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SUMMARY

Epidemic dynamics pose a great challenge to stochastic modelling because chance events are major
determinants of the size and the timing of the outbreak. Reintroduction of the disease through contact
with infected individuals from other areas is an important latent stochastic variable. In this study we
model these stochastic processes to explain extinction and recurrence of epidemics observed in measles.
We develop estimating functions for such a model and apply the methodology to temporal case counts
of measles in 60 cities in England and Wales. In order to estimate the unobserved spatial contact process
we suggest a method based on stochastic simulation and marginal densities. The estimation results show
that it is possible to consider a unified model for the UK cities where the parameters depend on the city
size. Stochastic realizations from the dynamic model realistically capture the transitions from an endemic
cyclic pattern in large populations to irregular epidemic outbreaks in small human host populations.

Keywords: Discrete latent variable; Population dynamics; Stochastic modelling of infectious diseases; Stochastic
simulation; Time series of counts.

1. INTRODUCTION

Infectious diseases are a major cause of misery, sickness and death in humans and animals world-
wide. Control and prevention is therefore an important task both from a humane and an economic
point of view. Efficient intervention hinges on a complete understanding of disease transmission and
persistence. Dynamic modelling of infectious diseases has contributed greatly to this end (Anderson
& May, 1991). From a dynamic point of view, infectious diseases can be divided in two main classes,
those that areendemic, i.e. locally persistent within their host populations, and those that are not. Many
sexually transmitted diseases exemplify the former, while influenza exemplifies the latter. Non-endemic,
that isepidemic diseases are introduced into the host population, break out, and burn out locally. Such
diseases can only persist through recurrent epidemics (Bartlett, 1956). Since chance events are major
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determinants of the size and the timing of the outbreak, epidemic dynamics pose a great challenge to
stochastic modelling. Reintroduction of the disease through contact with infected individuals from other
areas is an important stochastic variable, as is the time to extinction. The low counts of infected individuals
towards the beginning and the end of outbreaks further imply that demographic stochasticity is important.

In terms of nonlinear dynamics the particular focus has been on childhood infections resulting in a
distinguished history of deterministic (Soper, 1929; Kermack & McKendrick, 1933; London & Yorke,
1973; Dietz, 1975, 1976; Schenzle, 1984; Anderson & May, 1991) and stochastic (Bartlett, 1956, 1957,
1960a,b) modelling of disease dynamics. A recent development is to unify these dynamical models and
nonlinear time series analysis. Initially, this work used nonparametric methods to search for chaos and
other nonlinear phenomena in time series of notified cases (Schaffer & Kot, 1985; Olsen & Schaffer,
1990; Sugiharaet al., 1990; Ellner, 1991; Nychkaet al., 1992; Grenfell, 1992; Tiddet al., 1993; Ellner
& Turchin, 1995). More recently, semi-mechanistic (Ellneret al., 1998) and mechanistic approaches
(Finkensẗadt & Grenfell, 2000) have been used to confront dynamical models with time series data.
Bobashevet al. (1998) present a promising approach to uncovering the unknown dynamics of the
individuals that are susceptible to measles. They demonstrate that the susceptible data reconstructed
by their method improve the forecasting of notified measles cases if included as a covariate in a non-
parametric autoregressive modelling approach. Thus far all these examine the dynamics of measles and
other diseases in large endemic host populations.

In this study we present a model for these stochastic processes, extending the approach developed in
Finkensẗadt & Grenfell (2000) to cover bothepidemic andendemic dynamics. The disease transmission
is modelled as a discrete SIR (susceptible–infected–recovered) model comprising the infected and
susceptible classes as state variables. Our aim is to develop a model that can capture epidemic as well
as endemic dynamics and the transition between these regimes. Secondly, we present an estimating
approach for this model. We apply the methodology to case counts of measles—a childhood disease
that is observed to exhibit both kinds of dynamics depending on the host community size. This study was
motivated by measles in cities in England and Wales prior to immunization programmes. Our assumptions
are empirically justified for measles but should also be applicable to other diseases with a natural history
that pertains to an SIR model, notably infectious childhood diseases with permanent immunity.

