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Abstract

Current trends in artificial nose research are strongly influenced by knowledge of biological
olfactory systems. Insects have evolved over millions of years to detect and maneuver toward
a food source or mate, or away from predators. The insect olfactory system is able to identify
volatiles on a time scale that matches their ability to maneuver. Here, biological olfactory
sense organs, insect antennae, have been exploited in a hybrid-device biosensor, demonstrating
the ability to identify individual strands of odor in a plume passing over the sensor on a
sub-second time scale. A portable system was designed to utilize the electrophysiological
responses recorded from a sensor array composed of male or female antennae from four or
eight different species of insects (a multi-channel electroantennogram, EAG). A computational
analysis strategy that allows discrimination between odors in real time is described in detail.
Following a training period, both semi-parametric and k-nearest neighbor (k-NN) classifiers
with the ability to discard ambiguous responses are applied toward the classification of up to
eight odors. EAG responses to individual strands in an odor plume are classified or discarded
as ambiguous with a delay (sensor response to classification report) on the order of 1 s. The
dependence of classification error rate on several parameters is described. Finally, the
performance of the approach is compared to that of a minimal conditional risk classifier.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Detection and identification of airborne volatile chemical
compounds (i.e. odors) have many potential applications in
military, industrial, clinical and research areas. To this
end, development of the artificial nose approach, whose
concept was first published in 1982 [1], has been accelerating
for the past decade [2]. The artificial nose can be
distinguished from other chemical detectors (such as pH
or NO electrodes) by the promise of detecting a number
of different compounds with the same device. Artificial
noses can complement more established analytical methods
such as gas chromatography, mass spectrometry, infrared
spectroscopy and ion mobility spectroscopy [3]. Artificial

noses, mimicking their biological counterparts, generally
consist of an array of sensors that demonstrate specificity
when information from all sensors is combined. Such arrays
have been constructed using several sensor types reviewed in
[4, 5]. A valuable tool for the detection of volatile compounds,
known as the electroantennogram (EAG), has been suggested
for the purpose of detecting compounds with a single insect
antenna [6]. Sensors that change resistivity in response to
odorants include conducting polymers, metal oxides, and
carbon black/polymer. Devices that detect minute changes
in mass due to adsorption of various compounds include
surface acoustic wave and quartz crystal devices. Other
sensors include coated optical fiber sensor arrays and porous
gate MOSFETs. The response patterns from an array of
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sensors must be interpreted by a pattern recognition scheme;
this has been accomplished using, amongst other techniques,
statistical, computational neural networks approaches and
non-parametric classifiers such as the k-nearest neighbor
technique (k-NN) [7], which was pioneered in 1951 by Fix
and Hodges [8], and later analyzed in detail by Cover and Hart
[9].

There are two important limitations of current artificial
nose technologies. First, the long response times (tens of
seconds to minutes) of most approaches limit them to steady-
state measurements, where steady-state may take impractically
long times to reach under transient field conditions, even
when response is accelerated by techniques such as increasing
the flow rate across the surface of polymer based resistor
sensors [10]. The EAG response to a single short duration
filament of odor can be as short as 15–75 ms, and can carry
∼20 bits/s of information (species Spodoptera exigua and
Cadra cautella) [11]. Some unique applications of fast odor
sensors include estimating the location of an odor source at
a close range, or detecting odor plumes at a high speed in
aerial searches. Individual strands will in general be highly
concentrated (rather than being diffused and mixed with other
odorants) but short-lived. The ability to rapidly detect discrete
packets of odor in the air stream also supports the ability to
detect an odor of interest when it is surrounded by interfering
sources. If the sensor detected the mean odor concentration
over tens of seconds, two discrete sources, A and B, would
likely be perceived as a unique source, C, consisting of a
mixture of A and B. When scalar concentrations in the odor
plume remain unmixed, the current system would detect a
series of A and B strands instead of the mixture. A second
limitation of most artificial nose technologies is low sensitivity
[5, 12].

Properties of the biological olfactory system include
short response time and high sensitivity. The principal
arrangement of the biological olfactory system is quite well
conserved across phyla, from insects to mammals. Olfactory
receptor neurons (ORNs) exhibit a response when airborne
molecules bind to metabotropic membrane receptors and
activate G-protein-coupled cascades, providing amplification
and eventually leading to membrane potential changes
and characteristic trains of action potentials [13–16]. In
insects [17], information obtained by ∼40 types of ORNs,
numbering in the thousands to hundreds of thousands, is
organized and transmitted to the antennal lobe [18, 19].
In moths, the odorant sensitive dendrites of ORNs reside
in the antennae, encapsulated in structures called sensilla
[20], where volatile compounds enter the sensillar lymph
through nanoscale pores in the cuticle. Sensillar lymph
contains high concentrations of odorant binding proteins,
which ferry odorant molecules to the receptors on ORN
dendrites [18]. The subsequent mechanism of molecular
recognition is complex and has not been precisely described.
However, structure-activity studies (chain-elongation, double-
bond position, functionality) performed on noctuid moth
olfactory neurons in vivo have been particularly enlightening
in understanding that ligand–receptor interactions can behave
according to conformational energy and electron distribution

models and not merely to space-filling [21–23]. The result
of the sensitive transduction and the antennal lobe processing
is a system that exhibits a remarkably high sensitivity with
broad-band detection and discrimination.

Insect antennae are highly sensitive to odors of survival
interest but also to compounds such as explosives and
controlled drugs (unpublished data). The EAG, the
biopotential developed between two points on an insect
antenna, is the result of the massed response of the ORNs to an
odor stimulus; several groups have shown the potential use of
insect antennae and the EAG in a hybrid-device biosensor
[24–26]. However, each of these studies made use of a
single antenna, which cannot provide discrimination between
odors. For the past several years, a hybrid system for odor
detection based on an array of insect antennae has been under
development [27–29]. The proof of concept for a system
that can potentially discriminate between different odors was
demonstrated when averaged electroantennogram responses
to controlled puffs from living insects of five different species
showed species-specific EAG response spectra to 20 volatile
compounds tested. The EAG response profiles were then re-
constructed for each compound across the five insect species.
Most of the compounds could be distinguished by visually
comparing the response spectra. A four-antenna array was
then implemented to discriminate among three odorants based
on the relative EAG amplitudes evoked when the probe was
placed in a wind tunnel or in an outdoor field [27]. Stable
EAG responses could be simultaneously recorded from four
different insect antennae, and different volatile compounds
could be distinguished in real time by visually comparing
relative EAG responses recorded from a combination of
differently tuned insect antennae. The first computational odor
discrimination on individual strands of odor was reported using
pheromonal components [28], and subsequently preliminary
results involving both pheromonal and non-pheromonal odors
[29] using four EAG channels were presented. Additions to
the system include an increase from four to eight channels,
the addition of a semi-parametric classifier used for detection,
and an offline minimal conditional risk classifier. Using this
system, we have shown the ability to detect and classify eight
non-pheromonal odors.

Here we describe hardware and software suitable for
field use that can computationally discriminate between single
strands of both pheromonal and non-pheromonal odors based
on the EAG response recorded simultaneously from antennae
of four or eight different antennae in odor plumes created in
a windtunnel. The pattern recognition system as applied to
an electronic nose (EN) has application-specific requirements
such as the need to reject outliers (unknown odors), to reject
patterns which are ambiguous to reduce the false alarm rate and
to assign a degree of certainty to each classification operation
[30].

Several problems are inherent in the detection and
classification of strands in a natural plume. Odor plumes
contain background odors, and EAG waveforms also contain
noise, giving rise to mixture probability densities. We
cannot measure true positives, where true positives, in the
limit, approach a transduction event involving one molecule
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Figure 1. Block diagram of the EAG based biosensor system depicting major operations.

