the probability of obtaining
a positive PrP (P = 1 |uk, rS, rDk, θ ), rather than detection
during some finite interval. Incorporation of detection errors
to obtain the final expression for fD (Dk |uk, rS, rDk, θ ) is
then described in section 3.6.

3.1. Lagrangian coordinates

The model employed here is a simple implementation of a
Lagrangian dispersion model. Lagrangian techniques are so
named because they utilize Lagrangian coordinates, which
label the fluid flow elements, rather than fixed locations in
space. This is useful in our model because it is the position of
the Lagrangian element that passes through the anemometer at
some time that we would like to track. Following the notation
of Pope [45], r+ (r0, t) refers to the Eulerian coordinates,
the fluid element which is at the position r0 at time t0,
where r0 = [r01, r02, r03] are the Lagrangian coordinates,
and r+ (r0, t0) = r0. This makes r+ the transformation from
Lagrangian to Eulerian coordinates. Each element’s velocity
may be transformed from Lagrangian to Eulerian coordinates
when the Eulerian velocity field is known according to
equation (1):

u+(r0, t) = u[r+(r0, t), t] (1)

where u[r, t] is the (known) Eulerian vector field describing
the velocity. The Eulerian velocity of the element initially at
r0 may be integrated in order to track its position:

r+(r0, t) =
∫ t

t0

u+(r0, τ ) dτ + r0. (2)

3.2. Langevin equation

Among others, Hanna [46] provided experimental evidence
that the power spectrum of the Lagrangian velocity in the
convective boundary layer decays at a rate of ω−2, which
is consistent with the spectrum of an Ornstein–Uhlenbeck
(OU) process [47] describing Brownian motion. Solutions
to the Langevin equation, known as a stochastic differential
equation (SDE), result in OU processes [45, 48]. As a result,
Langevin equations were first used by Thomson [49, 50] in
forward atmospheric models. A simplification employed here
is that the flow is assumed to be homogeneous and uncorrelated
in all three Cartesian directions. This is not an unrealistic
assumption for the horizontal directions in a large open field.
However, flow in the z direction is not homogeneous, due to
the boundary at the ground. Further, the velocity in the z

direction is not uncorrelated with horizontal velocities.
The Langevin equation is meant to apply to the mean-

subtracted velocity process. The process of breaking velocity
measurements into a mean part and a fluctuating part is known
as the Reynolds decomposition. The mean wind speed can be
obtained by averaging as a result of the spectral gap [51, 52] at
around 1 h. In this case, the coordinates have been rotated so
that the mean wind points in the direction of the mean of u1.
The u1 component is separated into the sum of a fluctuating
part, ũ1, and a constant, mean wind speed ū1:

u1 [rD, kT ] = ū1 [rD, kT ] + ũ1 [rD, kT ] . (3)

The Langevin equation below, formulated for atmospheric
models, describes a Cartesian component of the motion of the
Lagrangian fluid element r0 [45]:

dũ+
j (r0, t) = − ũ+

j (r0, t)

TLj

dt + σuj

√
2

TLj

dWj(t) (4)

where dW (t) may be thought of as a time-independent zero-
mean Gaussian random variable with a variance of dt. σuj is
the standard deviation of the Lagrangian wind velocity in the
direction indexed by j , and TLj is a time constant indicative
of the amount of memory the process has, is known as the
Lagrangian integral time scale.

The Langevin model, besides being a reasonable
representation of reality, has the desirable property that it
is Markov, meaning future states are dependent on only the
present state of the process. This means future values of
the velocity are estimated using only its present value. This
simplifies our analysis because we wish to estimate the position
of fluid elements that pass through the anemometer at some
time.

Although wind speed measurements are available in
horizontal directions, no measurement is available in the
vertical direction. Therefore, estimates of the position of a
parcel that passes through the anemometer in the horizontal
directions differ from that in the vertical direction. In the
vertical direction, when only the position and not the velocity
of the element is known, its mean displacement is simply the
integral of the mean velocity (assuming t0 = 0):

E
[
r+

3 (r03, t)
∣∣r03

] = ū+
3 t + r03. (5)

In this case, ū+
3 = 0. The variance of an element’s displacement

as a function of time for an OU process (i.e. the Langevin
equation) without knowing its velocity was given by Taylor
[53]:

E
[(

r+
3 (r03, t) − E

[
r+

3 (r03, t)
])2|r03

]
= 2σ 2

u3T
2
L3

[
t

TL3
− (

1 − e− t
TL3

)]
. (6)

In the horizontal direction, when both the position and velocity
of the fluid element are known at t0 = 0, the mean trajectory
is given by [47]

E
[
r+
j (r0j , t)|r0j , u

+
j (r0j , 0)

]
= ũ+

j (r0j , t0)TLj (1 − e−t/TLj ) + ū+
j t. (7)

The variance of the element’s position when both its
position and velocity are known at t0 = 0 is given by [47]

E
[(

r+
j (r0j , t) − E

[
r+
j (r0j , t)

])2∣∣r0j , u
+
j (r0j , 0)

]
= 2σ 2

ujT
2
Lj

[
t

TLj

− 2(1 − e−t/TLj ) +
1

2
(1 − e−2t/TLj )

]
.

