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Supplementary Text

Model development and parameterization

Here we develop a population model for holometabolic insects with intraspecific larval competition and
temperature-dependence in their birth, development and mortality rates. The life-history functions are
developed and parameterized for the smaller tea tortrix Adoxophyes honmai using laboratory data on
A. honmai and a closely related species A. orana. Model development follows the approach of Yamanaka
et al. (15 ), which is based on the stage-structured formalism of Nisbet & Gurney (31 ). The resulting
model is a set of coupled integro-delayed-differential equations that can be used to predict dynamics
under both constant and seasonally driven temperature regimes. The insect life-cycle is described using
the following stage-structure

dE(t)

dt
=RE(t)−RL(t)− δE(t)E(t) (1)

dL(t)

dt
=RL(t)−RP (t)− δL(t)L(t) (2)

dP (t)

dt
=RP (t)−RA(t)− δP (t)P (t) (3)

dA(t)

dt
=RA(t)−RS(t)− δA(t)A(t) (4)

dAS(t)

dt
=RS(t)− δAS(t)AS(t) (5)

where E(t) is egg abundance, L(t) is larvae abundance, P (t) is pupal abundance, A(t) is non-senescent
adult abundance, and AS(t) is senescent adult abundance at time t. The senescence stage is motivated
by survivorship curves (32 ), which show low adult mortality for a period of time, followed by a sub-
stantially higher mortality rate and a concomitant cessation of reproduction. The per capita mortality
rates for stage i are denoted by δi(t) , and stage-specific recruitment rate by Ri(t). Recruitment rates
are given by

RE(t) = b(t)A(t) (6)

RL(t) =RE(t− τE(t))SE(t)
hE(t)

hE (t− τE(t))
(7)

RP (t) =RL(t− τL(t))SL(t)
hL(t)

hL (t− τL(t))
(8)

RA(t) =RP (t− τP (t))SP (t)
hP (t)

hP (t− τP (t))
(9)

RS(t) =RA(t− τA(t))SA(t)
hA(t)

hA (t− τA(t))
(10)

where τi(t) is the duration of the ith stage for individuals that enter the stage at time t, Si(t) is
through-stage survival, hi(t) is the development rate, and b(t) is the per-capita birth rate. Following

1



(31 ), stage durations are given by the solution to the following implicit equations

1 =
∫ t

t−τE(t)
hE(ξ)dξ (11)

1 =
∫ t

t−τL(t)
hL(ξ)dξ (12)

1 =
∫ t

t−τP (t)
hP (ξ)dξ (13)

1 =
∫ t

t−τA(t)
hA(ξ)dξ (14)

and stage survivorships are given by

SE(t) = exp

(
−
∫ t

t−τE(t)
δE(ξ)dξ

)
(15)

SL(t) = exp

(
−
∫ t

t−τL(t)
δL(ξ)dξ

)
(16)

SP (t) = exp

(
−
∫ t

t−τP (t)
δP (ξ)dξ

)
(17)

SA(t) = exp

(
−
∫ t

t−τA(t)
δA(ξ)dξ

)
(18)

The laboratory data (detailed below) suggests that temperature dependence for all life-history rates
of A. honmai (32, 33 ) and the closely related species A. orana (34, 35 ) can be described using an
exponential function of the form aebD, which relates daily temperature D to stage-specific life-history
rates. The advantage of having temperature-dependent data on two species for many of the life-history
traits is that it lends a degree of generality to the functional forms and parameter estimates. To evaluate
the potential sensitivity of our conclusions to the particular strain used in the laboratory experiments
(or species for that matter), we perform our model analyses across a wide range of parameter space
(see Stability analysis under constant temperature).

There is strong statistical support for allowing each stage i and each life-history trait j to have a
different intercept parameter (aij), but for most to share the same slope parameter (b). The exception
is winter mortality, which we describe separately. Table S1 shows the comparison among statistical
models, and Table S2 shows the estimates for all parameters. Note that we have studied the top three
models in Table S2 and our results are robust to assumptions of how b is aggregated. However, the exact
location of the Hopf bifurcation shifts somewhat with the parameterization (see Stability analysis under
constant temperature). For clarity, we redefine the stage-specific life-history functions for development
(hi(t)), birth (b(t)) and warm temperature mortality rates (gi(t)) as
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hi(t) =αie
βD(t) (19)

b(t) = boe
βD(t) (20)

gi(t) = die
βD(t) (21)

For development rates, there is good quality data for both species (Fig. S1). We define the transition
between non-senescent and senescent adults by the 50th mortality percentile. Based on Nabeta et al.
(32 ), this transition corresponds well with the oldest age of reproduction, so we assume only non-
senescent adults contribute to reproduction. The birth rate data is more variable between the two
species compared to development rates, but both species show a clear increasing response to higher
temperature (Fig. S2). Mortality rates are similarly more variable than development rates, but there
is a consistent increase with temperature that is well described by an exponential function (Fig. S3).
We refer to these as warm temperature mortality rates to distinguish them from the distinct impact
that cold temperatures have on mortality rates (discussed below). Again, we guard against potential
sensitivity to differences between the two species in our parameter estimates by analyzing the model
across a wide range of parameter space.

The life-history rate functions describing birth, development and mortality (Eqns. 19-21) do not include
effects of high temperature beyond the temperature optimum, such as the sharp drop-off in development
rates observed for insects at high temperatures (36 ). For our study, there is no need to include such
high-temperature effects because over 99% of the observed temperature data fall below 30◦C, which is
the upper temperature in the laboratory data. However, the negative effects of high-temperature would
need to be studied in the laboratory and incorporated in the life-history rate functions if the model
was to be used to predict dynamics for settings where the temperature exceeded 30◦C, such as when
studying the potential impact of climate warming. As observed in a wide range of insects (37 ), we
assume that development rates decrease smoothly as temperature drops below the lowest temperature
observed in the laboratory.