In his now classic work Bartlett (1957, 1960a) estimated a critical community size (CCS) of about
250 000 to 300 000 inhabitants for measles. The CCS is the population size large enough to maintain
transmission in epidemic troughs. Large cities, above the CCS, exhibit endemic dynamics. Centres below
the CCS exhibit series of epidemic outbreaks interrupted by extinction (Grenfell, 1992; Rhodeset al.,
1997).

Wefirst give some necessary background on the dynamics of childhood diseases focusing in particular
on measles. We use this to develop a stochastic time series model and an approach to estimate its
parameters. The estimation is complicated by the presence of unobserved and partially observed state
variables as well as state dependent variances. We assess consistency of estimators in finite samples
through a Monte Carlo study. In order to make inferences about the unobserved spatial contact we use
stochastic simulation and marginal densities. The estimation results indicate that it is possible to consider
a unified epidemic model where the parameters are predicted from simple functions of the population
size. We illustrate that the estimated dynamic model realistically captures the transition from an endemic
cyclic pattern to regular and irregular epidemic outbreaks.

2. PERSISTENCE ANDEXTINCTION OF EPIDEMICS

At the heart of epidemics lies the often nonlinear transmission of the disease from infected and
infectious individuals—calledinfecteds for short—to susceptible individuals, here calledsusceptibles
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Fig. 1. Time series plots of reported cases corrected for temporal under-reporting for (a) London (3.3 million
inhabitants), (b) Plymouth (210 000 inhabitants), (c) Teignmouth (10 000 inhabitants) during the pre-vaccination time
from 1944 to 1966. The population sizes stated in brackets are the approximate median yearly sizes for this time
period.

(Anderson & May, 1991). For childhood infections such as measles this transmission rate is subject to
strong seasonal variation over the school year since both the infected and susceptible populations largely
comprise schoolchildren (Fine & Clarkson, 1982; Schenzle, 1984). The latent and infectious period, of
around two weeks, is followed by lifelong immunity in measles. Measles epidemics are in this sense self-
limiting. The depletion of susceptibles can only be counteracted by susceptible replenishment through
births.

We focus on weekly measles notifications in 60 towns and cities in England and Wales. These are
official notifications, taken from the Registrar General’s Weekly Reports—more details of the data set
are given in Keeling & Grenfell (1997), Grenfell & Harwood (1997) and Grenfell & Bolker (1998). The
clearest epidemic dynamics are before the onset of measles vaccination in 1967. We therefore analyse the
pre-vaccination data set from the start of 1944 to the end of 1966. Local annual birth rates and population
sizes are taken from the Annual Reports of the Registrar General.

Before the UK mass vaccination programme the disease dynamics led to a pattern of biennial
epidemics with alternating years of minor and major disease incidence. Figure 1 illustrates the observed
time pattern of pre-vaccination measles incidence for three cities in England and Wales from large to small
population sizes. During times of higher birth rates, the accelerated replenishment into the susceptible
class gave rise to annual cycles (Finkenstädt & Grenfell, 2000). This is observed at the time of the baby
boom around 1947 as well as on the individual city level for places characterized by permanent high birth
rates such as Liverpool (Finkenstädtet al., 1998). The regular cyclicity of endemic populations, i.e. cities
large enough to maintain a chain of transmission in epidemic troughs, was classified as type I dynamics
by Bartlett (1957). The observed pattern for London in Figure 1(a) provides an example of such regular
type I dynamics.

The pattern becomes qualitatively different for smaller populations where susceptibles become
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depleted to the extent that the chain of transmission is interrupted. The time series indicate frequent
extinction of the disease (zero incidence) after major outbreaks. However, intermediate-sized communities
exhibit regular recurrence of the disease in synchrony with the epidemics in large communities. Bartlett
(1957) coined this type II dynamics. The case reports for Plymouth in Figure 1(b) provide an example
of such dynamics. Small communities, such as Teignmouth (shown in Figure 1(c)), are characterized by
pronounced periods of extinction and sporadic recurrence of the disease, classified by Bartlett as type III.

In most cities in England and Wales, therefore, the incidence is driven partly by extinction and
reintroduction of the disease. In this study we seek to develop an appropriate stochastic formulation and a
statistical framework for inference that can be applied to data on this type of outbreak.