(8)

Because the dW (t) is Gaussian, there is now enough
information to describe the solution to our model of an
odor parcel’s movement. The probability density that an
infinitesimally small parcel of air intersects the location rI
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(A)
(B )

Figure 3. (A) Horizontal extent of average plume concentrations under two conditions (see the text for details). The wider plume shows that
under our experimental conditions, the plume occupied a wide downwind area. The narrower plume is illustrative of the additional
information provided by horizontal anemometric measurements under the model. A snapshot of what the centerline of a more coherent
meandering plume within the envelope given velocity measurements is also shown, emphasizing the effect of the spatial correlation on
particle dispersion. (B) The vertical extent of the plume under both conditions is shown and it is noted that the simple dispersion model
extends below ground level.

t seconds after intersecting r0 (r+ (r0, t) = rI ) is given by the
following equation:

fRI
(rI |u0, r0, t) =

3∏
j=1

1√
2πσIj (t)

× exp

[
−1

2

(
rIj − r0j − μIj (t, uj )

σIj (t)

)2
]

. (9)

The means and standard deviations are the Ornstein and
Uhlenbeck conditional estimates in the j th direction for the
horizontal components (j = 1 and 2), and the Taylor estimate
in the z direction (j = 3), because no velocity measurement
is available in that direction. Equations for the arguments are
given by

μIj (t, u0j ) = ũ0j TLj (1 − e−t/TLj ) + ū0j t j = 1, 2 (9a)

μIj (t, u0j ) = ū0j t = 0 j = 3 (9b)

σ 2
Ij (t) = 2σ 2

ujT
2
Lj

[
t

TLj

− 2(1 − e−t/TLj )

+
1

2
(1 − e−2t/TLj )

]
j = 1, 2 (9c)

σ 2
Ij (t) = 2σ 2

u3T
2
L3

[
t

TL3
− (1 − e−t/TL3)

]
j = 3. (9d)

Equation (9) estimates the position of a particle at time based
entirely on its position and velocity at t = 0 and does not
incorporate any information that may be available at other
times. Note that in the vertical direction (j = 3), the exponent
in equation (9) is practically always 0 in the vertical plane of
the source, so that only the normalization constant is affected
as time progresses.

The model given by equation (9) indicates that under
the low wind speed weather conditions recorded during our
experiment, velocity information was highly informative in
determining the path of a particle, while a downwind area with
a large angular range was available for making measurements.

Consider a point source releasing particles continuously at
a constant rate. Equation (9) may be integrated over time
(t = 0 to ∞) to predict the resulting average concentration
of particles in space given the conditions under which the
particles were released. Or it may be assumed that the source
has released a single particle at some unknown time with a
constant prior probability. Then equation (9) may be integrated
over (some limited) time to determine the probability density
of finding that particle somewhere in space. With either
interpretation, the time integral provides useful information
about the bounds of the plume. Figure 3 was included to
illustrate the bounds of particles following the Lagrangian
paths modeled by this equation under the experimental weather
conditions encountered. The time integral of equation (9)
was numerically computed in several y–z planes to obtain
approximate plume bounds under two conditions. The first
condition is that the velocity of the particle as it passes through
r0 = (0, 0, h), where h is the height of the source, is unknown.
Under this condition, the means and standard deviations are
the same as assumed in (9b) and (9d) in all three directions. In
the second condition it is assumed that the horizontal velocities
are known thus the integral is computed with the assumptions
that (9a–9d) hold. Under both conditions, the integral of
the function in the y–z plane was very nearly constant as
a function of x, indicating that most particles released are
eventually carried by the mean wind into the next y–z plane.
The isoprobability contour containing 68% of the density in
each y–z plane was then computed. Figure 3 indicates the
horizontal and vertical extents of these isoprobability contours
in the x–y plane under both conditions. It should be noted
that the modeled boundaries are average values under both
conditions and do not represent the plume structure at some
time. Movements of particles are correlated in space as well
as time giving rise to meandering plumes within an average
envelope given by the velocity process at the source. The
centerline of an example of a meandering plume is also drawn
in figure 3. Consideration of spatial correlation leads to the
two-particle dispersion problem, on which initial work was
simultaneously published by Brier [54] and Batchelor [55].
For a review, see [56].
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(A) (B )

Figure 4. Isoprobability contours containing 68% of y–z plane
densities computed at various values of x. (A) u1 = −1.5 m s−1,
u2 = 0 u3 unknown. (B) u1 unknown, u2 = 0 m s−1, u3 unknown.
Values of −x are 1, 2, 3, 4, 5, 7, 10, 12 and 15 m. Dark circle in the
middle is drawn to indicate the cross-sectional area of the actual
source used.

Equation (9) applies to a point source during an
infinitesimal time interval. The actual source used was 10 cm
in diameter, which was unmodeled. Figure 4 has been
included to illustrate the size of the source in comparison
to the (68%) plume boundaries corresponding to the point
source assumption. When the horizontal velocities take on the
most likely values in panel A (u1 = −1.5 m s−1, u2 = 0, u3

unknown), the source size becomes insignificant subjectively
at about 3 m downwind. But for a data collection location
located along the x axis where a particle passes through the
source with u2 = 0 at any speed, the source size becomes
insignificant at perhaps 2 m downwind. Because the data
collection locations were all significantly further from the
source than 2–3 m, it is doubtful that the Lagrangian dispersion
model was significantly affected by the finite cross-sectional
area of the source in this case. It should be noted, however,
that the properties of the concentration variations passing over
the detector were likely affected by the physical size of the
source, likely resulting in wider concentration peaks than for
a smaller more concentrated source of equal odorant emission
rate.