Figure 2. Block diagram of one channel of the EAG amplifier. Four channels are implemented in parallel to record from four different
antennae simultaneously. Eight channels are achieved by utilizing two amplifiers. Amplified and filtered signals are passed to a 16 channel
acquisition system and then to a classifier implemented on a portable PC. G, gain; fc, filter corner frequency; HPF, high-pass filter; LPF, low
pass filter; VA, antenna voltage.

during some time interval (noise–odorant mixture). The
general problem is identified in the literature as learning
with an imperfect teacher or supervisor [31, 32], and mixture
densities in particular can be addressed using the expectation-
maximization (EM) technique. Therefore, error rate cannot
be estimated through error counting of the classifier, but it
can be estimated with varying degrees of accuracy through
modeling. Regardless, it must be decided which positives
are worth classifying and which are not, which is correctly
approached using a minimal conditional risk classifier. An
analogous problem without imperfect teaching is encountered
in the design of active radar systems and likely radar warning
receivers, which must passively receive and classify emitters.
Solutions to the automatic target recognition problem in radar
imaging usually divide the procedure into several steps to
reduce computation, namely detection, discrimination and
classification [33], and this approach is also employed here,
with certain differences. Further, in a natural plume, the
multiple antennae may not necessarily be identically and
simultaneously exposed, which adds further uncertainty to the
measurements. However, this does not prevent use of faster
sensors for identification of odors over longer periods of time,
or even the use of an odor delivery system optimized for the
response of the sensors.

Semi-parametric and k-NN classifiers comprise a simple
way to implement a real-time electronic nose that demonstrates
an actual realization of the idea proposed in [27]. In this study,
we compare our results in an ad hoc fashion to a more optimal
conditional risk minimizing classifier offline.

2. Methods

Figure 1 depicts a block diagram of the complete biosensor.
Hardware and software design are described separately below.

2.1. Hardware

Below, a brief description of the hardware built and employed
to measure multiple simultaneous EAGs is given. Spectral
characterization of the amplifier noise, EAG baseline (no
odors) and EAG signal in a plume are summarized.

2.1.1. Design. The system described here acquires up to
16 EAG signals simultaneously for real-time processing and
classification on a laptop PC. A block diagram for one channel
of the EAG acquisition system is shown in figure 2. Each four-
channel preamplifier connects via a shielded cable to a second
stage amplifier. The second stage amplifier is connected via
another cable to an analog to digital converter (ADC) and a
laptop computer.

The preamplifier is small in size, exhibits sufficiently
low noise and virtually non-existent input bias current as a
result of amplifier selection (the quad CMOS input operational
amplifier LMC6084) and board design which includes guard
rings surrounding each input. The small size minimizes
disruption of the air stream passing by the sensor and allows for
future expansion to more EAG channels. A concern related to
the preamplifier is the noise it adds to the input signal. Johnson
noise, unavoidable noise that is present across any source of
real finite impedance (the antenna in this case), is created by
thermal motion of charge carriers. The noise figure, expressed
in decibels, is a measure of how much noise the amplifier adds
to the signal over thermal noise present at the input:

NF = 10 log10

(
Si/Ni

So/No

)
, (1)

where Si/Ni is the signal to thermal noise ratio at the input of the
amplifier. The calculated noise figure of each amplifier from
0.1 to 25 Hz is 1.8 dB when a nominal antenna resistance of
5 M� is attached to the LMC6084. The finished preamplifier,
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Figure 3. Photograph of a completed EAG preamplifier, including
the four electrodes used to contact the four excised insect antennae.
Each antenna extends from one recording electrode (red (left)
arrow) to the common ground electrode (green arrow). Recording
electrodes are length-adjustable to accommodate the various lengths
of antennae from different species.

including the electrodes that contact the antennae, is shown in
figure 3.

The second stage utilizes a general purpose JFET quad
opamp (LF147) incorporating dc-block and anti-aliasing filters
( fc = 0.14 and 34 Hz, respectively), and is housed in a shielded
box (National Instruments model SCB-68). The analog
to digital converter (National Instruments model 6036E)
interfaces to a Laptop PC (Dell Inspiron 8200) running
Labview 6.1. The gain of the second stage (−10 V/V) was
chosen to render the noise, both in-band and out-of-band,
added by the acquisition card insignificant.

Figure 4. Measured power spectra of various signals. Rolloff at 25 Hz is due to an anti-aliasing filter. Spectra are labeled.

2.1.2. Hardware performance: EAG signal and acquisition
system noise spectra. Some characterization of the
acquisition system and the EAG signal in our wind tunnel
was performed by measuring the spectral content of several
recordings. Recordings consisted of four different 132 second
(100 Sa s−1) segments: 1. Amplifier input shorted to ground.
2. Amplifier input connected to ground through a 4.7 M�

resistor, 3. Amplifier input configured to measure the EAG of
a male Helicoverpa zea moth under ‘background’ (no odors
introduced into wind tunnel—see methods for details) and the
same EAG signal measured while responding to a plume of
thujone under the conditions outlined for experiments B and C.
Welch periodograms were obtained using 1024 point FFTs and
Blackman windows with 608 averages in 20 point increments.
Computer generated Gaussian Johnson noise at 298 K and
4.7 M� is shown for reference. Figure 4, which depicts
1024 point periodograms, shows that the EAG background
noise power is approximately 30 dB above the amplifier flicker
noise level, and has a similar 1/f frequency dependency,
perhaps due to the high dc bias (∼200 mV) present across
the antenna. The 1/f spectrum is also reminiscent of that
present across tin-oxide sensors, which is used to glean more
information about the odorant present [34]. We propose no
mechanism for its generation, although it is often associated
with dc.

2.2. Software

Both real-time and post-acquisition programs have been
developed that utilize the same lower level functions for data
processing and analysis. In the real-time program, data are
oversampled at 200/N kSa s−1 where N is the number of
channels, after which a 20th order infinite impulse response
(IIR) 25 Hz Butterworth lowpass filter (LPF) is applied prior to
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Figure 5. Block diagram of the event identification and feature extraction processes, implemented in Labview. Three features are measured
for each event on each of the channels (trough-to-peak amplitude, TPV; maximum slope of the leading edge of the response, S; second
derivative at the response peak, 2nd). EAG response events to discrete odor packets are identified by locating coincident peaks in the EAG
biopotential waveforms recorded on the N channels. The largest TPV in each event is compared to a very low amplitude threshold of 10 V,
and super-threshold events are passed to the classifier.

decimation to 100 Sa s−1. The decimated data are recorded to a
disk in a text format for a post-acquisition analysis. During the
analysis (real-time or post-acquisition) a 1.7–11.8 Hz (−3 dB)
finite impulse response symmetric linear phase bandpass filter
is used to remove 1/f type noise in the EAG signal.

Feature extraction, event identification and event
classification are carried out in real time via software
implemented in Labview 6.1 and some C++ code for more
time intensive portions of the program. The time from
EAG depolarization to a classification report (which may be
identified by an optional audible tone) is variable, but has a
typical value of approximately 1 s. The delay is due to the
non-causal filtering, properties of the waveform (the length of
the EAG depolarization) and the delay due to processing of
200 ms data segments. Classification of events, once
identified, is virtually instantaneous. Figure 5 depicts the
algorithm for identifying EAG events, measuring several
features of each event and grouping time-correlated events
occurring on the N antennae. Each time-correlated event
corresponds to a ‘strand’ of odor passing over the array of
antennae.