The pattern of local extinction is determined by three factors: (a) the size and recruitment into
the susceptible class given by birth rates, (b) the rate of contact by local susceptibles with infecteds
from other populations and (c) the rate of contact of susceptible and infected individuals within the
community. This is subject to seasonal variation due to social heterogeneities of individuals and the
aggregation of schoolchildren as modulated by the schooling/holiday pattern (Fine & Clarkson, 1982).
Several studies (Yorke & London, 1973; London & Yorke, 1973; Dietz, 1975; Schwartz, 1985) have
shown that the seasonal variation in transmissibility is very important as it is capable of producing longer-
term oscillations in the dynamics of epidemics. For simplicity we refer to point (b) as eithermigration or
influx of infection and to the schooling pattern in point (c) asseasonal forcing.

3. STOCHASTIC MODEL

Let Yt � 0 denote the true number of infecteds in a host population at timet . This is a non-negative
random variable with discrete probability distributionPy and expectationλt at time t . Let yt denote a
realization fromYt . Furthermore, let�t � 0 denote a random variable for the influx of infection with
discrete probability distributionPθ and letθt be a realization of�t . As in generalized linear modelling
we assume that the disease intensityλt is determined by a set of stimulus variables through a predictor
function, where here the function is dictated by the theory of disease dynamics. The elementary model
is based on a discrete deterministic model developed by Fine & Clarkson (1982), as extended to include
migration of infecteds and to allow for linear or nonlinear incidence rates (see also Luiet al. (1987)).

For measles, the characteristic time scale of the disease, i.e. the duration of the transition from infection
to recovery and lifelong immunity, is two weeks (Black, 1984). Therefore any new infection in biweekt
must arise from an interaction between the same individual as a susceptible and another infected individual
sometime within the previous biweek. If we therefore aggregate the data into two-weekly time steps then
the future number of infecteds can be explained as a function of the previous number of infecteds. The
appropriate discrete-dynamic two-dimensional compartment model for a childhood disease that entails
lifelong immunity is thus given by

E(Yt |yt−1, θt−1, St−1) = λt = rt (yt−1 + θt−1)
α1 Sα2

t−1 (1)

Yt ∼ Py(λt ) (2)

θt ∼ Pθ (θ) (3)

St = Bt + St−1 − yt . (4)

Here St is the number or density of susceptibles,Bt denotes the number of births, andrt is a factor of
proportionality or transmission parameter that varies seasonally through the school year. Furthermore,α1
andα2 denote mixing parameters. In standard modelsα1 = α2 = 1, i.e. the incidence rate is bilinear,
being proportional to the density of susceptibles and infectives. This corresponds to the assumption
that the contact process between susceptible and infected individuals is governed through homogeneous
mixing or by ‘mass action’. Equations (1)–(4) represent a fully specified probability model for an epidemic
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process. We are interested in estimating the seasonal transmission parametersrt , the mixing parameters
α1, α2, and the mean influx of infectionθ . It is worth emphasizing some important features. Firstly, the
model is doubly stochastic in the sense that both the influx of infecteds,�t , as well as the transmission
process,Yt , are random processes. Both are discrete and non-negative implying that the model is non-
Gaussian. Secondly, the model is nonlinear because of the disease transmission (1) between infecteds
and susceptibles. In particular, the stochastic influx process enters the stochastic epidemic process in a
nonlinear fashion.

The model possesses the following fundamental properties. If the number of susceptible individuals
is positive, i.e.St−1 > 0, the following cases can be distinguished:

• If there are no contacts with infectious migrants, the number of infecteds depends only on the past
local infecteds sinceyt−1 > 0 �⇒ λt > 0.

• When the disease has faded out, it remains so for as long as there is no contact with an infected
migrant, i.e.θt−1 = 0 andyt−1 = 0 �⇒ λt = 0. This holds true irrespective of any other quantities
in the system. Therefore a sequence of realizations of zero infecteds does not reveal information about
the transmission and mixing parameters.

• The disease can only be reintroduced after extinction if there is contact with infecteds from other host
populations. This follows fromλt > 0 ⇐⇒ eitherθt−1 > 0 or yt−1 > 0.