3.3. The parcel and source model

Average velocity measurements were made over fixed and
regular time intervals, during each of which many (as modeled
by equation (9)) infinitesimal particles passed through a
detector. Some of these particles may have intersected the
source and some may not have. However, because the
particles pass through the detector in close spatial proximity,
movements of each of these processes are correlated, as a
result of spatial correlation. Given the high spatial correlation
of particles that are close to each other, those particles that
pass through the detector that have not intersected the source
but are in close proximity to odorant particles at the detector

are more likely to have passed close by the source than those
that are not in close spatial proximity to odorant particles at
the detector. Thus when a detection is made, it is an indication
that the particles, only whose average velocity is known, have
likely passed through some region around the source, making
the information contained in concentration relevant. Here we
have taken the detection of any amount of odorant during
an interval as an indication that the ‘parcel’ associated with
that average velocity measurement has intersected the source
point. However, in our detection scheme, detection times
are associated with local concentration maxima, which means
that parcels containing odorant that pass over the detector
over two or more adjacent time intervals will be assigned to
a single interval, effectively lumping odorant into a single
infinitesimal element. This operation can tend to under-report
positive detections, especially when short intervals are used.

To facilitate computation of the probabilities of obtaining
positive detections, the object that is transported by the wind
at unresolved scales is viewed as a coherent strand of points
or parcel. Each element is assumed to share the same
realization of the Langevin equation (sharing the same velocity
measurement and Brownian motion, W (t)) shifted only in
time. After the first point on the strand passes through a
point in space, the rest follow through the same point for
exactly one time interval, T. A single parcel is released from
the source per time interval at regular intervals. Further,
assuming that each parcel occupies the same volume it will
stretch under high velocity conditions and compress under
low velocity conditions. Each parcel has one plane (associated
with detector peaks) that contains odorant. The frontal area of
the parcel is used to model the source strength, but may also
reflect the physical size of the source. For instance, a source
with a smaller cross section and equal emission rate might be
detected less often, especially near the source. The size of the
source could, in more accurate models, become an important
parameter. Although the meandering plume mixes and dilutes
as it is transported by the wind, likely affecting its detectable
cross-sectional area as a function of downwind distance, we
have not initially modeled this effect. The primary reason for
this is to reduce the number of source parameters. In our data
from this experiment we have not found any clear trend in size
of the parcels as a function of distance from the source.

It is also evident from recordings that odorant
concentration peaks tend to be longer farther downwind. For
instance from location 2 (∼10 m from the source) peaks
subjectively average about 0.25 s in width, while from location
10 (∼20 m from the source) peaks are about 1 s in width.
Thus it is expected that at close range, parcels are more
heterogeneous than from farther distances.

Here, as in many Lagrangian dispersion models, each
parcel is modeled as a new and independent realization of the
Langevin equation. However, like the particles, the parcels
being modeled are located in close spatial proximity, and
movements of each of these processes are also correlated
being function of weather conditions, including average wind
speed. To consider spatial correlation, the many different
combinations in the order in which the source parcels may
cross the detector become more important. However, given
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a sufficient number of measurements, the effect of spatial
correlation should become less relevant. It is observed in
our data (not shown) that detections are associated with
time intervals where a high rate of intercept is predicted,
but generally when detections are made, they exceed the
predicted rate. At other times no detections are visible
where the rate is predicted to be high. This is likely the
result of the meandering plume moving within its predicted
envelope, possibly averaging out over time. Another result
of modeling each parcel independently is that any number of
these continually released parcels may appear at the detector
at one time.

3.4. Estimation of Lagrangian model parameters

Parameters to be estimated for the solution of (9) include
the standard deviation of the Lagrangian wind velocity,
σuj , and the integral time scale TLj , where the direction
is enumerated by j . These parameters were estimated
from anemometer data that were collected between 3:05 and
5:45 PM, i.e. while collecting data at locations 1–13. Because
wind velocity measurements are available in the horizontal
directions, horizontal estimates of these parameters differ from
vertical estimates. In the horizontal directions, σuj is usually
considered equal to the Eulerian value [57] given by

σuj =
√√√√ 1

N − 1

N∑
i=1

ũ2
j . (10)

Several authors have attempted to provide a method for
estimating Lagrangian integral time scales, TL, from Eulerian
velocity measurements obtained at a fixed point in space. TL

is defined by the following equation [46]:

TL =
∫ ∞

0
Ruu(t) dt (11)

where Ruu(t) is the normalized autocorrelation function of the
velocity of a Lagrangian element. The OU process being used
to model parcel movement has an autocorrelation described
by the following equation:

Ruu(t) = e− |t |
TL . (12)

Complicating the effort to estimate TL is that the measured
Eulerian velocity process at a fixed point in space is not an OU
process and has long autocorrelation tails that are difficult to
estimate from measurements. Hanna [46] has been frequently
referenced by authors documenting Lagrangian dispersion
models. Rather than integrating the Eulerian autocorrelation
function using an equation analogous to (11), Hanna takes the
time in account at which the Eulerian autocorrelation function
reaches the value of e−1 for the Eulerian time scale. A common
method [57] is to use a constant, β, to relate the Eulerian time
scale obtained in this way to the Lagrangian time scale:

TLj/TEj = βj (13)

where

βj = 0.44
ū1

σuj

(14)

and ū1 is the mean wind speed.