2.2.1. Feature extraction. As a result of the high time
resolution of the EAG, odorants in a natural unmixed plume
can be detected as short depolarizations when filaments of
odor pass over the antenna. Illustrative raw EAG recordings
and responses to individual odor plume strands are shown in
figure 6. It can be seen that male H. zea antennae responded
strongly to Z11–16:Ald strands, a compound that is present
in female H. zea pheromone. Male T. ni antennae responded
as well, but less strongly. Conversely, male T. ni antennae
responded to Z8–12:Ac strands more strongly than male
H. zea. Females also responded to pheromone, but responses
were weaker (not shown). Some modeling results of the moth
EAG transduction (that is, the relation between concentration
and measured EAG) in a wind tunnel plume was reported by
Justice et al [11], and was found to be well approximated

(although not perfectly, see figure 7 for non-linearities) by a
simple linear single pole lowpass filter. Their work shows
the nature of the wind tunnel plume stimulus as measured
by a photoionization detector (PID) simultaneously with EAG
recordings. Further work on controlling the odor stimulus was
performed by French and Meissner [35], confirming the linear
system model. Since evidence shows the antennal sensor may
be modeled with a linear system, it is probable that with an
adequate signal and noise model, optimal estimates of the
stimulus could be made. It is also possible that optimal
controlled stimuli could be delivered to the antennae. As a
first step, however, we identify and classify ‘depolarizations’
found in the waveform, which are likely to be due to high
concentration packets of unmixed odor. Here we make
the simplifying assumption that these depolarizations are
independent even though generally they are not. For instance,
under natural conditions, as a plume sweeps over the sensor,
several depolarizations are encountered, so it is likely that
depolarizations due to separate strands in close proximity in
time are due to the same odor.

Depolarizations on each individual channel are detected
by finding peaks of second degree least squares polynomial
fits five points in length to the recorded waveform. Here
peak refers to the peak of the negative-going depolarization.
This function is performed by Labview’s proprietary ‘peak
finder’ function, which is able to operate on discontinuous
waveform segments. The best peak fits are determined by
the function, but are specified to have amplitudes greater than
1 μV. Using a similar method, troughs are also identified. The
nearest trough preceding each peak is found, and following
this, the amplitude difference between the peak to nearest
preceding trough is retained as a measure of the magnitude of
each response (trough-to-peak voltage, TPV), along with the
time the peak occurred. Second derivatives are found from
the second degree polynomial fits to the depolarizations. To
obtain slopes, the waveforms are approximately differentiated
by subtracting adjacent points. A peak search on the derivative
waveform is then used to identify the nearest preceding peak
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Figure 6. Electroantennogram (EAG) responses recorded simultaneously in two species. Upper trace in each panel from Trichoplusia ni,
lower trace from Helicoverpa zea. Top-left panel, responses to background air. Top-right panel, responses to Z8-12:Ac, similar to
Z7-12:Ac, a major component in T. ni pheromone. Bottom-left, responses to Z11-16:Ald, a major component in H. zea pheromone. The
vertical scale for T. ni is indicated on the left of each graph, the vertical scale for H. zea is indicated on the right.

in the differentiated waveform to each TPV. The value of the
polynomial fit at the peak of the differentiated waveform is
used as the slope value. All three features, the associated
channel and the depolarization times (peak times) are stored
for each depolarization. The peaks associated with the features
may span adjacent (or any number of) 200 ms data segments,
which have been handled by the software.

2.2.2. Channel alignment. As a result of the high
time resolution of the EAG, differences in signal time of
arrival at the antenna can be significant, up to 40 ms here
(visible in figures 8 and 9). Therefore, a simple channel
alignment procedure is implemented after training recordings
are collected (when the user presses the ‘classify’ button).
This is accomplished by loading the (100 Sa s−1) training
segments from the disk, resampling at a 10× rate and cross-
correlating each channel with a reference channel (channel
1) to obtain time offsets, assuming an appreciable activity is
present on all channels. The offsets are added to the time values
obtained by the peak detector during the event generation (see
figure 5).

Resampling and cross-correlation are performed in the
frequency domain by calculating the discrete Fourier transform
(DFT) sequences for each channel to be (circularly) cross-
correlated first. The complex conjugate of the reference

channel is computed so that when the spectra of channels
are multiplied, the circular cross-correlation is obtained.
Subsequently, the DFT spectra products are split near the
middle, so that the bins corresponding to or below fs/2
comprise the lower half. Between halves, the DFT is padded
with a number of zeros that is nine times the length of the DFT.
Following this, the inverse DFT is computed and the location
of the maximum cross-correlation result relative to t = 0 is
stored.

2.2.3. Combining features from multiple channels—
event generation. In the event generator, times of larger
depolarizations serve as points of reference. Given that
multiple depolarizations occur on the same channel near (in
time) a reference, it is assumed the largest is more likely
to be the ‘correct’ choice. The event generator maintains a
list of depolarizations and outputs a list of events whenever
a depolarization occurs that is out of range (>50 ms) of all
previous depolarizations, or the function is called (processing
200 ms at a time) and no depolarizations have occurred. The
out of range condition is encountered on average six times a
second, so events are generally received one or two at a time.
Events are assembled from depolarizations in the following
manner. Starting with the largest stored depolarization, a
search width of ±50 ms is used to find peaks occurring
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Figure 7. Illustration of training data from experiment B for two
channels showing model used to remove background.in stage 1
classifier. (Lines drawn are purely illustrative) CH 1: male
Anticarsia gemmatalis. CH 2: male Trichoplusia ni. Illustrative
eigenvectors with largest eigenvalues are labeled for both phenethyl
alcohol (PA) and methyl salicylate (MS). Isoprobability contours are
drawn for the reduced dimensionality Gaussian model (PA and MS)
and the full Gaussian model (PE only). Data used to estimate the
covariance matrix are taken above the hyperplane (line in this case)
above the odor mean. Black data points show density near origin
due to background (i.e. true negatives). Background is modeled as
the product of independent channel densities, each estimated with
Gaussian kernels. Possible location of decision boundary is drawn.

near the large peak. The largest peak from each channel is
used to form an event vector. These peaks are marked as

(A) (B)

Figure 8. EAG recordings excised from experiment C illustrate stage 1 detection. Longer, green lines indicate events passed on to stage 2.
Shorter, gray dotted lines indicate events removed by the detection procedure. (A) Background segment. (B) Citronellal segment.

used. Depolarizations are processed in decreasing order of
size until the event threshold (10 μV, a very small value)
is reached. Following construction of the events, events
containing marked depolarizations are removed. Thus when
events share depolarizations, the event with the larger size is
kept, and the smaller is removed, as a result of the order of
depolarization marking. Although TPVs are used to construct
the events, the amplitude along with the associated features,
slope and second derivative, are assembled into a N × 3 feature
vector for each event.

2.2.4. Background odors, noise and ambiguous responses.
Under most conditions, background odors and especially
noise on the EAG baseline will be present. The EAG
waveforms acquired in this experiment have dc offsets of
approximately 200 mV, which is very large when compared
to the EAG signal (∼1 mV) obtained from changes in odor
concentration. The dc offset is not reliably constant in the
absence of odorants, and is thus filtered out. A source of
background noise consists of summed activity of neurons with
background firing rates. Interestingly, action potential trains
from individual neurons may be discerned in wideband EAG
recordings. Some of these neurons may have activity levels
that can be decreased or increased, depending on the stimulus.
Also, neural firings associated with mechanoreceptors due to
turbulence are present. Some background odors tend to be
diffuse and well mixed and therefore cause small variations
of a low frequency in the baseline. Other times, background
odors result in sharper depolarizations. Noise on the baseline
is Gaussian in nature and uncorrelated across channels. See
figure 8(A).