If there are no susceptibles the disease goes extinct, sinceSt−1 = 0 �⇒ λt = 0. This also holds true
irrespective of any other quantities in the system.

One major complication in estimating such a model arises from the fact that the migration of infecteds
θt is an unobserved stochastic process in time. The observed variables of the system are the local births and
the reported number of cases where the latter are under-reported. Finkenstädt & Grenfell (2000) describe
in detail how it is possible to reconstruct the dynamics of the susceptible classSt as deviation from its time-
invariant averageS using time series data on locally reported cases and births. The reconstruction is based
on (4) and provides a variableZt with mean zero so thatSt = Zt + S. The mean density of susceptibles
S is unknown. The deviations from the mean,Zt , follow the same dynamics asSt in (4). Susceptible
reconstruction has the additional benefit of revealing the temporal rate of under-reporting. This rate can
be interpreted as a factor that accounts for the balance between the births entering the susceptible class
and the infecteds leaving it. The notified cases can hence be corrected for under-reporting. For the purpose
of this study, we focus attention on estimating the parameters of the transmission equation (1) for which
we make the following assumptions:

(A1) The sequence of reconstructed susceptiblesZt can be treated as a fixed covariate in (1). The mean
number of susceptibles̄S is constant in time. Furthermore,Yt can be approximated by the notified
cases corrected for under-reporting.

(A2) Influx �t is a discrete nonnegative stochastic process with constant meanθ ∈ R0+. Let δt = θt − θ

denote the deviation from the mean influx and letµr = E(δr
t ) denote ther th central moment

(assumed to exist as needed).
(A3) The influx�t and the number of infectedsYt are independent random variables at each time pointt .
(A4) The contact ratert is a time varying parameter with period one yearrt = rt mods wheres is the

number of observations per year, i.e.s = 26 for biweekly data.

4. ESTIMATION

The epidemic process in (1)–(4) is defined by a set of observed (yt , Bt ), partially observed (St )
and unobserved (θt ) variables. Estimation and inference thus requires a sequence of steps using the
assumptions stated above.
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Using assumption (A1) we write the conditional expectation in (1) as

λt = rt (yt−1 + θt−1)
α1(Zt−1 + S)α2. (5)

Noting that the epidemic time contains all information about the mixing and transmission parameters
we apply the logarithmic transformation to the non-zero subset of the data i.e. the subset of data for which
yt−1 + θt−1 > 0, hence

logλt = logrt + α1 log(yt−1 + θt−1) + α2 log(Zt−1 + S). (6)

SinceS̄ is unobserved we approximate log(Zt−1 + S) in (6) by

log(Zt−1 + S) ≈ log S + Zt−1

S
. (7)

Wechecked that the first-order approximation works well for simulated data from an epidemic model (see
Finkensẗadt & Grenfell (2000)). The transmission equation in (6) hence becomes

logλt = logr∗
t + ζ Zt−1 + α1 log(yt−1 + θt−1), (8)

wherer∗
t = rt S̄α2, andζ = α2/S̄. Since the mean susceptible densityS̄ is unknown, the mixing parameter

α2 and the transmission parametersrt cannot be identified. However, they are identifiable as functions of
S̄. r∗

t is the infection rate of one infected individual introduced into a population withS̄ susceptibles. We
expect the average infection rater∗

t to be approximately constant for different sizes of the host population
whereasζ should be decreasing with population size.

The next step is to approximate the term log(yt−1+θt−1) in the transmission equation (8) to account for
the unobservedθt−1. The question of how well the term log(yt−1 + θt−1) can be approximated around the
observedyt−1 depends on the size ofyt−1 relative toθt−1. For an endemic community the influx is small
in comparison to the local number of infecteds. Hence, log(yt−1 + θt−1) may simply be approximated by
log(yt−1). However, typically for an epidemic community a very small number of infecteds is observed
prior to and after extinction such thatyt−1 andθt−1 may temporarily be of similar size. We therefore
should consider a higher-order approximation. The question of how high an order will be addressed in a
Monte Carlo study below.