The following approach was used to estimate the
Lagrangian time constant and wind velocity standard deviation
in the z (j = 3) direction without velocity measurements. The
formulae used here are taken from other forward Lagrangian
dispersion models [58, 59]. In unstable conditions, when the
Obukhov length, L, is negative, the Lagrangian time constant
in the z direction can be approximated by

TL = 0.5r3

σu3

(
1 − 6

r3

L

) 1
4
. (15)

Further, in the direction of the mean wind,

σu1 = u∗

√
4 + 0.6

(
zi

−L

)2/3

(16)

where u∗ is known as the friction velocity (for a description
see [51]) and zi is the boundary layer thickness. The
friction velocity may be measured directly, or estimated from
horizontal velocity measurements at several vertical locations.
The friction velocity usually ranges from about 0.1 to
0.4 m s−1. Here we have assumed a value of 0.2 m s−1. The
boundary layer thickness can vary quite a bit. Our assumption
of 1000 m is typical [51] and is the same as that assumed by the
authors in [58]. In any case, the time constant is insensitive to
the boundary layer thickness. The value for L obtained from
(16) is substituted into (17):

σu3 = 1.25u∗

[
1 + 3

r3

−L

]1/3

. (17)

The result is substituted into (15). Setting the height of the
anemometer, r3 = 1.5 m results in a value of 3.1 s for TL and
0.27 m s−1 for σu3.

3.5. Probability of obtaining a positive for a single parcel
during a finite interval

Equation (9) is valid when the velocity is sampled during
an infinitesimal time interval for an infinitesimally small
parcel. However, it is necessary for the maximum likelihood
procedure to obtain an expression for the probability of
obtaining detection during the kth time interval rather than
an infinitesimal interval. In addition, the (average) velocity
measurement is made at the detector, rather than at the source,
so the particle path being estimated occurs prior to the time the
velocity measurement is made. Fortunately, we may reverse
the direction of time in equation (9) to predict where the
parcel came from rather than where it is going. We begin
by obtaining an expression for obtaining a positive from one
parcel and then make an extension to multiple parcels in
section 3.6.

In the absence of detection errors, the actual state of a
true positive is indicated by the Boolean variable P. If the
source releases a single (lth) parcel from rS starting at time
tk−l = ti , PrP (P = 1|uk, rS, rDk, θ, iT ) is the probability of
obtaining a positive at location rD where the average velocity
measurement is uk during the kth measurement interval. To
compute this probability using equation (9), the direction of
time may be reversed. The probability of one parcel leaving
the detector point rD , at time tk with ‘instantaneous’ (actually
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average) velocity uk , and intersecting the source rS (rather than
the detector) during the i = k − lth interval may be estimated.

An exact solution to this problem would require a full
solution to a SDE with more complex boundary conditions
for each location and flight time. Note that the probability of
an intercept of a parcel can be modified by knowledge of its
position during times other than the endpoints of the interval
0 to t. For instance, knowing that in the prior interval no
detection occurred would provide information about where
no parcels (probably) were during that time. The amount of
information this knowledge lends to find the source parameters
is considered negligible.

The following paragraph uses simplifying heuristics to
provide a tenable approximation to the more complex SDE.
There is, at the beginning of a time interval (in forward
time), a probability that an odorant containing parcel of finite
volume is already over the point detector. However, because
the detection method assigns odorant times to concentration
peak times of infinitesimal length, the probability of this being
reported is zero. As a result, the probability of an intersection
occurring during any time interval is approximated as the
expected amount of probability density that has been traversed
by the frontal area of the odorant-containing plane of the parcel
during the time interval. This assumption can be expressed
using the following heuristic formulation:

d PrP
dt

∼= AP

E
(∥∥ ds

dt

∥∥)fRI
(rS |u, rD, t)E

(∥∥∥∥ds
dt

∥∥∥∥
)

. (18)

The velocity ds/dt, a random quantity, is the velocity the parcel
travels given rS u, rD and t. AP denotes the frontal area of the
parcel at 1 m s−1 and the total parcel volume is given by AP T.
Fortunately, because the frontal area of the parcel is assumed
inversely proportional to its speed to maintain constant volume,
ds/dt need not be explicitly calculated. Also, implicit in
this equation is the assumption that E[ds] never ‘backtracks’
itself—which is equivalent to assuming that an element of
the parcel will never cross the detector twice. Because an
element of the parcel may not cross the detector more than
once, the only allowed intersections (for a point on the strand)
are those that occur during a single infinitesimal interval and
not at any other time. Under that simplification, only a simple
integration is necessary to find P. Further, if AP is small
enough, then integration over the area need not be carried
out. The probability of having an intersection from t = iT to
t = iT + T is given by

PrP (P = 1|rS, rDk, uk, θ, iT )

∼= AP

∫ iT +T

iT

fRI
(rS |uk, rDk, t) dt . (19)

3.6. Probability of obtaining a positive for multiple parcels

Assume that the source has been releasing parcels since t =
−∞. Because the parcels move independently each governed
by an independent Brownian motion, more than one parcel
may appear over the detector at one time. The probability
of having at least one parcel in the vicinity of the detector

originating from rS during the kth sampling interval is

PrP (P = 1|uk, rS, rDk, θ)

= 1 −
∞∏
i=1

(
1 − PrP (P = 1|uk, rS, rDk, θ, iT )

)
. (20)

Equation (20) can be approximated using the following
equation because the summations in equation (21) are always
much less than 1 sufficiently far from the detector:

PrP (P = 1|uk, rS, rDk, θ)

∼= 1 − exp

(
−

∞∑
i=1

PrP (P = 1 |uk, rS, rDk, θ, iT )

)
.