During the presentation of an odor, an event may be the
result of background (true negatives) or background + odor
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Figure 9. Eight-channel real-time EAG classification results while the antennal array was exposed to odor plume strands of thujone during
experiment C. Channels are numbered 1 through 8 from bottom to top. Filled circles represent stage 2 classified EAG depolarizations. The
vertical location of the circles is used to designate the classification. Labels for the classifications are given on the left-hand side where
Amb, BG, Acet, Thuj, Cit, PA and Other refer to ambiguous, background, acetophenol, thujone, citronellal, phenethyl alcohol and other
odor, respectively. Starting at ∼1680 s, the antennal array was exposed to a plume of acetophenol and ∼1595 s is the time at which exposure
to a plume of citronellal ceased. The ambiguity reject parameter was set to 0.6. Vertical dotted lines indicate test segment time boundaries.

(1 molecule or more) (true positives). Measuring these is
not possible (i.e. imperfect teaching). Therefore the error
rate cannot be estimated through error counting. However,
it is possible to measure background alone to estimate its
density, and to estimate the odor probability densities. If the
estimates are correct (known perfectly), decision boundaries
can be created that minimize the error rate or risk. The true
error rate or risk can then be estimated from the densities and
decision boundaries. This is not a task we have chosen to
undertake.

Variance in the odorant training data is also contributed to
by the method of natural exposure (rather than artificial puffs)
to the flow field, which does not result in uniform exposure of
all antennae to the dispersing scalar odorant concentrations.
Even given perfect teaching, in practical situations where
individual strands are to be identified, a substantial fraction of
true positives are not worth the risk to classify. For this reason,
we have utilized a variation of Chow’s [36] ambiguous reject.
Using Chow’s definition of error rate (error rate amongst
samples not rejected) makes the error rate dependent on the rate
of rejection. Thus any reported error rate with an ambiguous
reject class should specify the thresholds used for rejection.

The process of detection, or classifying events as positives
and negatives, is a step we have used to efficiently reduce
the amount of data to be processed both in the data stream

and training sets. As a result of imperfect teaching, the
performance of the detection stage cannot be estimated through
error counting, except to count false positives. However,
when rejecting a substantial fraction of true positives due
to ambiguity (see equation (7)), most false negatives that
would otherwise increase the error rate in the absence of an
ambiguous reject class will be rejected. Further, any false
positives will tend to either increase the error rate estimate,
or be rejected. Therefore, the creation of decision boundaries
designed to remove true negatives (detection) does not increase
the reported error rate in a significant way when the ambiguous
reject rate is significant. In this way, the conditions are similar
to the conditions utilized in an automatic target recognition
problem in radar, where false negatives are kept low and
false positives are acceptable before the discrimination stage.
However, in this case, it is also desirable to reduce the false
positive rate using a semi-parametric classifier, since k-NN is
less consistent in its behavior.

In our real-time implementation, background activity is
removed in three ways. Low frequencies present on the EAG
due to well mixed background odors are removed by the digital
bandpass filter. Events due to noise and background odors
are removed by two stages of classification, which could be
referred to as detection (first) and discrimination (second).
Events occurring during background conditions which remain
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after detection are either false positives or due to background
odors, which lead to more correlated depolarizations not
modeled by the semi-parametric classifier. These background
depolarizations are the target of the stage 2 background class.
The same reasoning regarding imperfect teaching that applies
to the detection stage also applies to the discrimination stage.

In summary, because background odorants and test
odorants are present in the training and test plumes, the error
rate result may be distorted by the inclusion of background
odorants when they are incorrectly classified as an odorant
(false positives) and vice versa (false negatives). This is less
likely to occur as the ambiguous reject rate increases. As a
result, we refer to the empirical error rate in the classification
stage.

2.2.5. Classifier.

2.2.5.1. Training and normalization. The system is trained
by collecting data while exposing the antennae to known odor
source plumes. These data may be represented by the set
{(Xi, Ci); i = 1, . . . , N}, where Xi are d-dimensional training
data points associated with class C. Let the L + 2 odor classes
be represented by � = {c0, c1, . . . , cL, cb}, where cb is the
background reject class and c0 is the ambiguity reject class,
which will be explained further. The present system may be
trained to any number of known odor sources. The maximum
number of odor sources that can be distinguished reliably is a
function of many variables [2]. Training events for each odor
are first decimated to the desired number of training points.
Before classification, the training set feature type values are
normalized to have a standard deviation of 1 over the entire
training set [37]. That is, the standard deviation of each feature
type (rather than each feature) is calculated after data from
every channel are combined into events. The normalization
constant applied to each feature type (TPV, slope or second
derivative) is applied to incoming events on all channels, so
that data associated with background activity and noise are
comparable across channels. Note that since the normalization
constants apply to feature type, signal strength information is
retained in the events. Training is accomplished in two stages,
first to obtain the stage 1 model, and second after discarding
events in each training segment that fall into the background
class of the stage 1 classifier. This second training set is
used to classify events in the stage 2 classifier. Two sets of
normalization constants are used to scale incoming real-time
events, corresponding to each classification task.

2.2.5.2. Stage 1—detection. A suboptimal detection
procedure is used to remove small events that resemble the
background class in the stage 1 classifier. Representative
results of the stage 1 detection process are visible in figure 8.
This method uses TPVs only for classification. Noise and
background are modeled assuming channel independence, so
that the density is the product of the TPV density on each
channel. Each channel’s density is estimated using Gaussian
kernels and stored in lookup tables 100 points in length
amongst the range encountered in the data, and assumed
zero outside the range. The kernel width is chosen using

Silverman’s rule [38]. Linear interpolation is used to obtain the
density given any TPV value. Since the noise and background
are Gaussian, it is also possible to model the density; however
this was not done, since a better feature extraction method is
likely to exist.

The probability densities of each odor are modeled using
a multi-dimensional Gaussian density. The distribution is
derived from an N-dimensional model, where variation along
the covariance matrix eigenvector with the largest eigenvalue
is ignored, so that the dimensionality of the density is reduced
from N to N − 1. The component of any feature vector that
points along this eigenvector is considered to be a measure of
signal strength. The multi-dimensional Gaussian density may
be expressed by the following equation [37]:

f (x) = 1√
(2π)d |�|

exp
(− 1

2 (x − μ)T �−1(x − μ)
)
, (3)

where x is a vector of d elements containing the feature values
(i.e. d = the N measurements from multiple antennae), Σ is the
sample covariance matrix for a given odor and μ is the vector
containing the feature means. The exponent of the MDG may
be written as a summation in terms of the eigenvectors and
eigenvalues of the covariance matrix. We write it this way to
explicitly remove dependence of the probability density in the
direction of the eigenvector with the largest eigenvalue. Let the
index of the largest eigenvector and corresponding eigenvalue
be nmax. The reduced dimensionality MDG may be written as

f (x) = 1√
(2π)d | ∑ | exp

⎛
⎝−1

2

d∑
n=1,n�=nmax

(en • (x − μ))2

λn

⎞
⎠ ,

(4)

where en and λn are the nth eigenvector and eigenvalue
of the sample covariance matrix. Although changes along
the largest eigenvector/eigenvalue combination are ignored,
the normalizing constant of the density function remains
unchanged. This is an effort to extrapolate the density of
each odor to the origin, where the marginal density along
the nmaxth eigenvector remains approximately constant, but
is inversely proportional to the standard deviation along the
nmaxth eigenvector. This point is not crucial, since similar
results are achieved using a multitude of Gaussian models. In
addition, the rate of background classification was found to
be relatively insensitive to changes in the background class
prior probability (not shown). The sample covariance matrix
is calculated from the points in the first training data set
that reside above the hyperplane perpendicular to the mean
vector. Class membership of a new vector is determined using
the Bayesian inference assuming each odorant has an equal
prior probability. Any event classified as background is then
discarded. Figure 7, which uses normalized TPV values from
experiment B, is included to help visualize the above equations
as applied to our data.