Considering an approximation of up to order three, and writingθt = θ + δt (assumption (A2)), we
have

log(yt−1 + θt−1) ≈ log yt−1 + θ + δt−1

yt−1
− 1

2

(
θ + δt−1

yt−1

)2

+ 1

3

(
θ + δt−1

yt−1

)3

+ · · · . (9)

Using assumption (A3) the components in (9) can be separated into the conditional mean ofyt givenyt−1
and a remainderet with mean zero,

log(yt−1 + θt−1) = log yt−1 + c1y−1
t−1 + c2y−2

t−1 + c3y−3
t−1 + et , (10)

wherec1 = θ, c2 = −(θ2 +µ2)/2, c3 = (θ3 +µ3 + 3θµ2)/3 are the coefficients of the Taylor expansion
andµk stands for thekth central moment of the influx process (A2). Note that the expansion coefficients
are functions of the parameters of the influx process. Each additional expansion term involves moments
of higher order of the influx process which are weighted inversely by polynomials in the immediate past
number of infecteds. The importance of the migratory influx is thus larger for small populations and during
the time of epidemic troughs.
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Incorporating (7), and considering an expansion up to order three for the influx process (10), the full
transmission equation in (8) is thus approximated by

log yt = logr∗
t + ζ Zt−1 + α1 log yt−1 + α1(c1y−1

t−1 + c2y−2
t−1 + c3y−3

t−1) + εt , (11)

which we will refer to as the full model. The error process of the full model is

εt = yt − λt

λt
+ α1et , (12)

with expectation zero and variance function

V (εt ) = V (yt )

λ2
t

+ α2
1V (et ). (13)

Since the model is doubly stochastic, the variance function (13) of the full model accounts for the two
sources of variation. The first term contains the variance as in an ordinary generalized linear model (see
McCullagh and Nelder (1997, chapter 2)) whereV (yt ) is the variance of the stochastic epidemic process
and is determined by the probability distributionPy . The second term contains the variation due to the
unobserved stochastic influx process.

Finally, the full model in (11) can be reformulated as a regression model that is linear in the parameter
vectorβ,

log yt = xtβ + εt . (14)

Here,xt = (Dt , Zt−1, log yt−1, y−1
t−1, y−2

t−1, y−3
t−1) ∈ R5+s denotes the vector of covariates whereDt =

(D1,t , . . . , Ds,t ) is an s-dimensional vector of dummies withDi,t = 1 if t = i mods and Di,t = 0
otherwise. The parameter vector isβ = (logr∗

t mods, ζ, α1, α1c1, α1c2, α1c3)
′ where logr∗

t mods is a vector
of s = 26 seasonal parameters. Note that the last three elements ofβ are associated with the approximation
of the influx process. Equation (14) represents a generalized linear model with nonlinear variance function
given in (13). ForE(εt ) = 0 and sinceE(xtεt ) = 0 the OLS estimator̂βLS is consistent. Note that the
condition for consistencyE(εt ) = 0 depends on whether the approximation of the influx process (9) is of
sufficient order. The heteroscedastic error term, however, implies that the weighted LS estimator

β̂WLS =
(

T∑
t=1

xt x ′
t

V (εt )

)−1 T∑
t=1

xt log yt

V (εt )
(15)

is of smaller variation than the ordinary LS estimator. SinceV (εt ) depends on unknown parameters and
on the influx process we use estimated WLS whereV (εt ) is replaced by an estimate. The approximate
variance function of the influx process is a complex polynomial function ofyt−1 the estimation of which
is complicated by the fact that (a) estimating a polynomial variance function from residuals generally
produces an error term with nonzero expectation, and (b) extrapolating from estimated polynomials does
not always yield positive variances in numerical applications. Different solutions to this are possible. In
order to use a simpler weighting scheme that is robust in numerical applications we assume thatV (εt ) can
be modelled as an exponential function of the predicted values (see Harvey (1976)),

V (εt ) = exp(γ0 + γ1 logλt ). (16)

This variance function encompasses the variance of the stochastic epidemic process (first term of (13), but
the parameters(γ0, γ1) can adjust to account for additional dispersion due to the stochastic influx.
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5. MONTE CARLO STUDY OF LS ESTIMATORS

Wenext assess the finite-sample performance ofβ̂LS andβ̂WLS in a simulation study of the stochastic
epidemic model (1)–(4) for assumed parameter values. In particular, we want to know (a) if WLS gains
efficiency although it is based on a simplified variance function and (b) how consistency is affected by the
degree of approximation in (9).