In addition to warm temperature mortality (temperature above freezing), there is an abundance of
anecdotal evidence indicating that mortality rates increase dramatically as temperature decreases, and
that this is different among stages with the larval stage being much less resistant to cold temperature
(temperature below 0◦ C). There is no diapause stage in A. honmai (14 ), which means that winter
survivorship can be described by temperature-dependent mortality rates. To incorporate cold temper-
ature mortality, we add an additional mortality term as gW (t) = dW e

−βWD(t), where dW is the winter
mortality scalar and βW is the slope parameter. The only available data available is from Jo & Kim
(38 ) where different stages of the moths were exposed to -5, -10 and -15◦C for 0, 2, 4 and 8hrs. Ex-
trapolating those temperatures to 24hr exposure gives us a rough estimate of the daily mortality rate
for subzero temperatures (Fig. S4). While the data is sparse, the evidence for larval stages suggests
that an exponential function is not unrealistic. This helps simplify some of the model functions later
on. We assume the parameters are the same for all stages, but evaluate the potential importance of
stage-specific differences in the mortality scalar (dW ) by allowing for each stage to vary independently
in the stability analysis.

We consider a situation where larval competition causes increased mortality rates (gC), which is mo-
tivated by our previous work (15 ). Specifically, we assume gC(t) = dCe

γCD(t)L(t), which allows that
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the intensity of competition can change with temperature. Since we have no knowledge of how fast
competition is influenced by temperature, we use separate parameters γC and dC .

Considering the functional form of larval competition, temperature dependence in the development
rates, and the assumption that only non-senescent adults contribute to reproduction, allows us to
simplify the full model to

dL(t)

dt
= b0e

βD(t)A(t1)SE(t)− b0e
βD(t)A(t3)SL(t)−

(
dLe

βD(t) + dCe
γCD(t)L(t) + dW e

−βWD(t)
)
L(t)

dA(t)

dt
= b0e

βD(t)A(t6)SP (t)− b0e
βD(t)A(t10)SA(t)−

(
dAe

βD(t) + dW e
−βWD(t)

)
A(t)

SE(t) = exp
(
−
∫ t

t1

(
dEe

βD(ξ) + dW e
−βWD(ξ)

)
dξ
)

SL(t) = exp
(
−
∫ t2

t3

(
dEe

βD(ξ) + dW e
−βWD(ξ)

)
dξ −

∫ t

t2

(
dLe

βD(ξ) + dCe
γCD(ξ)L(ξ) + dW e

−βWD(ξ)
)
dξ
)

SP (t) = exp
(
−
∫ t5

t6

(
dEe

βD(ξ) + dW e
−βWD(ξ)

)
dξ −

∫ t4

t5

(
dLe

βD(ξ) + dCe
γCD(ξ)L(ξ) + dW e

−βWD(ξ)
)
dξ

−dP
∫ t

t4
eβD(ξ)dξ

)
SA(t) = exp

(
−
∫ t9

t10

(
dEe

βD(ξ) + dW e
−βWD(ξ)

)
dξ −

∫ t8

t9

(
dLe

βD(ξ) + dCe
γCD(ξ)L(ξ) + dW e

−βWD(ξ)
)
dξ

−dP
∫ t7

t8
eβD(ξ)dξ − dA

∫ t

t7
eβD(ξ)dξ

)
t1 = t− τE(t)

t2 = t− τL(t)

t3 = t2 − τE(t2)

t4 = t− τP (t)

t5 = t4 − τL(t4)

t6 = t5 − τE(t5)

t7 = t− τA(t)

t8 = t7 − τP (t7)

t9 = t8 − τL(t8)

t10 = t9 − τE(t9)

where the stage durations are given by
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1

αE
=
∫ t

t−τE(t)
eβD(ξ)dξ

1

αL
=
∫ t

t−τL(t)
eβD(ξ)dξ

1

αP
=
∫ t

t−τP (t)
eβD(ξ)dξ

1

αA
=
∫ t

t−τA(t)
eβD(ξ)dξ

Note that the base temperature-dependent function belonging to the birth rate cancels out the de-
nominator of the development rate function. The resulting model is a set of integro-delayed-differential
equations with variable time delays.

Model transformation to development rate scale

The development rates for all stages share the same base temperature-dependent function, which means
we can simplify the model further by doing an analytical transformation of integrations scales (15, 39 ).
In essence, rather than model the moth dynamics over time, we model them over a physiological scale
that is related to development. The physiological scale is akin to a non-linear cumulative degree-day
scale, but is more accurately the cumulative response of development to temperature rather than
cumulative temperature. Let the new physiological scale (φ) be defined as

φ(t) =
∫ t

0
eβD(ξ)dξ (22)

by differentiating Eqn. 22 with respect to t and rearranging, we can write

dt̃

dφ
=

1

m(φ)
(23)

m(φ) = eβD(t) (24)

where t̃ represents how time changes on the transformed scale. From the stage duration equations and
Eq. 22, we can write

φ(t− τj(t)) =
∫ t−τj(t)

0
eβD(ξ)dξ (25)

=
∫ t

0
eβD(ξ)dξ −

∫ t(t)

t−τj(t)
eβD(ξ)dξ (26)

=φ(t)− 1

αi
(27)

which means that the variable delay equations on the time scale have become fixed delays on the
transformed scale. The survivorship equations become
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Si(φ) = exp

(
−
∫ φ

φ−1

δi(x)

m(x)
dx

)
(28)

which allows us to write the transformed model as

dL(φ)

dφ
= b0A(φ− λ1)SE(φ)− b0A(φ− λ3)SL(φ)− ΩL(φ)L(φ) (29)

dA(φ)

dφ
= b0A(φ− λ6)SP (φ)− b0A(φ− λ10)SA(t)− ΩA(φ)A(φ) (30)