2.2.5.3. Stage 2—k-NN classification. The nonparametric
k-NN algorithm was used to classify events in the stage 2
classifier using a class-dependent weighted voting scheme.

9
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The following equation is used to calculate the posterior
probability of membership in each class, cj:

f̂ (cj |x) =
1
nj

∑N
i=1 1[D(x,Xi) � Dk]1[Ci = cj ]∑L+1

l=1
1
nl

∑N
i=1 1[D(x,Xi) � Dk]1[Ci = cl]

, (5)

where 1(F) is the indicator function, which is 1 if F is true
and 0 if F is false. Dk is the Euclidean distance to the kth
nearest neighbor in the training set to the test point x. nj

and nl refer to the number of training points obtained for a
particular odor. These compensate for unequal training set
sizes so that each class is assigned an equal prior probability.
All analyses in this work utilize k = 10 nearest neighbors.
Albeit not convergent to the true densities, this estimate may
be more successful in calculating the relative contribution of
each prior density in our data than a volumetric k-NN classifier
based upon prior densities calculated using the Loftsgaarden
and Quesenberry [39] estimate (either an Euclidean or a class-
dependent Mahalanobis distance metric not shown). This
becomes apparent when applying a threshold equation (11),
but not when simply selecting the class with the highest
posterior probability. Volumetric k-NN was least successful
for experiment C, which involves higher dimensionality, d =
24. Other simple techniques for adjusting prior probabilities
include re-sampling [40] and weighing the neighbor distances
[41].

An optimal method for rejecting ambiguous events was
described by Chow [36], which assigned a minimum threshold
on the posterior probability estimate. Soon after, the technique
was applied to nearest neighbor classifiers [42]. Baum and
Pursley [43] defined a classifier with a loss matrix similar
to that of ours (equivalent to Chow’s ambiguous reject) to
receive or erase symbols in communication systems. In this
implementation, one parameter is used to control the tendency
to reject by varying separate thresholds for each odor. The
parameter is meant to control the rate of rejection. This is
accomplished by calculating the probability estimate f̂ (cj |x)

equation (5) for each training point belonging to its own class
using the leave-one-out technique. These are then sorted. A
user-selected value between 0 and 1, the reject rate parameter,
then determines the probability within the sorted list to serve
as the threshold for class membership, which is done for each
class individually. For example, a value of 0.5 would use the
median value in the sorted list for each odor as the threshold for
classification of a new event; a probability below the median
value would result in classification of that event as ambiguous.
In effect, the user is using an estimate of the reject rate from
the training data to exclude a certain fraction of data classified
in any class.

Let j enumerate odors 1 to L, and l enumerate odors 1 to
L + 1. tj is the threshold assigned to odor j which is determined
using the leave-one-out technique described above. Events for
which

arg max
l

f̂ (cl|x) = j and f̂ (cl|x) � tl (6)

are declared as class cj. In the event of a tie, a pseudo-random
uniform distribution number generator utilizing a repeatable
seed (available with Labview) is used to choose the class

amongst those that share the same posterior probability. Below
threshold events for which

arg max
l

f̂ (cl|x) = j and f̂ (cl|x) < tl (7)

are declared ambiguous, or c0. Finally, events for which

arg max
l

f̂ (cl|x) = L + 1 (8)

are unconditionally classified as background, cb.
Results are summarized in real time in a histogram that

displays the number of events classified as each of the target
odors during any arbitrary time interval. Classification results
are also communicated audibly by tones assigned to each target
odor.

Certainty estimates are commonly used in electronic nose
applications. Each classification is accompanied by a weight,
the posterior probability associated with the decision, which is
used to control the volume of the audio signal associated with
each classification.

2.2.6. Empirical error rate calculation. The error rate of a
test session during which odor j is presented for the purposes
of evaluating the classifier performance is calculated by error
counting:

Ej = 1−∑M
m=1 1[arg maxl f̂ (cl|xm) = j ]1[f̂ (cj |xm) � tj ]∑L

n=1

∑M
m=1 1[arg maxl f̂ (cl|xm) = n]1[f̂ (cn|xm) � tn]

, (9)

where m enumerates the above threshold events detected
during the test session. Since removal of background events is
part of detection and discrimination, the error rate is considered
amongst the odorants and is termed the empirical error rate.
Note that as discussed in section 2.2.4, the measured error rate
may be underestimated for lower reject rates.

2.2.7. Minimum conditional risk classifier for performance
reference. As a measure of performance, the results
of the real-time classifier were compared to a minimum
conditional risk classifier utilizing the k-NN density estimator
(equation (5)) with the loss matrix in table 1 through error
counting, even though the density estimates do not meet the
same criteria necessary for estimating the Bayes risk [44].

Classified events may have utility u or loss, ls. A correct
reception has value, an incorrect reception is associated with
a loss and a miss has no associated value or loss. When events
are classified as background, no value is associated; it is the
same as having no measurement system at all. The well-known

Table 1. Loss matrix.

Decision

Actual Odor 1 Odor 2 . . . Odor L Background

Odor 1 −u ls ls 0
Odor 2 . . . ls −u ls 0
Odor L ls ls −u 0
Background ls ls ls 0

10
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conditional risk minimizing classifier [45, 46] chooses class cl

where

l = arg min
q

L+1∑
p=1

λpqf̂ (cp|x), (10)

where λpq is a loss matrix element involving the classification
of an event of type p as q. When simplified, the decision rule
becomes:

if max
l

f̂ (cl|x) >
ls

ls + u
assign class arg max

l
f̂ (cl|x),

else assign class L + 1(background), (11)

which is seen to combine ambiguous events as defined by
Chow and some background events into the background class.
Note that if the background posterior probability is high, an
event is more likely to be placed into the background class.
To evaluate performance, the average risk of each approach
was estimated, given values of u and ls using the k-fold cross-
validation technique (k = 10) on the training data. Let cm

denote the decision made by either the real-time classifier or
the minimal risk classifier for the mth event. The empirical
risk associated with class l is evaluated through error counting.

Rl = 1

M

L+1∑
n=1

M∑
m=1

1 [cm = n] λ′
ln, (12)

where m enumerates all events encountered during the test
session when odor l was presented. The prime on the loss
matrix element λ′

ln is used to indicate that the risk estimate
may employ a different loss matrix than that for which the
classifier was designed equation (10). The average empirical
risk is calculated as

R = 1

L + 1

L+1∑
l=1

Rl. (13)

Multiple 10-fold cross-validation runs on the training data
were performed for each technique (real-time and minimum
conditional risk) offline. The real-time ambiguity reject
parameter was varied from 0.05 to 1.0 in increments of 0.05,
while the minimal risk classifier was run so that ls/(ls + u)

varied from 0.05 to 0.95 in increments of 0.05. Runs for
both methods used the maximum number of available training
points. After storing the confusion matrix results for all
the runs, performance comparisons were made in a separate
program offline using an additional Labview code.