(21)

Near the detector, point approximation of the area
integrals over the densities may result in probability values
that are greater than one. Equation (21) ensures that the
total probability does not exceed one during the optimization
procedure. Equation (21) can be re-written as an integral using
equation (19):

PrP (P = 1|uk, rS, rDk, θ)

∼= 1 − exp

(
−AP

∫ ∞

0
fRI

(rDk |uk, rS, t ) dt

)
. (22)

In general it is not necessary to compute the time integral in
(22) using T as the time increment or even to use a Riemann
sum.

3.7. Incorporation of detection errors

The probability of detection, rather than a true positive, given
the velocity measurement is desired. Detection within an
interval is indicated by the Boolean variable D. Using Bayes’
theorem,

fD(D|u, rS, rD, θ) =
∫

fD(D|P, u, rS, rD, θ)

× fP (P |u, rS, rD, θ) dP. (23)

The probability of obtaining a true positive (21) can
be used to provide a continuous probability density for P
necessary to compute the integral in (23):

fP (P |u, rS, rD, θ ) = δ(P − 1) PrP (P = 1|u, rS, rD, θ)

+ δ (P ) (1 − PrP (P = 1 |u, rS, rD, θ )) . (24)

In general, fD(D|P, u, rS, rD, θ), or the probability
density of a parcel being detected or not detected given a
true positive is a function of u, rS and rD . However for
simplicity, the function is defined using constant values. When
the true positive rate of the detector is pD , the false positive
rate is pFA, the false negative rate is 1 − pD , and the true
negative rate is 1 − pFA. Positives do not occur as modeled –
as discrete uniform impulses. A true positive may be defined
in different ways, such as when 1 or more molecules reach
a neural receptor during any time interval. As noted earlier,
the higher the concentration, the tighter the region around the
source the particles that passed through the detector may have
intersected. Thus, practically, a concentration threshold could
be assigned. Here, very similar results are achieved as long
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as the probability of detection is significantly greater than the
false alarm rate. As a result, we have simply assumed that the
probability of detection is 1. The detection probability density
can be written as

fD(D|P, u, rS, rD, θ) = δ[P − 1][δ(D − 1)pD

+ δ(D)(1 − pD)] + δ[P ][δ(D − 1)pFA + δ(D)(1 − pFA)]

(25)

where the Kronecker delta function is given by δ[.] and the
Dirac delta function is given by δ(.). After substitution of
(24) and (25) into (23) and integrating, the following result
is obtained for substitution into the likelihood function whose
development will be described in section 4:

fD(D|u, rS, rD, θ) = δ(D − 1)

× [pFA + (pD − pFA) PrP (P = 1|u, rS, rD, θ)] + δ(D)

× [(1 − pFA) − (pD − pFA) PrP (P = 1|u, rS, rD, θ)].

(26)

Interestingly, (26) may be used to estimate the information
in the random process D(kT) conditioned on the model and
velocity measurements (not to be confused with conditional
entropy). The entropy H, in bits, for a random variable, x, that
can take on one of the two values associated with probability
p is [60]:

H = −p log2(p) − (1 − p) log2(1 − p). (27)

Further, the entropy of independent variables is simply their
sum.

4. Bayesian inference of source location

A probability density of the source coordinates obtained
from the time-independent measurements may be obtained
by Bayesian inference [61] using the following formulation:

fRS ,	 (rS, θ |u1 . . . uN,D1...DN, rD1 . . . rDN )

= fRS
(rS, θ)

∏N
k=1 fRD,U,D(rDk, uk,Dk|rS, θ)∫

�θ

∫
VS

fRS
(rS, θ)

∏N
k=1 fRD,U,D(rDk, uk,Dk|rS, θ) drS dθ

,

(28)

where the number of measurement intervals is N. Integration
in the denominator would be carried out over the region where
the source could be and over the parameter space. To obtain
an analytical expression for the estimate of the source location
and parameters, the maximum a posteriori method is used,
where

(r̂S, θ̂) = arg max
rS ,θ

fRS ,	

(rS, θ|u1 . . . uN,D1 · · · DN, rD1 . . . rDN). (29)

It is assumed that prior information about the source
coordinates and model parameters is vague enough compared
to the information obtained from the measurements that it can
be considered uniform, but that the domain is not infinite in
size. Then it suffices to specify the prior density as some
constant:

fRS
(rS, θ) = const. (30)

A similar and related assumption is that the data collection
locations, rD1, . . . , rDN , and velocity, u, are independent of rS

and θ. This means that whatever the data collection locations
and wind velocity measurements are, information about the
source location and model parameters that can be inferred from
those data alone is sufficiently vague that it may be neglected.
Normally, this should be the case, because one would not know
whether a source is detectable or in what direction relative to
the wind velocity density it lies prior to collecting data. Using
these assumptions and applying Bayes’ theorem,

fRD,U,D(rD, u,D|rS, θ)

= fRD,U(rD, u|rS, θ)fD(D|u, rS, rD, θ.)

