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SI Materials and Methods
The Model. The age-specific differential equations are as follows:

dSa
dt

¼ αa−1Sa−1ð1 − νaÞ − ðαa þ μþ λÞSa þ 2σWa;n [S1]

dIa
dt

¼ λSa þ αa−1Ia−1 − ðαa þ μþ γÞIa [S2]

dRa;1

dt
¼ κλba þ γIa þ daνa þ αa−1Ri−1;1 − ðαa þ μþ 2σÞRa;1

[S3]

dWa;1

dt
¼ 2σRa;n þ αa−1Wa−1;1ð1 − νaÞ − ðαa þ μþ 2σ þ κλÞWa;1

[S4]

dRa;i

dt
¼ 2σRa;i−1 þ αa−1Ra−1;i1 − νa − ðαa þ μþ 2σÞRa;i [S5]

dWa;i

dt
¼ 2σWa;i−1 þ αa−1Wa−1;ið1 − νaÞ − ðαa þ μþ 2σ þ κλÞWa;i:

[S6]

The vector α contains the aging rates (set to 2 y−1 except
αNa

¼ 0).
For integrating the system of ordinary differential equations,

we used the R function lsoda in the deSolve package (1),
an integrator that switches automatically between stiff (backward
differentiation formula) and nonstiff (multistep predictor-correc-
tor) methods. The Hopf bifurcations (Fig. 4) were computed
semianalytically by identifying a point on the curve and then using
continuation with local parametrization, tangent prediction, and
Newton–Raphson correction (2) in Mathematica 6 (3). The code
for all computations, along with a document detailing its use, is
available upon request from the authors.

The Data. Some cases were tested at the State Laboratory Insti-
tutes, and others were identified at other laboratories or doctors’
offices and reported to the Massachusetts Department of Public
Health, because pertussis is reportable by law. Three data cate-
gories were used to calculate the age distributions: date of birth,
date of diagnosis, and age in years. If both date of birth and date
of diagnosis were present, the age was calculated from these. If
not, the age in years was used.

Parameter Estimation. We used age-specific incidence data from
pre-vaccine-era Massachusetts (4) to estimate the boosting
coefficient, κ. We assumed that the prevaccine data represent a
sample from the equilibrium distribution of the model. At the
resulting parameter estimates, the model self-consistently pre-
dicts equilibrium dynamics. For the estimation procedure, we
additionally assumed: (i) Everyone became infected at least once
in the prevaccine-era (5), as is supported by serological data. (ii)
The demographic age distribution was flat. In the estimation we
model this by assuming that everyone died at the age of 60 years.
The duration of infections, 1

γ, was negligible in comparison with
the other waiting times. (iii) The pre-vaccination-era age-specific
incidence data consist of observations of first infections and

second infections of people who have lost immunity induced by
the first infection. This is a conservative assumption in that allow-
ing subsequent infections will result in larger estimates of the
boosting parameter κ. (iv) The age distribution is not strongly
affected by the interannual fluctuations in incidence and force
of infection present in the prevaccine-era time series data. (v)
The age-specific incidence data are a representative sample of
the age-specific incidence in the entire population; in particular,
the probability of observing a case was independent of age.
Assuming that there was a lower reporting rate for cases in
adults than children in the prevaccine-era, possibly due to re-
duced disease severity, might lower the estimate for κ. However,
the absence of highly symptomatic teenage cases in the prevac-
cine-era would still put a lower bound on κ. Let the random
variables T1 and T2 represent the ages of individuals at their first
and second infections respectively. Let Uj be a random variable
representing the amount of time an individual spends in the sus-
ceptible class during his or her j-th visit to that class. By assump-
tion, Uj ∼Gammaða;λaÞ; i.e., Uj is Gamma-distributed with
shape parameter a and rate parameter λa. Thus Uj has expected
value 1∕λ for each j. Times of first infections are simply T1 ¼ U1.
In our model, a second infection can only occur when immunity
engendered by the first infection has been lost. Depending on
the ambient force of infection, λ, one or more boosting events
may have occurred, each of which prolongs the period of immu-
nity. Time to the j-th boosting event is modeled by a random
variable Bj ∼Gammaða;κλaÞ, time to the j-th waning from class
R by another random variable Wj ∼Gammaðn;σÞ, and time to
the j-th waning from class W by the random variable Xj∼
Gammaðn;σÞ. An individual visiting the W class for the j-th time,
therefore, is boosted with probability P½Bj < Xj� and returns to
the susceptible class with probability P½Xj < Bj�. Because, in
the model, boosting resets the immunity to its immediately post-
infection or postvaccination state, the number, K , of boosting
events an individual will undergo is a geometric random variable
K ∼GeometricðP½Bj < Xj�Þ. Uj, Bj, and K are all dependent
on the force of infection, λ, and therefore on the number of in-
fections at any given time. When the model predicts equilibrium
dynamics, the force of infection is predicted to be constant
through time and the subsequent distribution of ages at second
infection, T2 is given by