SE(φ) = exp

(
−
∫ φ

φ−λ1

ΩE(ξ)dξ

)
(31)

SL(φ) = exp

(
−
∫ φ−λ2

φ−λ3

ΩE(ξ)dξ −
∫ φ

φ−λ2

ΩL(ξ)dξ

)
(32)

SP (φ) = exp

(
−
∫ φ−λ5

φ−λ6

ΩE(ξ)dξ −
∫ φ−λ4

φ−λ5

ΩL(ξ)dξ −
∫ φ

φ−λ4

ΩP (ξ)dξ

)
(33)

SA(φ) = exp

(
−
∫ φ−λ9

φ−λ10

ΩE(ξ)dξ −
∫ φ−λ8

φ−λ9

ΩL(ξ)dξ −
∫ φ−λ7

φ−λ8

ΩP (ξ)dξ −
∫ φ

φ−λ7

ΩA(ξ)dξ

)
(34)

ΩE(x) = dE + dW e
(−βW−β)D(x) (35)

ΩL(x) = dL + dCe
(γC−β)D(x)L(x) + dW e

(−βW−β)D(x) (36)

ΩP (x) = dP + dW e
(−βW−β)D(x) (37)

ΩA(x) = dA + dW e
(−βW−β)D(x) (38)

λ1 =
1

αE
(39)

λ2 =
1

αL
(40)

λ3 =
1

αL
+

1

αE
(41)

λ4 =
1

αP
(42)

λ5 =
1

αP
+

1

αL
(43)

λ6 =
1

αP
+

1

αL
+

1

αE
(44)

λ7 =
1

αA
(45)

λ8 =
1

αA
+

1

αP
(46)

λ9 =
1

αA
+

1

αP
+

1

αL
(47)

λ10 =
1

αA
+

1

αP
+

1

αL
+

1

αE
(48)
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The resulting model is a set of integro-delay-differential equations with fixed delays. Since most of the
temperature-dependent rates cancel out (akin to non-dimensionalizing the model) casting the model
on this scale also emphasizes where temperature impacts the model structure. Temperature comes into
the model through the D(t̂) function, and only impacts the mortality rates. In particular, the main
influence is through the differential impact (i.e., relative to development) on larval competition and
winter mortality. Interestingly, temperate is only expected to influence dynamics if a subset of the
life-history rates responds differently to temperature than others. Figure S5 shows an example of the
predicted dynamics when the model is driven with observed temperature from Kagoshima prefecture,
and the corresponding physiological scale is shown in Fig. S6.

Stability analysis under constant temperature

Equilibrium analysis

Setting the derivative of the transformed model (Eqns. 29,30) to zero, yields the following expressions
for larval (L̂) and adult (Â) equilibrium at constant temperature T .

L̂=
αL
(
−ΩE
αE
− ΩP

αP
+ ln

(
b0
ΩA

(
1− exp

(
−ΩA
αA

))))
− dL − dW e(−βW−β)T

dCe(γC−β)T
(49)

Â=
ΩLL̂

b0 exp
(
−ΩE
αE

) (
1− exp

(
−ΩL
αL

)) (50)

where the expressions for Ωi are given by Eqs. 35-38. The equilibrium expressions are sufficiently
complicated that it is difficult to gain insight from the analytical expressions. Fig. S7 shows an example
of the change in larval and adult equilibrium abundance across temperature. The response shows a
persistence boundary just below 10◦C followed by a rapid increase in density and then a more gradual
increase at higher temperatures.

Since Â is strictly positive for positive L̂, the persistence boundary is obtained from Eq. 49 by setting
L̂ = 0. Again, since the expression is complicated, the boundary is solved numerically. We study the
impact of each parameter on persistence across a wide range of parameter space (from 0.4 to 10 fold
the estimated value) to evaluate system characteristics that are well beyond our point estimates for
the two species that we have data on. Of all the parameters, the temperature exponent β and strength
of winter mortality have the strongest impact on the persistence boundary (Fig. S8). Higher birth
rates (bo) cause a small decrease in the temperature of the persistence boundary and higher mortality
scalars (di) causes a small increase. Both small and large development rates tend to increase the
threshold temperature slightly. Since the temperature-dependent competition exponent γC drops out
of the expression for persistence, it has no impact on the threshold. The parameters with the greatest
influence are those associated with winter mortality (βW and dW ) and the temperature exponent β.
Specifically, increasing the rate at which the life-history rates increase with temperature (β) causes the
system to persist at lower temperatures. Increasing the strength of winter mortality, either through
higher dW or lower βW , causes the system to be extinct at higher temperatures. To evaluate robustness
of using a single temperature exponent for the warm-temperature mortality rate of all stages (gi) and

7



a single temperature scalar for the winter mortality rate of all stages (gW ), we repeated the above
analysis with stage-specific parameters. This did not have a qualitative impact on the results (Fig. S9).

To study the linear stability properties, we consider small deviations from the equilibrium of the form
x(φ) = x̂+ ∆x(φ) for each variable x. Introducing this into the transformed model (Eqns. 29, 30) and
dropping higher order terms yields the following set of perturbation equations

d∆L(φ)

dφ
= b0

(
Â∆SE(φ) + ŜE∆A(φ− λ1)− Â∆SL(φ)− ŜL∆A(φ− λ3)

)
− L̂∆ΩL(φ)− Ω̂L∆L(φ)(51)

d∆A(φ)

dφ
= b0

(
Â∆SP (φ) + ŜP∆A(φ− λ6)− Â∆SA(φ)− ŜA∆A(φ− λ10)

)
− Ω̂A∆A(φ) (52)

Survivorship and mortality perturbations can be further simplified. The tricky parts are the survivor-
ship perturbations that require integrating over larval dynamics. Substituting the deviation expression
into the survivorship equations with larval density dependence lets us write