= fRD,U(rD, u)fD(D|u, rS, rD, θ). (31)

After substitution of (30) and (31) into (28) and
simplifying, the following posterior density function is
obtained:

fRS ,	 (rS, θ |u1 . . . uN,D1...DN, rD1 . . . rDN )

=
∏N

k=1 fD(Dk|uk, rS, rDk, θ)∫
�θ

∫
VS

∏N
k=1 fD(Dk|uk, rS, rDk, θ) drS dθ

. (32)

Equation (26) may be substituted into (32) to solve for
the posterior density of the source parameters. Maximization
of this function gives maximum likelihood estimates for the
source parameters that are sought.

4.1. Maximization of a likelihood function

Although better optimization methods are available, as a
starting point, the parameters r1, r2, AP and pFA that maximize
the likelihood function are found by a finite-difference
Newton’s method [62]. While expressions are available for
the first derivatives, expressions for the second derivatives are
tedious to obtain, and are therefore approximated. As usual, to
maximize the likelihood function, the log is taken first before
differentiation:

∂

∂(rS, θ)
ln[frS

(rS, θ|u1 . . . uN,D1 · · ·DN, rD1 . . . rDN)]

= 0. (33)

Substitution of (32) into (33) results in the following
summation:

N∑
k=1

∂
∂(rS ,θ)

fD (Dk |uk, rS, rDk, θ )

fD (Dk |uk, rS, rDk, θ )
= 0. (34)

To evaluate the partial derivatives with respect to the
source location, substitution of (26) and (21) into (34) and
differentiating with respect to rS has the following result:

N∑
k=1

Dk(1 − PrPk)
tmax/�t∑

i=1

[ (rSj −rDkj −μIj (tf i ,ukj ))

σIj (tf i )2 PrP ik

]
pFA

(pD−pFA)
+ PrPk

−
N∑

k=1

(1 − Dk)(1 − PrPk)
tmax/�t∑

i=1

[ (rSj −rDkj −μIj (tf i ,ukj ))

σIj (tf i )2 PrP ik

]
(1−pFA)

(pD−pFA)
− PrPk

= 0 (35)
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(A) (B) (C)

(D) (E ) (F )

Figure 5. Conditional (θ = θ̂) iso-probability contours of different components of log-likelihood functions resulting from computations
made from just two locations. (A) Detections from location 10. (B) Non-detections from location 10. (C) Detections and non-detections
from location 10. (D) Detections from location 9. (E) Non-detections from location 9. (F) Detections and non-detections from location 9.

where

PrP ik = PrP (P = 1|uk, rS, rDk, θ, i�t)

= AP �tfRI
(rS |uk, rDk, i�t)

and

PrPk = PrP (P = 1|uk, rS, rDk, θ)

= 1 − exp

(
−AP �t

tmax/�t∑
i=1

fRI
(rS |uk, rDk, i�t )

)
.

In this implementation, simple Riemann sums are used
to calculate (35) in increments of �t = 0.25 s. Indices are
repeated here for convenience and clarity. i enumerates the
flight times, j enumerates the three Cartesian directions, and
k enumerates the acquisition time intervals. Similarly, taking
the derivative with respect to AP of the log-likelihood function,
(34), has the following result:

N∑
k=1

Dk

∑tmax/�t

i=1 [PrP ik](1 − PrPk)
pFA

(pD−pFA)
+ PrPk

−
N∑

k=1

(1 − Dk)
∑tmax/�t

i=1 [PrP ik] (1 − PrPk)
(1−pFA)

(pD−pFA)
− PrPk

= 0. (36)

Last, taking the derivative with respect to pFA of the log-
likelihood function, (34), gives the last simultaneous equation:

N∑
k=1

Dk (1 − PrPk)
pFA

(pD−pFA)
+ PrPk

−
N∑

k=1

(1 − Dk) (1 − PrPk)
(1−pFA)

(pD−pFA)
− PrPk

= 0. (37)

It can be seen that the first term in equations (35), (36) and
(37) is attenuated whenever the first term in the denominator
exceeds the second term in the denominator. This roughly
defines a sampling region, outside of which, positive detections
‘do not count’ as much. The region shrinks as the false alarm
rate increases.

5. Example illustrating how the likelihood function
locates the source

The likelihood function, (32), can be separated as a product
of density functions by location. It can also be further
separated into components that are due to detections and
non-detections (see equation (26)) This separation helps to
visualize how the method works, which we believe is largely
through triangulation. Figures 5 and 6 are included to illustrate
components that contribute to the total likelihood function
when the inference is conducted from just two points, locations
9 and 10 (see figure 8). This analysis was computed using
the most likely value of the parcel area and false alarm rate
obtained from data at both locations. In each panel, contours
of a log-likelihood function are plotted. Ten isocontours were
drawn with the first at a level 2.3 below the maximum and
then contour levels were changed in increments of −7 after
that. In panels A and D, detections seem to mainly provide
information about the direction to the source. In panels B and
E, the largest contour has the highest value, descending as the
contours shrink. In panel B, it can be seen that the source is
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Figure 6. Conditional (θ = θ̂) iso-probability contours of the
log-likelihood function resulting from computations made from just
two locations.

very unlikely to be near the upwind side of location 10 and also
less likely to be to the left of the source. When both detections
and non-detections obtained at location 10 are combined in
panel C, the non-detections served to push the estimate of the
distance to the source away from the detection location and the
direction to the source perhaps slightly to the right. When the
parcel area is increased, non-detections will generally push
the estimate farther upwind from the detection location and
vice-versa for a reduction in the parcel area. Similarly, the
likelihood functions from location 9 shown in D and E combine
to produce an estimate of the source posterior density function
in F. When all six components of the likelihood function are
combined, the log-likelihood function in figure 6 results. The
most likely value for the parcel area is that which enables the
parcels associated with detections to arrive at both detection
locations from the same location.