T2 ¼ U1 þW 1 þ∑
K

j¼1

ððBjjBj < XjÞ þWjþ1Þ

þ ðXKþ1jXKþ1 < BKþ1Þ þ U2:

Note that the terms in the randomly stopped sum are indepen-
dent and identically distributed random variables. Now, for any
continuous random variable Z, let f ZðzÞ be the probability density
function of Z and GZðωÞ ¼ E½eiωZ� be the characteristic function
of Z. Also, let

HðtÞ ¼ E½tK � ¼ P½W < B�
1 − tP½B < W �

denote the probability generating function of the geometric ran-
dom variable K . Notice that we have dropped the subscripts from
B and W ; this introduces no ambiguity because these random
variables are independent and identically distributed. It is then
elementary to show that
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GT1
ðωÞ ¼ GUðωÞ; and

GT2
ðωÞ ¼ GUðωÞGW ðωÞHðGBjB<W ðωÞGW ðωÞÞGW jW<BðωÞGUðωÞ:

Each factor of these equations is easily computed using the facts
that, when Y ∼Gammaða;cÞ and Z ∼Gammaðb;dÞ,

P½Y < Z� ¼ P

�
Q <

c
cþ d

�
; where Q ∼ Betaða;bÞ;

and the conditional probability density function

f AjA<BðtÞ ¼
P½Z > t�f Y ðtÞ
P½Y < Z� :

For these calculations, we discretized time into two-wk intervals.
We computed the model-predicted distributions via the charac-
teristic functions G using the discrete Fourier transform. We
calculated the likelihood of each proposed set of parameters
by summing the probability densities over the age categories
corresponding to the data. Age class width varied from one to
five years in the prevaccine-era data. We maximized the likeli-
hood of the observed age distribution using the Nelder–Mead op-

timization algorithm implemented in the optim function in the
program R version 2.10.1 (6). We generated a likelihood profile
over κ and the mean duration of immunity (Fig. S3), with the rate
and shape of the force of infection, λ, and the shape parameter
for the loss of immunity distribution, n, as nuisance parameters.
Both shape parameters were constrained by a lower bound at 1
(i.e., exponential distributions were the limit). We calculated a
99% confidence interval for the parameter estimates using the
likelihood ratio test. The average force of infection was estimated
at 0.2 y−1 (corresponding to a Gamma distribution with shape
parameter 1.8 and rate 0.37) that accords with prevaccine-era es-
timates from other locations (7). The shape parameter for loss of
immunity, n, was not well identified and varied widely for para-
meters inside the 99% confidence interval. We show that the
bifurcations are qualitatively the same for a variety of values
of n (Fig. S4).

We did not use this method to estimate parameters from
the current-era data because, in the presence of high vaccine
coverage, the model predicts cyclic dynamics and therefore a
time-fluctuating force of infection, violating the assumptions of
our method. We instead show an example of the resultant age
distributions from simulations from the age-specified dynamic
model (Fig. 3).

1. Soetaert K, Petzoldt T, Setzer RW (2009) deSolve: General solvers for initial value
problems of ordinary differential equations (ODE), partial differential equations
(PDE) and differential algebraic equations (DAE)R package v 13.

2. Seydel R (1994) Practical Bifurcation and Stability Analysis (Springer, New York),
2nd Ed.

3. Wolfram Research, Inc. (2007)Mathematica, v 6.0 (Wolfram Research, Champaign, IL).
4. Gordon JE, Hood RI (1951) Whooping cough and its epidemiological anomalies. Am J

Med Sci 222:333–61.

5. Anderson RM, May RM (1991) Infectious Diseases of Humans: Dynamics and Control

(Oxford University Press, Oxford).

6. R Development Core Team (2009) R: A Language and Environment for Statistical

Computing (R Foundation for Statistical Computing, Vienna).

7. Grenfell BT, Anderson RM (1985) The estimation of age-related rates of infection

from case notifications and serological data. J Hyg-Lond 95:419–436.

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

pvacc

κ

Duration of immunity
20 years
10 years

Effect of duration of immunity on bifurcation

Fig. S1. Analogous to Fig. 4A but with an additional curve to show the effect of a longer mean duration of immunity.
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Fig. S2. Analogous to Fig. 4A but with two additional curves to show the effect of higher or lower birth rates.
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Fig. S3. Likelihood profile over κ and the mean duration of immunity. The “x” identifies the maximum likelihood estimate. The bold dashed line shows the
99% confidence interval.

Fig. S4. One-dimensional bifurcations over vaccine coverage for three values of κ and four values of n, the shape parameter for loss of immunity. The solid
black dots indicate the incidence with increasing vaccine coverage (forward bifurcation). The open red circles show the same, but as vaccine coverage is slowly
decreased (backward bifurcation). The location of the bifurcation shifts to the right for larger shape parameters, but the qualitative results are the same: A
stable fixed point gives rise to coexisting equilibrium and cyclic attractors. Then, for very high vaccine coverage, only cycles are predicted.
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