∆Si(φ) = Ŝi

(
exp

(
−dCe(γC−β)T

∫ b

a
∆L(x)dx

)
− 1

)
(53)

where a and b are the start and end time-points for a particular stage. Using the series expansion for
an exponential and dropping all terms with orders of ∆L(φ) greater than one, we arrive at

∆Si(φ) =−ŜidCe(γC−β)T
∫ b

a
∆L(x)dx (54)

Using the above relationships, the survivorship and mortality perturbations become

∆ΩL(φ) = dCe
(γC−β)T∆L(φ) (55)

∆SE(φ) = 0 (56)

∆SL(φ) =−ŜLdCe(γC−β)T
∫ φ

φ−λ2

∆L(x)dx (57)

∆SP (φ) =−ŜPdCe(γC−β)T
∫ φ−λ4

φ−λ5

∆L(x)dx (58)

∆SA(φ) =−ŜAdCe(γC−β)T
∫ φ−λ8

φ−λ9

∆L(x)dx (59)

Substituting these into the perturbation Eqns. 51-52 yields
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d∆L(φ)

dφ
= b0ŜE∆A(φ− λ1)− b0ŜL∆A(φ− λ3) + b0ÂŜLdCe

(γC−β)T
∫ φ

φ−λ2

∆L(x)dx

−
(
L̂dCe

(γC−β)T + Ω̂L

)
∆L(φ) (60)

d∆A(φ)

dφ
= b0ŜP∆A(φ− λ6)− b0ŜA∆A(φ− λ10)− Ω̂A∆A(φ)

+b0ÂdCe
(γC−β)T

(
ŜA

∫ φ−λ8

φ−λ9

∆L(x)dx− ŜP
∫ φ−λ4

φ−λ5

∆L(x)dx

)
(61)

Using an exponential trial solution of the form ∆i(φ) = ∆i(0) exp(rφ) where ∆i(0) is the initial
perturbation, we can write the dynamics of the perturbation over φ as the following set of algebraic
equations

0 =

(
dCe

(γC−β)T

(
b0ÂŜL
r

(
1− e−rλ2

)
− L̂

)
− Ω̂L − r

)
∆L(0) + b0

(
ŜEe

−rλ1 − ŜLe−rλ3

)
∆A(0) (62)

0 = b0ÂdCe
(γC−β)T

(
ŜA
r

(
e−rλ8 − e−rλ9

)
− ŜP

r

(
e−rλ4 − e−rλ5

))
∆L(0) (63)

+
(
b0ŜP e

−rλ6 − b0ŜAe
−rλ10 − Ω̂A − r

)
∆A(0)

where

ŜE = exp

(
−dE + dW e

(−βW−β)T

αE

)
(64)

ŜL = ŜE exp

(
−dL + dCe

(γC−β)T L̂+ dW e
(−βW−β)T

αL

)
(65)

ŜP = ŜL exp

(
−dP + dW e

(−βW−β)T

αP

)
(66)

ŜA = ŜP exp

(
−dA + dW e

(−βW−β)T

αA

)
(67)

Ω̂L = dL + dCe
(γC−β)T L̂+ dW e

(−βW−β)T (68)

Ω̂A = dA + dW e
(−βW−β)T (69)

The transcendental nature of the equations are caused by the delays in the system and must be studied
numerically. Fig. S10 shows some of the leading eigenvalues at different temperatures. Starting at low
temperatures where no positive density of moths is predicted (Fig. S7), the system transitions from
unstable to stable near 10◦C for the parameter set in Table S2, which corresponds to the persistence
boundary. The transition is via a single real eigenvalue crossing the zero line, which is a stationary
bifurcation. As temperature increases, the density of moths increases and the system remains stable until
near 13◦C where a pair of complex conjugates cross the zero real axis indicating a Hopf bifurcation. As
with the persistence boundary, the Hopf bifurcation is qualitatively robust to the details of temperature
scaling. For example, allowing for stage-specific differences in the temperature scaling still yields a
critical bifurcation at around 15◦C.
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Bifurcations

To solve for the leading eigenvalue, we do a root minimization of Eqns. 62-63 in the vicinity of the
leading eigenvalue. The challenge is to find an approximation to the leading eigenvalue out of the infinite
number of possible solutions to the delayed-differential equations, such that the root minimization
identifies the correct solution (i.e., does not lead to one of the subdominant roots). To do this, we
develop an equivalent Linear Multistep (LMS) transition matrix of the perturbation equations (40 ).
The leading eigenvalue of this matrix is then an approximation of the leading eigenvalue of the full
perturbation equations. To start, we use the following form of the perturbation equations that are
easier to work with

d∆L(φ)

dφ
= a1∆A(φ1)− a2∆A(φ3)− a4∆L(φ) + a3

∫ φ

φ2

∆L(x)dx

d∆A(φ)

dφ
= a5∆A(φ6)− a6∆A(φ9)− a7∆A(φ) + a8

∫ φ7

φ8

∆L(x)dx− a9

∫ φ4

φ5

∆L(x)dx

a1 = b0ŜE

a2 = b0ŜL

a3 = b0ÂŜLdL2e
(γC−β)T

a4 =
(
L̂dL2e

(γC−β)T + Ω̂L

)
a5 = b0ŜP

a6 = b0ŜA

a7 = Ω̂A

a8 = b0ÂdL2e
(γC−β)T ŜA

a9 = b0ÂdL2e
(γC−β)T ŜP

φ1 =φ− λ1

φ2 =φ− λ2

φ3 =φ− λ3

φ4 =φ− λ4

φ5 =φ− λ5

φ6 =φ− λ6

φ7 =φ− λ8

φ8 =φ− λ9

φ9 =φ− λ10

Following Engelboroughs & Roose (40 ), we create the 2n x 2n matrix that describes the Linear Mul-
tistep. The time-span goes from current time (φ) to the historical time that just includes the longest
delay (φ9) plus any extra locations required for reliable interpolation of delays using Lagange polyno-
mials near the edges. The number of grid locations over the time interval is given by n. The first n
rows of the matrix are the larval stages, and the last n rows are the adult stages. All matrix elements
are zero except for the following transitions