To perform ad hoc comparisons, the ambiguity reject
parameter was chosen for each loss-utility threshold (ls/(ls +
u)) entered into the error counting loss matrix λ′ for
which the counted risk was minimized. The minimal
risk estimated through error counting when considering the
minimal conditional risk classifier results does not generally
correspond to the loss-utility threshold employed in the
classifier. To avoid giving the real-time method a biased
advantage, the loss-utility threshold that was entered in the
classifier loss matrix, λ, was chosen so as to minimize the
risk measured through error counting given each loss-utility
threshold employed in the error counting loss matrix, λ.
Results are given in table 2. The best error-counted risk of
both methods for all three experiments is depicted in figure 12
for the purpose of comparison of the two methods.

2.3. Recording the EAG

The electroantennogram was recorded simultaneously from
excised antennae obtained from insects of different species
and sex, yielding a multi-channel response to selected volatile
compounds. Three configurations were employed to generate
data used to demonstrate the system, denoted by A, B and
C. Each antenna was fixed to the preamplifier; an electrical
contact was made with a conductive gel (detailed methods for
EAG recording can be found in [27]).

2.3.1. Experiment A. Antennae used in configuration A were
from male insects of the following species:

1. Platynota idaeusalis (tufted apple budmoth)
2. Heliocoverpa zea (corn earworm)
3. Ostrinia nubilalis (European cornborer) and
4. Cydia pomonella (codling moth).
In experiment A, the antennal array was positioned 0.3 m

downwind from the odor source in a wind tunnel; flow rate
was 1.5 m s−1. The wind tunnel used for this experiment
consisted of a box-fan blowing through a furnace filter into
a 2 ft × 2 ft × 10 ft rectangular clear plastic duct (1 ft �
30 cm). Air was removed from the other end of the duct by
a laboratory hood. The antennae were oriented horizontally
and perpendicular to the direction of flow, so that the leading
sensor was channel 1. The odor source consisted of 100 μg of
a chosen compound in solvent (hexane) applied to a piece
of filter paper (∼1 cm × 4 cm) and placed in the tunnel
after the solvent had evaporated. The compounds used in
configuration A [(Z)-11-hexadecenal (Z11–16:Ald), (Z)-11-
tetradecenyl acetate (Z11–14:Ac), (E,E)-8,10-dodecadien-
1-ol (E8,E10–12:OH), (E)-11-tetradecen-1-ol (E11–14:OH)]
are major components in the pheromones of each of the insects
used in this study.

2.3.2. Experiments B and C. Configuration B utilized
antennae from the following:

1. Male Anticarsia gemmatalis (velvetbean caterpillar
moth)

2. Male Trichoplusia ni
3. Male Heliothis virescens (tobacco budworm)
4. Male Helicoverpa zea.

Configuration C, employing eight antennae, was realized using
the following species.

1. Male Anticarsia gemmatalis (velvetbean caterpillar
moth)

2. Male Trichoplusia ni
3. Male Heliothis virescens (tobacco budworm)
4. Male Heliothis subflexa
5. Female Trichoplusia ni
6. Female Anticarsia gemmatalis
7. Female Heliothis virescens
8. Female Heliothis subflexa.
For experiments B and C, the antennal array was

placed 1.5 m from the odor source with a wind speed of
0.5 m s−1, verified with an ultrasonic anemometer. This wind
tunnel has a width of 1.2 m, a length of 2.8 m and a height of 1 m
at its peak (an arched shape based on [47]). In configuration B,
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the antennae were also oriented horizontally and perpendicular
to the direction of flow so that the leading sensor was channel 1.
The additional antennae in configuration C were mounted on a
second amplifier, opposed and ∼1 mm below the antennae
corresponding to channels 1–4, so that channels 1 and 8
were the leading sensors. Relative humidity was ∼70% and
the temperature was ∼65 ◦F (∼18 ◦C) as measured using a
digital hygrometer. Humidity was obtained by spray atomizing
deionized water into the wind tunnel air intake, dropping the
temperature slightly from room temperature. High humidity is
necessary when using excised antennae to extend their useful
lifetime. Compounds used in configurations B and C included
indole, butyric acid, citronellal, thujone, acetophenol, methyl
salicylate phenethyl alcohol and (Z)-3-hexenyl acetate (Z3–6
Ac). The indole source was prepared by placing 50 μl of
10 μg μl−1 hexane solution onto a piece of filter paper
(∼1 cm × 4 cm). The remaining compounds were used
to impregnate the filter paper directly, using 25 μl of each
compound.

2.3.3. Experimental procedure. The plume was aligned
with the detector prior to starting experiments using a Z11–
16:Ald filter paper source while monitoring the EAG traces.
Following plume alignment, EAG recordings were started.
Odor sources were prepared immediately prior to being placed
into the wind tunnel, after which the real-time program was
instructed to train at least 40 s. Some additional time was
usually allowed to pass before deactivating the train button,
and replacing the odor source. Following training the odorants,
with the exception of background, were cycled through the
wind tunnel in the same order as trained,3 for approximately
45–60 s each. Classification was started a few seconds after
placing the odor source in the tunnel and stopped prior to
removing the source. The order of presentation and duration
of presentations is indicated in tables 3, 4 and 5. Average
time between the end of training an odor and the beginning of
test of that odor in experiments A, B and C was 392, 401 and
492 s, respectively. Experiments A and B were cycled twice,
and experiment C was cycled three times.

2.3.4. Non-ideal experimental conditions. Because
Anticarsia gemmatalis adults were available over a short
period of time while experimental protocol was being
established, some non-ideal experimental conditions were
encountered. In configuration C, a third presentation of the
odors was performed as a result of a plume shift (i.e. the odor
plume missed the sensor array) that occurred during the
training session. The plume shift was due to non-steady-
state humidity and temperature caused by the humidification
method. The training and test sessions analyzed in
configuration C are the second two odor presentation cycles.
As a result, this experiment does not reflect the real-time
outcome of the software. A similar occurrence in configuration
B led the investigator to retrain the first odor, indole, during
the training cycle (after the third training odor, citronellal).
Also in configuration B, six odors were presented (‘out of
a hat’); however the number of odors was reduced to five

3 Except for experiment B, see section 2.3.4.

(citronellal was removed) since two of the odors were difficult
to distinguish.

2.3.5. Pheromonal compounds. For readers unfamiliar with
the pheromonal compounds listed, we have included several
references that characterize the pheromonal mixtures present
in female glands of the listed species: Platynota idaeusalis
[48], Helicoverpa zea [49], Ostrinia nubilalis [50], Cydia
pomonella [51] and Trichoplusia ni [52]. In summary, E11–
14:OH and E11–14:Ac are the two main components of
Platynota idaeusalis pheromone; however the antennae of this
species will also respond to Z11–14:Ac, whereas Z11–16:Ald
is the major component of the Helicoverpa zea pheromone.
The pheromone of Cydia pomonella is composed of mainly
E8,E10–12:OH, and the pheromone of both strains of Ostrinia
nubilalis contains Z11:14:Ac and Z11:14:OH. Finally, the
major component of Trichoplusia ni pheromone is Z7–12:Ac,
an analog of which is Z8–12:Ac.

3. Results

The classification results presented include several 10-fold
cross-validation runs on training data intended to evaluate the
performance (error rate, equation (9) and risk, equation (13))
of the system and tabular results of real-time runs. Real-time
runs are performed on separate training and test segments. A
principal component analysis is used to visualize some of the
training data and classified data. Cross-validation is used to
show the effect of training points and the ambiguity reject
parameter on empirical error rates. Further, these results are
evaluated using an ad hoc method with respect to the minimum
conditional risk classifier with the loss matrix defined in
table 1. Real-time confusion matrices for each experiment are
included as well as a figure superimposing real-time classifier
results on top of EAG recordings.

3.1. Real-time results—EAG waveforms

A representative non-pheromonal eight-channel recording
including real-time classification results from experiment C
is shown in figure 9.