6. Assumptions

We have compiled a list of assumptions so that the reader may
refer to it. These follow.

• Wind direction is sufficiently variable that the chances of
plume interception are high and triangulation may be used
to locate the source.

• Prior information about source parameters is vague
enough to be approximated as ignorant.

• Wind velocity and detection locations are unrelated to the
source parameters.

• Source releases one parcel per time interval.
• Parcel movement is governed by the Langevin equation.
• Parcel movements in orthogonal directions are

independent.
• Variance energy above sampling frequency is negligible.
• Parcels each occupy a constant volume.
• Parcels do not re-cross the detector.
• Probability of detection is 1.
• Probability of false alarm is constant.

(A)

(B )

Figure 7. Anemometer data (hits and non-hits) recorded at location
5. Anemometer velocities associated with hits are marked with
larger black dots, while velocities associated with non-hits are open
circles.

• Parcels are driven by independent Brownian motions, and
thus correlation due to spatial proximity is neglected.

• Ignorance of parcel history based on previous
measurements is assumed.

7. Results

Data were collected and processed as described in section 2.
The EAG data were run through the stage 1 detector using two
background prior probability values, providing two analyses—
one with a relatively high false alarm rate and one with a low
false alarm rate. One might observe that the preliminary data
processing reduces the EAG to a set of only two symbols
received only once per second. For example, the computed
average information rate (using (26) and (27)) during the time
interval displayed in figure 2 (low pFA) is 0.30 bits s−1. The
average information rate for the entire recording is 0.085 bits
s−1. This is in contrast to the estimated channel capacity of
the EAG which is in the tens of bits per second. Thus quite a
bit of information is being discarded that could potentially be
of use in the determination of source parameters.

Figure 7 is included to illustrate both the nature of the
anemometer data and the data from the resulting analyses.
This figure shows the wind velocity recorded while standing
at location 5 (see figure 8). The open circles record the velocity
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Figure 8. Top view showing topological distribution of the source
(0,0) and the recording locations. An iso-probability density is
drawn representing the conditional (θ = θ̂) result of the low PFA ‘all
locations included’ analysis for the scale. Contour encompasses
68% (based on the assumed Gaussian density). Mean wind is
directed along the x axis. The mean anemometer vector in meters
per second while standing at each location (looking into the wind) is
drawn at each location.

Table 1. Detection event counts.

Position Time (s) Low pFA hits High pFA hits

1 767 15 35
2 568 40 51
3 518 0 10
4 812 0 10
5 608 8 20
6 514 0 5
7 639 1 5
8 659 6 14
9 513 17 31

10 702 13 20
11 583 4 4
12 528 2 5
13 512 3 4

measured during non-detection times (non-hits), while the
dark circles mark the wind velocity measured during positive
detection intervals (hits). In panel A, it can be seen that the
wind was blowing from the source during almost all of the hit
times. Panel B has more hits, but more of them were recorded
when wind was not coming from the source and are likely false
positives.

The numbers of positive detections resulting from these
analyses while standing at each location are summarized in
table 1. So that the reader may make sense of the hit counts
in table 1 the average anemometer velocity vector is drawn
at each location in figure 8. For instance one might expect
similar results to be obtained at locations 7 and 9, but it can be
seen that the average direction of the wind was significantly
different during the collection times.

Note that the most numerous hits occurred while standing
at locations 1, 2 and 9. The angles to the source from
locations 1 and 2 are almost 90◦ from the angle from

location 9, possibly due to synoptic scale changes. These
locations allow the source location to be accurately estimated
through triangulation. Therefore to test the robustness of the
method, analyses were conducted without the data recorded
from these locations resulting in four analysis types (see
table 3).

Model parameters were assigned using the methods
documented in table 2. Following this, the parameters (rS , θ)
that maximized the likelihood function were computed under
the four conditions. The resulting parameter estimates are
tabulated in table 3.

Note that the pFA estimate increases as expected when the
false alarm rate in the EAG data is increased. The false alarm
rates obtained are also consistent with the number that may
be surmised from the anemometer data in figure 7. At the
high rate, the number of expected false alarms at location 5
(10.1 min) would be about 8 to 10 and at the low false alarm
rate it would be 0.8 to 1.5.