• Time shift for larvae and adults (i ∈ {1, 2, .., n− 1})
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M [i+ 1, i] = 1

M [n+ i+ 1, n+ i] = 1

• Derivative contribution to larvae from non-lagged terms (i ∈ {1, 2, .., k})

M [1, i] = M [1, i]− η[i+ 1]/(η[1] + ha4)

• Derivative contribution to larvae from φ1 lagged term (l ∈ oφ1)

M [1, n+ l] = M [1, n+ l] +
a1h

η[1] + ha4

∏
q∈oφ1

;q 6=l

φ1 −Xq

Xl −Xq

• Derivative contribution to larvae from φ3 lagged term (l ∈ oφ3)

M [1, n+ l] = M [1, n+ l]− a2h

η[1] + ha4

∏
q∈oφ3

;q 6=l

φ3 −Xq

Xl −Xq

• Derivative contribution to larvae from the integral term (l ∈ oφp ; φp ∈ {φ, φ+ ĥ, . . . , φ2})

M [1, n+ l] = M [1, n+ l] + ĥ
φ2∑

φp=φ

 a3h

η[1] + ha4

∏
q∈oφp ;q 6=l

φp −Xq

Xl −Xq


• Derivative contribution to adults from non-lagged terms (i ∈ {1, 2, .., k})

M [n+ 1, n+ i] = M [n+ 1, n+ i]− η[i+ 1]/(η[1] + ha7)

• Derivative contribution to adults from φ6 lagged term (l ∈ oφ6)

M [n+ 1, n+ l] = M [n+ 1, n+ l] +
a5h

η[1] + ha7

∏
q∈oφ6

;q 6=l

φ6 −Xq

Xl −Xq

• Derivative contribution to adults from φ9 lagged term (l ∈ oφ9)

M [n+ 1, n+ l] = M [n+ 1, n+ l]− a6h

η[1] + ha7

∏
q∈oφ9

;q 6=l

φ9 −Xq

Xl −Xq

• Derivative contribution to adults from the first integral term (l ∈ oφp ; φp ∈ {φ7, φ7 + ĥ, . . . , φ8})

M [n+ 1, l] = M [n+ 1, l] + ĥ
φ8∑

φp=φ7

 a8h

η[1] + ha7

∏
q∈oφp ;q 6=l

φp −Xq

Xl −Xq


• Derivative contribution to adults from the second integral term (l ∈ oφp ; φp ∈ {φ4, φ4 + ĥ, . . . , φ5})

M [n+ 1, l] = M [n+ 1, l]− ĥ
φ5∑

φp=φ4

 a9h

η[1] + ha7

∏
q∈oφp ;q 6=l

φp −Xq

Xl −Xq


where h = (φ9−φ)/n is the step size, k = 6 is the order of the Backwards Differentiation Formula, and
η = {147/60,−6, 15/2,−20/3, 15/4,−6/5, 1/6} is the accompanying set of coefficients for the LMS
scheme. Grid locations X are spread over a fine step from current time (on the phi scale) to the
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maximum delay in the system, and oφp is a vector of locations in X that spread 3 steps on either side
of a particular lag φp. Integrals are calculated by further discritizing the time intervals with step size

ĥ = 0.1h and summing the resulting interpolated lagged values.

Stability and bifurcation results

The real and imaginary components of the leading eigenvalue indicate both the stability of the system
and aspects of the transient dynamics. Figures S11, S12 illustrate this for different combinations of βW
and temperature. Starting at cool temperatures, there is no positive moth density when the temperature
is below the persistence boundary. Once temperature is warm enough for persistence, the equilibrium is
stable (Fig. S11) with a pair of non-zero complex conjugates (Fig. S12), which means that the transient
dynamics would decay with oscillations to the equilibrium. Once across the Hopf line, the eigenvalues
are pairs of non-zero complex conjugates with positive real parts that indicate sustained limit cycles.
The magnitude of the complex component is relatively constant once over the Hopf line, indicating
that the frequency is not sensitive to differences in parameter values within the unstable regions.

Tracing the Hopf line for each parameter across different temperatures allows us to evaluate the in-
fluence that each has on the critical temperature that determines system stability. Using the same
approach as for the persistence boundary, we find that some parameters have a greater influence on
the critical temperature than others (Fig. S13). Increasing the temperature exponent (β) has a rela-
tively large effect causing the system to become unstable at cooler temperatures. Increasing the birth
rate (bo) and many of the development rates (αi) causes the system to cycle at lower temperatures,
but they do not have as strong an effect as the temperature exponent. Adult senescence rate and
temperature exponent have the opposite effect on stability (dotted lines Fig. S13). When the adult
development is too fast, the system becomes more stable with respect to temperature likely because
it reduces the total birth rate. When adult development is too slow, the system also becomes more
stable because it reduces the destabilizing effect of a short adult reproductive period. Increasing the
mortality scalars (di and dWi

) have the effect of stabilizing the system, whereas decreasing the strength
of winter mortality (by increasing βW ) has a strong destabilizing effect on the system.

Stability analysis under seasonally driven temperature

The behaviour of the driven system is different than the asymptotic dynamics because transient dy-
namics are chasing an ever moving attractor. To characterize dynamics under driven seasonal changes,
we consider both a step change in temperature, and seasonally driven changes in temperature. With an
abrupt change in temperature from 10◦C to 25◦C, which roughly reflects the March to July transition
in Japan, the system begins cycling immediately and the amplitude increases rapidly over the first 2
cycles (Fig. S14). With an abrupt change in temperature from 25◦C to 9◦C, which roughly represents
the September to December transition in Japan, the system stops cycling immediately with strongly
damped oscillations (Fig. S15). Note that the period of the transient dynamics is 2-3 times the period
of the generation cycles, which means that transient dynamics will not confound our analysis of the
generation cycles using wavelets.