Examination of figure 9 reveals the nature of the
recordings after digital filtering and the performance of the
event detection. Events shown do not include those removed
by the stage 1 classifier. See figure 8 for representative events
removed by the stage 1 detector. Classification results are
the same real-time results presented in table 5. Also, it
should be noted that the wrong odorant (phenethyl alcohol;
PA) was briefly placed into the wind tunnel during this test
from ∼1674 to 1677 s. Waveforms visible in figure 9 are
due to odorants that were placed into the wind tunnel in the
following order: citronellal, thujone, (phenethyl alcohol; PA)
and acetophenone. Inactive times between are representative
of background activity where events are for the most part
either not present due to stage 1 removal, or marked as
ambiguous. The frequency of their appearance, though lower
than that during active times, indicates that the background
noise is not stationary, since they were not removed by the
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(A) (B)

Figure 10. Experiment C (eight channels, 24 feature) PCA plots of single plume strands of butyric acid (red), methyl salicylate (purple) and
Z3-6:Ac (green) data where component directions are computed from the second-stage training set of 8 odors plus background.
(A) Training data. (B) (Real-time) classified data amongst the three test segments plotted along the same principal components. Ambiguous
events are plotted in cyan.

stage 1 classifier. Also note the waveforms are time-shifted
due to the physical location of the antennae; these shifts
were compensated for in the waveform alignment procedure.
Some erratic activity visible on channel 8 is likely due to the
leakage current between the power supply and the amplifier
input over a dirty soldermask layer. Such activity in the
past has been removed by rinsing the amplifier in ethyl
alcohol. Note the testing times do not include events before
the plumes had stabilized, and hand odors and/or mechanical
disturbances due to disruption of the air flow were no longer
present. Because of the digital filtering, the low frequency
disturbances are not visible on the EAG waveforms shown.
Classification of thujone does seem to be affected, especially
at the beginning. However, classification performance of
citronellal and acetophenone appear to be unaffected. It is
possible that training could take place under these background
conditions to see the effect on performance. It may prove
beneficial to investigate other methods (other than high-pass
filtering) for resolution of stimulation due to superimposed
odors arising from different types of plume sources. In this
regard, determining how much of each odor is present, rather
than classifying, may be beneficial.

3.2. Training and classification results

PCA plots of both training and classified real-time data are
presented in figure 10 (ambiguous reject parameter = 0.6, see
section 2.2.5.3). Three fairly well separated odors (butyric
acid, methyl salicylate and Z3–6:Ac) were chosen so one can
see the groupings. Many of the odors overlap along the first
three principal components. The first principal component
(77% of the total variance) accounts mainly for concentration
changes, while the remaining two account for an additional
10% of the variance, which is approximately 40% of the
variance not in the first principal component.

3.3. Parameter dependent error rate—k-fold performance

In an effort to evaluate the performance, the empirical error
rate of the classifier equation (9) was evaluated as a function of
the ambiguity reject parameter and number of training points
using 10-fold cross-validation on the training data. Results are
shown in figure 11. Panels A and B are results from experiment
A, panels C and D are results from experiment B, and panels E
and F are results from experiment C. Panels A, C and E show
the results of varying the number of training points with an
ambiguity reject parameter of 0.6.

The maximum number of training points tested was
chosen so that the number of training points available to the
non-background odor with the least number of training points
was not exceeded (see tables 3–5). A ‘sufficient’ number of
training points appears to be about 150 (21 s) for experiment A,
150 (21 s) for experiment B and 300 (43 s) for experiment C,
though these observations are subjective. Items in parentheses
indicate the training time in seconds when an event rate of
seven events per second is assumed. Panels B, D and F plot
the rejection rate versus the empirical error rate as a function of
the value of the ambiguity reject parameter using the maximum
number of training points per odor for experiments A, B and C,
respectively. The empirical error rate of the classifier generally
decreases as the ambiguity reject parameter decreases and the
reject rate increases. It should be noted that the error rate may
be underestimated to an unknown degree when the ambiguity
reject parameter is low (see section 2.2.4). Although not shown
directly, the rejection rate is consistently underestimated by the
rejection rate parameter.

3.4. Performance in comparison to minimal conditional risk
classifier

Figure 12 shows the ad hoc empirical risk results equation (13)
for both the two-stage approach and the minimum conditional
risk method, which use the parameters outlined in table 2.
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(A) (B)

(C ) (D)

(E ) (F )

Figure 11. Empirical error rate evaluated as a function of stage 1 training points per odor and the ambiguity reject parameter. Analyses are
performed using 10-fold cross-validation on the training data. Panels (B), (D) and (F) plot the empirical error rate versus the stage 2
rejection rate for the maximum number of training points (see tables 3, 4 and 5) as the ambiguity reject parameter is varied from 0.00 to 0.95
in increments of 0.05.

The risk was estimated given the optimal ambiguity reject
parameter as ls varied, while u remained constant at unity.
The empirical risk method clearly outperforms the two-stage
approach for experiment A; however, for experiments B and C,
both methods are fairly equivalent over a wide range of loss per
error values. Note the minimum risk method outperforms the
real-time method for experiments B and C when background
and ambiguous events are not removed at lower loss/error
values; however when the loss-utility threshold increases

above ∼0.5, the performance difference is negligible. When
odors are more discriminable, such as in experiment A, the
two-stage approach may not be optimal.

The real-time results are obtained using an ambiguity
reject parameter of 0.6. For comparison to the
minimal conditional risk method, the loss-utility ratio that
approximately corresponds to the chosen ambiguity reject
parameter of 0.6 was calculated. This represents the loss-
utility ratio entered into the loss matrix that performs best when
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Table 2. Comparative loss-utility ratios and ambiguous reject parameters

Experiment A Experiment B Experiment C

Error Best loss- Best Best loss- Best Best loss- Best
counting loss- utility ratio ambiguous utility ratio ambiguous utility ratio ambiguous
utility ratio in classifier reject in classifier reject in classifier reject

0.05 0.05 0.10 0.05 0.10 0.05 0.10
0.11 0.05 0.10 0.05 0.10 0.25 0.10
0.18 0.18 0.10 0.25 0.10 0.25 0.10
0.25 0.25 0.10 0.33 0.10 0.43 0.10
0.33 0.43 0.10 0.54 0.10 0.43 0.15
0.43 0.67 0.10 0.67 0.10 0.67 0.35
0.54 0.67 0.15 1.00 0.25 0.82 0.40
0.67 0.82 0.20 1.00 0.30 1.00 0.40
0.82 1.22 0.20 1.22 0.30 1.00 0.45
1.00 1.86 0.20 1.22 0.45 1.00 0.55
1.22 1.86 0.20 1.50 0.45 1.00 0.55
1.50 2.33 0.20 1.50 0.55 1.50 0.60
1.86 4.00 0.20 1.86 0.65 1.50 0.60
2.33 5.67 0.20 3.00 0.65 1.86 0.65
3.00 5.67 0.40 3.00 0.65 2.33 0.70
4.00 5.67 0.50 4.00 0.70 3.00 0.75
5.67 5.67 0.50 5.67 0.85 3.00 0.80
9.00 9.00 0.60 19.00 0.95 9.00 0.85

19.00 19.00 0.60 19.00 0.95 19.00 0.95

Table 3. Experiment A real-time results

Decision

Z11– Z8– E8,E10– E11– Removed Empirical Test Stage 2 Stage 1
Actual 16:Ald 12:Ac 12:OH 14:OH BG Ambiguous by stage 1 Total error rate time (s) TPs TPs