The parcel frontal area values have a limited geometric
interpretation. In a limited sense, they can be interpreted as
the frontal area released per second by the source. Because
information about the length of the odorant detections is
discarded, nothing can be said about the plume volume. If
the average length of odorant peaks was known, we would
expect the volumetric flow rate could be roughly estimated,
and thus an estimate of the cross-sectional area of the plume.
Or, if a concentration threshold was applied (rather than peak
detection) and the anemometer interval reduced so that odorant
peaks were sufficiently resolved, approaching a constant
detection/non-detection ratio, a volumetric interpretation
could apply that would represent an average value of the
meandering plume volumetric flow rate. When locations 1,
2 and 9 are excluded, AP decreases because the locations
with the most hits have been intentionally removed, biasing
this parameter to a smaller value. The parcel area increases
when the high false alarm rate EAG data is used under
low pFA conditions where the source location estimates are
similar. This is likely the result of an increased probability
of detection, pD , which has a constant assumed value of
1. However it is evident that the probability of detection
increases in the anemometer data in figure 7. When the
likelihood function is approximated (not shown) assuming
pFA � pD and PrP (P = 1|uk, rS, rDk, θ) � 1, (equation (22)),
the pDAP product is constant. This effect is not observed in the
high pFA results because the source location estimates differ
significantly.

Each maximization iteration takes approximately 3 s on
132 min of data on a 1.6 GHz Intel T5200. When maxima
are attainable from the start point, five iterations suffice. It
is expected that a simple change such as implementing an
efficient integration algorithm would speed up the operation
by perhaps a factor of 5–10, so that maxima could be obtained
in about 2 or 3 s.

For illustrative purposes, conditional posterior probability
densities for the source location were calculated and iso-
probability density contours were drawn. The conditions
imposed were that the parameter vector θ(AP and pFA) took
on its most likely value, tabulated in table 1. Figure 7 includes
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Table 2. Model parameters.

Symbol Description Source Value

r3 Height above ground Approximate 1.5 m
u∗ Friction velocity Approximate 0.2 m s−1

zi Boundary layer height Approximate 1000 m
tmax Integration limit Assigned 25 s
pD Probability of detection Assigned 1
T Sampling interval Assigned 1.00 s
�t Numerical integration interval Assigned 0.25 s
ū1 Mean wind speed Measured −1.50 m s−1

σu1 Standard deviation See equation (10) 0.70 m s−1

σu2 Standard deviation See equation (10) 0.92 m s−1

σu3 Standard deviation See equation (17) 0.27 m s−1

TL1 Lagrangian time constant See equations (13), (14) 115 s
TL2 Lagrangian time constant See equations (13), (14) 95 s
TL3 Lagrangian time constant See equation (15) 3.1 s

Table 3. Maximum likelihood results.

Analysis type Positions excluded AP (m2) pFA × 10−3 False alarm rate (min−1) Source x (m) Source y (m)

Low pFA None 2.38 2.4 0.14 −0.03 −0.20
Low pFA 1, 2, 9 1.28 1.1 0.08 0.25 −0.04
High pFA None 2.73 14 0.85 0.06 −0.32
High pFA 1, 2, 9 1.16 11 0.98 −1.46 −0.83

the result from the low pFA analysis including all of the data.
The iso-probability contour drawn includes 68% of the density
(or approximately 1 standard deviation in a one-dimensional
Gaussian).

Figure 9 was included to visualize the conditional
posterior densities of all four analyses. In panel A, each
iso-probability contour includes 68% of the density, where
the level is based on the assumption that the distribution is a
two-dimensional Gaussian function. Panel B includes 95% of
the probability density under the same assumption.

Computation of a likelihood function value takes about
0.45 s. Computation of conditional posterior densities
(60 × 60) used to construct figures 8 and 9 each took
about 27 min. If marginal densities were to be computed
(θ unknown) the amount of time to obtain the posterior
density function could take days or weeks. Although robotic
maneuvers are excluded from this paper, it can be pointed out
that tiny male moths lacking such computing power are able
to locate females through optomotor–anemotactic maneuvers
in which moths use the ground as an optical reference for
upwind-directed movement when intermittent pheromone is
detected [63] in just minutes.

8. Discussion

We have introduced a Lagrangian dispersion model for the
solution to the odor source localization problem when local
velocity measurements near a fast detector are known. The
model was used in conjunction with Bayesian inference to
estimate the source’s location. Results from an experiment
were also presented. The experimental setup involved
a pheromonal odor source at 1.5 m over flat mowed
grass, relatively distant from obstructions. Pheromone
was detected at downwind distances of up to 23 m from

(A) (B )

Figure 9. Conditional (θ = θ̂) posterior density iso-probability
contours. Mean wind is directed along the x axis. The source was
located at (0,0). The labels ‘ALL’ refer to analyses that include all
locations. The labels ‘X129’ refer to analyses that excluded
locations 1, 2 and 9. (A) Contours encompass 68% (based on the
assumed Gaussian density) of the probability density. (B) Contours
encompass 95% (based on the assumed Gaussian density) of the
probability density

the source using live-moth EAG preparations. Results
were successful, but further improvements are likely to be
possible. Improved measurement capability could include the
addition of inertial measurements for automated probe location
measurements, addition of a third direction to anemometric
measurements and/or anemometric arrays. Better modeling of
scalar dispersion, including relative dispersion, concentration
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information, and inhomogeneous flow in the z direction
may enable multiple direct downwind measurements to be
used to estimate distance to the source. This would
enable a maneuvering planner for a robotic approach to
optimize its position downwind more often, balancing unlikely
but valuable off-angle measurements with direct downwind
measurements as well as enabling source location estimates
to be made under weather conditions where triangulation is
difficult.
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