If we consider seasonally-driven changes in temperature, the model predicts that the asymptotic dy-
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namics will most often be either in the cycling state or in the strongly damped stable state heading
to extinction (Fig. 2). Figure S16 shows the transient moth dynamics when the model is driven with
observed seasonal temperature data from Kagoshima. The predicted transient dynamics follow the
qualitative aspects of the asymptotic dynamics fairly well. The population cycles during the period of
instability (blue lines), and rapidly tend toward the persistence boundary during cold periods. There is
a lag in moth density at the onset of spring owing to low winter densities. The lag appears long enough
to have the transient dynamics miss a full cycle. The period of time where the asymptotic dynamics
predict a stable equilibrium (gray lines) is small relative to when cyclic or extinction dynamics are
expected, which means the system is best to be thought of as flipping between no persistence and limit
cycles as the season progresses. The transient dynamics are responsible for the threshold in amplitude
appearing at a higher temperature than the Hopf bifurcation. Figure S17 shows a few example years
of the predicted larval and adult dynamics superimposed with the temperature driver. While the tran-
sient dynamics are expected to roughly follow the asymptotic dynamics, there are some differences.
To account for this difference, we develop the predictions from the wavelet and threshold analysis (see
the sections on Wavelet decomposition and Threshold analysis) using the model driven with observed
seasonal temperature in Japan.

Wavelet decomposition

Moth dynamics (Fig. 1) are sampled on average every 5 days, but not necessarily evenly. Since the
wavelet decomposition methods require evenly spaced data, we convert the dataset to a grid with
regular 5 day intervals using linear interpolation. The class of pesticide used to control the moth has
changed over the past half century (Fig. 1), but since there is no correlation between their use and the
population dynamics of the moth we analyze the time series as one large dataset rather than in sections.
We applied a Morlet wavelet to the measured moth densities—now evenly spaced through time—using
the cwt() function in the Rwave R library (18 ). All analyses were done in the R statistical framework
(41 ). Wavelet decomposition of the raw time-series is shown in Fig. S18. Our primary interest is to
compare the annual and sub annual components of the moth dynamics with temperature. This can
be done by reconstructing the time-series over the specific frequency range (42 ). To ensure quality
reconstruction, we fit a wavelet to the data using a wide range in wavelet period (15 octaves) and a
high resolution within each octave (256 voices). The close agreement between the full reconstructed
time-series (i.e., using all frequencies) with the raw data (Fig. S19) indicates that the numbers of
octaves and voices are sufficient.

The global power spectrum indicates two dominant peaks at periods of τ = 365 days and τ = 45 days,
which correspond to the annual and sub-annual cycles respectively (Fig. S20). To reconstruct each
type of cycle, we create a window that is 35% of the peak value on each side, which captures the main
dynamics around that focal frequency (Fig. S18). Moth dynamics at each focal frequency are shown in
Fig. 3.

The corresponding wavelet and global spectrum are shown in Figs. S21, S22 for simulated moth dy-
namics using the parameterized model (see Model development and parameterization) driven with the
observed temperatures in Japan. Many key characteristics of the observed moth dynamics are well
captured well by a lab-based understanding of how life-history traits respond to temperature. The pre-
dicted dynamics capture the annual cycle, the faster generation cycles, and the fact that the generation
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cycles turn on and off over a season (Fig. S23). The predicted period of the sub-annual cycles is slightly
longer than the observed (15 ), and we characterize the predicted cycles relative to this dominant period
of τ=55 days. The reconstructed annual and sub-annual cycles from the simulated dynamics (Fig. S23)
are used to generate the predicted transient dynamics in the threshold analysis below.

Wavelets can also be used to calculate the proportion variation explained by our model. Specifically, we
scale each wavelet so that the total amount of spectral power in the observed and simulated wavelets is
the same. Taking the absolute value of the difference between the scaled wavelets provides the amount
of unexplained spectral power, and dividing this by the expected difference from comparing random
frequency and time points gives the proportion variance unexplained. Converting this to proportion
explained, we find that our model explains 50% of the special power in the half century of observed
moth dynamics. The model captures the dominant annual and sub-annual frequencies, and the seasonal
change in the sub-annual cycles very well. But it does not predict the year-to-year variation in peak
densities, which is an interesting avenue for future study.

Threshold analysis

The model given by Eqns. 29, 30 predicts that moth populations should transition from stable dynamics
at cooler temperatures to cyclic dynamics at warmer temperatures (Fig. 2). The transition is predicted
to occur via a Hopf bifurcation around 13◦C. To test this prediction, we used the temporal dynamics
in moth density over the last 40 years (1971-2011) where we have high-quality temperature data from
the trap site (temperature during the first 10 years was measured at a different frequency). The sub-
annual amplitude was generated from the wavelet reconstruction (see Wavelet decomposition) at the
same frequency as the observations of moth density (every 5 days). To evaluate the change in amplitude
over the season, we first divide the sub-annual amplitude time-series into annual sections at January
1st of each year, and then split each year into spring and fall phases based on the peak amplitude of
the sub-annual cycles because we have reason to expect that the transient dynamics may be different
when the Hopf point is crossed from below versus above (see Stability analysis under seasonally driven
temperature). The result is 40 spring and 40 fall transitions, which we analyze to estimate the threshold
temperature and how amplitude depends on temperature.