Z11–16:Ald 116 0 0 0 21 6 207 350 0.00 51 273 622
Z8–12:Ac 0 120 0 3 17 71 404 615 0.02 80 194 591
E8,E10–12:OH 0 0 190 0 10 26 501 727 0.00 102 225 931
E11–14:OH 0 0 0 121 13 60 572 766 0.00 86 266 787
BG∗ 3 0 3 0 19 4 1693 1722 N/A 205 29 1722

Table 4. Experiment B real-time results

Decision

Butyric Methyl Phenethyl Z3– Removed Empirical Test Stage 2 Stage 1
Actual Indole acid salicylate alcohol 6:Ac BG Ambiguous by stage 1 Total error rate time (s) TPs TPs

Indole 58 1 2 1 0 22 117 280 481 0.06 56 152 404
Butyric acid 0 96 0 0 0 17 66 199 378 0.00 47 184 394
Methyl 13 1 105 7 0 5 93 94 318 0.17 43 224 296
salicylate
Phenethyl 9 2 9 66 0 10 141 224 461 0.23 58 186 337
alcohol
Z3–6:Ac 2 1 20 8 181 16 125 158 511 0.15 70 186 292
BG∗ 1 0 0 0 0 26 2 704 733 N/A 87 29 733

empirical risk using the identical loss-utility ratio is compared
to the risk obtained with an ambiguity reject parameter of 0.6.
The following results were obtained: Configuration A: 19.0
(either optimal or optimum may be >19.0). Configuration
B: 2.33. Configuration C: 1.86. Although not shown here,
the class-dependent thresholds (versus optimal ambiguous
reject) have the effect of reducing the range of empirical
error rates amongst the classes given a particular reject
parameter. Further, it may be easier to manually configure
the ambiguity reject parameter to effect an improvement on an
odor, independent of its statistics.

3.5. Real-time results—tabulated

Final real-time results for experiments A, B and C are
summarized in tables 3, 4 and 5, respectively (ambiguous reject
parameter = 0.6, see section 2.2.5.3). Each table includes
a confusion matrix and additional information including the
empirical error rate, the duration of the test session and
the number of training points in stages 1 and 2. Since
the experiments were not initially designed to show the ‘false
positive’ rate, (background events classified as an odor), no
background test segment is available other than the training
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Table 5. Experiment C real-time results.

Decision

Butyric Methyl Phenethyl Z3– Removed Empirical Test Stage 2 Stage 1
Actual Indole acid Citronellal Thujone Acetophenol salicylate alcohol 6:Ac Background Ambiguous by stage 1 Total error rate time (s) TPs TPs

Indole 66 0 0 0 0 0 7 0 34 69 164 340 0.10 47 201 361
Butyric acid 13 79 0 0 0 0 3 0 40 108 127 370 0.17 52 248 385
Citronellal 1 2 97 4 20 3 3 1 4 158 118 411 0.26 61 308 386
Thujone 4 2 1 111 5 2 3 1 3 122 75 329 0.14 62 270 352
Acetophenol 0 1 3 2 119 16 5 1 0 166 64 377 0.19 53 299 360
Methyl 0 0 1 0 15 105 1 0 2 105 96 325 0.14 48 314 415
salicylate
Phenethyl 9 2 0 0 1 0 98 0 11 123 86 330 0.11 49 281 409
alcohol
Z3–6:Ac 0 3 1 5 10 0 15 114 5 133 75 361 0.23 51 294 357
BG∗ 2 0 0 0 0 0 0 0 6 6 530 544 N/A 79 14 544
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Figure 12. Empirical risk equation (13) of the two-stage method for
experiments A, B and C as ls is varied and u remains at u = 1 (see
tables 1 and 2).

segment. Performance of the classifier using the resubstitution
technique on the background training segment is compiled in
this row. It can be noted that the rate of background events
is different depending on the odor. This can be attributed in
some cases to the sensitivity of the antennae to the particular
odor. For instance, indole generally results in small EAG
depolarizations, many of which may be superimposed on
background noise, and consequently placed in the ambiguous
or background classes.

Lower error rates are observed for real-time tests when
compared to the cross-validation runs. The average empirical
error rate for an ambiguity reject parameter of 0.6 is 0.032
and 0.006 for experiment A, 0.15 and 0.12 for experiment B,
0.25 and 0.17 for experiment C in the cross-validation results
and real-time results, respectively. This may be due to the
increased number of training points.

4. Discussion

A real-time bioelectronic nose utilizing insect antennae as
the odor sensor has been implemented using k-NN and semi-
parametric methods for classification. The results presented
here demonstrate the ability to discriminate odorants by
analyzing an electrophysiological signal derived from an array
of differentially tuned insect olfactory organs. ORNs respond
quickly to the arrival of an odor which contributes to the rapid
response time of biological olfactory systems. The EAG
impulse response is complete in approximately 15–75 ms,
allowing sub-second odor classifications to be made using the
present biosensor system. This can be contrasted with artificial
noses, which typically detect the mean odorant concentration
over tens of seconds or minutes.

The k-NN classifier has been modified to reject odorants
as ambiguous using an ambiguity reject parameter entered
by the user. Further, the effects of several parameters on
classifier performance have been evaluated, including number
of training points per odor and the ambiguity reject parameter.
Using data sets recorded under varying conditions (species,

odorants), classifier performance was consistently high after
ambiguous responses were removed. The overall error rate
was low (� 0.2) when compared to that of chance. Training
time was found to be approximately 20 s per odor for the
four-channel experiments and 40 s per odor for the eight-
channel experiments. The consistent performance of the
sensor/classifier predicts good performance using a variety of
insect species and odorants. The very low error rate obtained
when using the experiment A data suggests that the species
and odorants can be optimally chosen to maximize system
performance, and an error rate near 0% can be obtained
under ideal circumstances. An ad hoc comparison of the
two-stage approach was made to a more ideal conditional
risk minimization classifier. It was found that generally
the conditional risk classifier was better than the two-stage
approach, under many circumstances the performances were
equivalent. Under the real-time conditions, it was found that
the rate of rejection chosen resulted in performance equivalent
to penalizing errors at approximately twice the rate of
rewarding correct classifications for the experiments involving
non-pheromonal odors. This value was undetermined for
experiment A, where pheromonal odors were easier to classify.

System performance was quantified using the empirical
error rate equation (9) and empirical risk equation (13). These
accuracy measures are distinct from a direct measure of
classifier accuracy. A measure of accuracy would require
absolute knowledge of the odorant in contact with the sensor
array for each response event recorded. This difficulty is
known in the literature as the imperfect teacher problem.
A limiting assumption of the accuracy measure is that the
response events recorded during presentation of a given odor
are due either to that odor or to ‘background’ odorants.

It is evident that in some cases, additional diffuse
background activity on the EAG waveforms does not interfere
with classification performance, but in other cases does. It
is possible that the high time resolution could be utilized to
provide an even better resolution of superimposed odors.

An important limitation of the current system is
the longevity of the excised antennae, which typically
provide reliable responses for 30–90 min, after which new
antennae need to be mounted and the system retrained. One
possible means of overcoming this limitation is to record from
the antennae in situ, while the intact insect is restrained. Stable
EAG recordings can be made for days using this approach
(unpublished data). A second approach would be to use a
partially dissected preparation, or voltage sensitive dyes and
to record directly from the glomeruli in the antennal lobe of a
single insect. Direct access to the different glomeruli would
be the basis for a sensor with discrimination approaching
that of the insect; recordings from 21 individual glomeruli
of honeybees has recently been used to discriminate between
several odors using principal component analysis [53]. This
approach is not currently practical for field applications due
to the significant difficulty in applying optical recording
techniques.
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