We use the following piecewise linear regression

y=

 a+ bx if x < xc

a+ (b− d)xc + dx otherwise
(70)

where y is the sub-annual cycle amplitude from the wavelet reconstruction obtained from the raw data,
x is the observed mean temperature on that day, xc is the threshold temperature to be estimated from
the data, and a, b, c are parameters fit to each year. We fit the piecewise linear regression to the spring
and fall amplitudes using a non-linear mixed-effects model. Year is treated as a random effect and the
amplitude within a year is assumed to be serially dependent according to a first order moving average
process. Fits were done using the nlme() library (43 ) in the R statistical framework and the threshold
is estimated using profile likelihood (41 ). There is strong statistical support for the presence of a
threshold in both the spring (likelihood ratio test: χ2

4 = 689.6, p<0.0001) and fall (likelihood ratio test:
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χ2
4 = 1338.8, p<0.0001) phases, and for the presence of an autocorrelation model (spring: ∆AIC=236,

fall: ∆AIC=1210). Maximum likelihood estimate of the threshold is 15.0◦C (95% CI’s: {14.4,15.5})
for the spring transition and 19.7◦C (95% CI’s: {19.3-20.1}) for the fall transition (Fig. S24). These
results are robust to the assumption of a single threshold across years. Fitting a separate threshold
to each year yields an estimated threshold of 14.4◦C (95% CI’s: {13.4-15.3}) and 16.7◦C (95% CI’s:
{14.5-19.0}) for spring and fall respectively.

The predicted change in stability under constant temperature gives an indication of where the threshold
may occur, but dynamics under seasonally variable temperature are expected to show some influence of
transient dynamics (see Stability analysis under seasonally driven temperature). We therefore estimate
the threshold from simulated data using the historical temperatures at the tea field site in Japan. The
estimated threshold for spring and fall phases are 18.8◦C (95% CI’s: {16.8-20.7}) and 18.6◦C (95%
CI’s: {16.7-20.4}) respectively (Fig. 4). These thresholds compare well with the empirical data.
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Fig. S1. Stage development rates for two species. Data for A. honmai (squares) is from Nabeta et al. 2005
(32 ) and Kodomari et al. 2003 (33 ), and data for A. orana (circles) is from Milonas 2000 (25 ). Solid lines
are fits for the function hi = αie

βD, where αi is different for each stage i, but all stages and life history traits
share the same β. Colours denote different stages (eggs: blue, larvae: red, pupae: green, adult: black).

16



15 20 25 30

10
20

30
40

50
60

Temperature (C)

B
irt

h 
R

at
e 

(1
/d

ay
)

Fig. S2. Per-capita birth rates from laboratory experiments. Data sources are the same as in Fig. S1. Solid
lines are fits for the function b = boe

βD.

17



15 20 25 30

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Temperature (C)

M
or

ta
lit

y 
R

at
e 

(1
/d

ay
)

Fig. S3. Per-capita mortality rates from laboratory data. Data sources are the same as in Fig. S1. Solid lines
are fits for the function gi = die

βD, where di are different for each stage i, but all stages and all life history
traits share the same β.
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Fig. S4. Per-capita mortality rates for winter temperatures from laboratory data on A. orana from Jo & Kim
(38 ). Colours are as in Fig. S1. Solid line shows the fit of the function gW = dW e

−βWD, where dW is the larval
winter mortality scalar and βW is the winter mortality exponent.
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Fig. S5. Snapshot of the observed (top panel) and predicted (bottom panel) moth dynamics. Observed dy-
namics are a snapshot of the full time-series (Fig. 1). Predicted dynamics are for the parameter estimates in
Table S2 with γC = 4 e−2 and dC = 1 e−6.
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Fig. S6. Observed moth dynamics (black line) and the physiological scale (Eqn. 24) derived from the observed
temperature dynamics.
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Fig. S7. Example predicted equilibrium response of adult density to temperature. Persistence boundary is
just below 10◦C (negative densities are set at zero). Predicted equilibria are for the parameter estimates in
Table S2 with γC = 4 e−2 and dC = 1 e−6.
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Fig. S8. Temperature of the persistence boundary (i.e., temperature when equilibrium larval density is zero) as
a function of different parameter values. The y-axis is change in parameter estimate relative to the estimated
value (horizontal dashed line). Left panel shows the birth rate (bo; black line), development rates (αi; red
lines), temperature dependence in competition (γC ; blue line) and temperature exponent for life history traits
(β; green line). Right panel shows mortality scalars (di; black lines), winter mortality scalar (dW ; green line)
and winter mortality exponent (βW ; red line). Parameter estimates are given in Table S2 with γC = 4 e−2
and dC = 1 e−6.
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Fig. S9. Temperature of the persistence boundary expanded to include stage-specific parameters for warm
temperature mortality exponents (βi) and for winter mortality scalars (dWi). Colours and panels correspond
to Fig S8.
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Fig. S10. Eigenvalues of the perturbation Eqns. 62-63 at three temperatures: 9.7◦C (top panel), 11◦C (middle
panel) and 20◦C (bottom panel). The heat map shows the absolute value of the LHS of Eqns. 62-63. The roots
are found in the middle of the red area. The two leading eigenvalues are shown, and all remaining eigenvalues
occur beyond the scale shown. Parameter values used are those given in Table S2 with γC = 4 e−2 and
dC = 1 e−6. The corresponding equilibrium densities are shown in Fig. S7.
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Fig. S11. Real component of the leading eigenvalue as a function of temperature and βW . Regions with colour
delineate areas where the equilibrium has a positive equilibrium (i.e., persistence), and the heat map gives the
magnitude of the real part. The horizontal dashed line is the estimated parameter value and the solid black
line delineates the Hopf line.
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Fig. S12. Complex component of the leading eigenvalue as a function of temperature and βW . Regions with
colour delineate areas where the equilibrium has a positive equilibrium, and the heat map denotes the absolute
value of the imaginary part. The horizontal dashed line is the estimated parameter value and the solid black
line delineates the Hopf line.
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Fig. S13. Temperature of the Hopf line (i.e., temperature when system changes stability) as a function
of different parameter values. The y-axis is change in parameter estimate relative to the estimated value
(horizontal dashed line). Left panel shows the birth rate (bo; black line), development rates (αi; red lines
with adult stage shown as a dotted line), temperature dependence in competition (γC) and stage-specific
warm temperature exponent (blue line with adult stage shown as a dotted line) and temperature exponent for
the remaining life history traits (β; green line). Right panel shows mortality scalars (di; black lines), winter
mortality scalars (dWi ; green line) and winter mortality exponent (βW ; red line). Parameter estimates are
given in Table S2 with γC = 4 e−2 and dC = 1 e−6.
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Fig. S14. Asymptotic moth dynamics predicted at 10◦C (dashed tray line) and at 25◦C (solid tray line).
Transient dynamics (black line) are shown starting at the asymptotic dynamics of 10◦C, with an abrupt
change to 25◦C at the blue line. Parameter estimates are given in Table S2 with γC = 4 e−2 and dC = 1 e−6.
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Fig. S15. Asymptotic moth dynamics predicted at 9◦C (dashed tray line) and at 25◦C (solid tray line).
Transient dynamics (black line) are shown starting at the asymptotic dynamics of 25◦C, with an abrupt
change to 9◦C at the blue line. Parameter estimates are given in Table S2 with γC = 4 e−2 and dC = 1 e−6.
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Fig. S16. Moth dynamics (black line) predicted from Kagoshima temperature dynamics. Equilibrium dynamics
are shown in the coloured line, with non-persistent periods in red, stable equilibrium in gray, and unstable
equilibrium (limit cycles) in blue. Parameter estimates are given in Table S2 with γC = 4 e−2 and dC = 1 e−6.
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Fig. S17. Example larval (dashed black line) and adult (solid black line) dynamics predicted by the model
driven with observed Kagoshima temperature dynamics. Temperature is shown on the secondary axis (blue
line).
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Fig. S18. Time-scale wavelet decomposition of the data in Fig. 1. Quality reconstruction of the time-series
requires a high-resolution and wide period wavelet (no=15, nv=256). Horizontal lines delineate the two regions
of reconstruction (Sub-annual period: 29 < τ < 61, Annual: 237 < τ < 493), and colours denote the square
root of the wavelet power.
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Fig. S19. Correlation between the original time-series and the wavelet reconstruction across all frequencies
illustrating high quality in the time-series reconstruction. The solid line is the one-to-one relationship.
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Fig. S20. Global power spectrum showing the dominant annual (τ=365 days) and sub-annual (τ=45 days)
cycle (dashed blue lines) of the original time-series. Vertical orange lines denote the ±35% region used for
reconstruction of annual and sub-annual cycles.
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Fig. S21. Time-scale wavelet decomposition of the model predictions. Horizontal lines delineate the two regions
of reconstruction (Sub-annual period: 36 < τ < 74, Annual: 237 < τ < 493), and colours denote the square
root of the wavelet power.
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Fig. S22. Global power spectrum showing the dominant annual (τ=365 days) and sub-annual (τ=55 days)
cycle (dashed blue lines) from the model predictions. Vertical orange lines denote the ±35% region used for
reconstruction of annual and sub-annual cycles.
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Fig. S23. Predicted changes in moth density (square root) at an annual frequency (237 < τ < 493; upper
two panels) and the sub annual frequencies (36 < τ < 74; lower two panels). Scaled moth dynamics are shown
with black lines, and smoothed temperature is shown with orange lines.
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Fig. S24. Profile likelihood for the temperature threshold during the spring (a) and fall (b) phase. Hori-
zontal line denotes the log-likelihood value for the 95% confidence intervals, and vertical blue lines show the
temperature range for the interval.
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Table S1.
Model selection for temperature dependence in life-history traits. Life-history functions have the general form
αxe

βx , where x denotes different possible levels of aggregation of stages and life-history traits. The data
strongly support a separate αij for each stage (i) and each life-history trait (j). This table shows support for
level of aggregation in the slope parameter βx, and the best model suggests all traits and stages should share
a common value. M1: different values of β for each trait but shared across stages. M2: different values of β
for each stage in mortality. Other traits have their own value, but common across stages within those traits.
M3: different values of β for each stage in mortality, but common across all other traits and stages. M4: birth
and development share one value of β (common for all stages), but mortality has a different value (common
for all stages). M5: mortality and birth share one value of β (common for all stages), but development has a
different value (common for all stages). M6: mortality and development share one value of β (common for all
stages), but birth has a different value.

αij M0 M1 M2 M3 M4 M5 M6 df AICc ∆AICc

+ + - - - - - - 11 145.1 0

+ - - - - - + - 12 147.4 2.28

+ - - - - + - - 12 147.4 2.38

+ - - - - - - + 12 147.8 2.69

+ - - - + - - - 12 149.7 4.61

+ - + - - - - - 13 150.2 5.06

+ - - + - - - - 16 152.7 7.54
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Table S2.
Parameter estimates based on laboratory data.

Parameter Value Description

β 7.545e− 2 temperature exponent in development and birth rate functions

αE 1.200e− 2 scalar in egg development rate function

αL 7.311e− 3 scalar in larvae development rate function

αP 2.170e− 2 scalar in pupae development rate function

αA 1.295e− 2 scalar in adult development rate function

dE 4.953e− 3 scalar in egg mortality rate function

dL 1.195e− 3 scalar in larval mortality rate function

dP 4.333e− 3 scalar in pupal mortality rate function

dA 1.343e− 2 scalar in adult mortality rate function

b0 5.688 scalar in birth rate function

βW 2.646e− 1 temperature exponent in winter mortality function

dW 5.614e− 1 temperature scalar in winter mortality function for larval stage

dC − scalar for larval density dependence (no data so range explored)

γC − temperature exponent in larval competition rate function (no data so range explored)
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