5.1 Simulation model and parameters

We simulate time series from the doubly stochastic model for six different sizes of host populations:
22 000, 60 000, 160 000, 440 000, 1.2 million and 3.3 million inhabitants. This approximately corresponds
to the range of community sizes in the 60-cities data set. In order to obtain realistic parameter values for
the simulation study, we used̂βLS from the London data forc1 = c2 = c3 = 0, i.e. neglecting the
influx. We then simulate time series from the stochastic model given in (1)–(4), standardized by the mean
susceptible densitȳS, i.e. we replace (1) byr∗

t (yt−1+θt−1)
α1 exp(ζ Zt−1), and (4) byZt = Bt +Zt−1−yt .

To simulate the behaviour for the different community sizes we use the London estimates for the
mixing parameterα1, which was estimated to be 0.975, and for the set of seasonal transmission ratesr∗

t .
The parameter that requires adjustment to different community sizes isζ = α2/S̄ which was estimated
to be 8.93× 10−6 for London. Assumingα2 = 1, the mean number of susceptiblesS̄ is around 112 000
which corresponds to 3% of the London population size. Following this rule, we adaptedζ to any other
community sizes. The birth rate was set as 17 per thousand inhabitants per year which corresponds to
the observed mean birth rate. The mean influx was set asθ = exp(−3) per biweek for all community
sizes. Finally, following Kendall (1949), we assume thatPy in (2) is a negative binomial distribution with
dispersion parameter(yt−1 + θt−1), and Pθ is a Poisson distribution with intensityθ . Allowing for a
transient of 400 iterations the estimatorsβLS andβWLS are computed from 100 time series simulations of
lengthT = 600. This corresponds approximately to the sampling time ofT = 572 for the real data.

5.2 Monte Carlo estimation results

It is of basic interest to achieve consistent estimation in finite samples of the first three components ofβ,
i.e. the seasonal forcingr∗

t , the mixing parameterα1 andζ . We study their estimates for increasing order
of approximation of the influx process.

Figure 2 summarizes the results for OLS and WLS estimation obtained for the zero-order model i.e.
ci = 0, i = 1, 2, 3. Each panel contains three graphs plotting the estimatedr∗

t , ζ andα1 against the
six different population sizes on the log scale. The 26 seasonal parameters inr∗

t are summarized by their
mean. Figure 2 illustrates that the variation of the estimates generally decreases with increasing population
size. This is because the model variance in(13) is smaller for a large number of past infecteds. The other
reason is that the effective sample size diminishes as smaller communities experience longer extinction
times. The WLS estimator generally achieves a considerably lower variation of the estimates although the
gain in efficiency is not substantial for the largest communities where the error distribution appears to be
approximately Gaussian.

Considering the consistency of the estimates in finite samples the main message of Figure 2 is that,
although the influx of infection may be approximately ignored for large cities, the parameter estimates
are biased for the small and intermediate population sizes. This is especially obvious for the seasonal
coefficients and the mixing parameterα1.

Figure 3 shows that the bias may be reduced by increasing the degree of approximation of the influx
process. The estimates are obtained by WLS. The first- and second-order approximations do not entail
any obvious bias reduction. An order of one generally yields too large a value forα1 and too small a
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Fig. 2. Monte Carlo estimates (100 repetitions) of parameters against community size (log scale) for (a) ordinary least
squares estimation and (b) weighted least squares estimation. The estimation model assumesc1 = c2 = c3 = 0 (zero
order). The vertical bars show the mean and the range of 1.96 times the empirical standard deviation around the mean
for the 100 repetitions. The solid line connects the true parameter values. Results are plotted for (a)r∗

t (log scale,
average over 26 seasonals), (b)ζ (log scale), and (c)α1.

transmission parameter for the smaller cities. An order of two reduces the bias only slightly whereas an
approximation of order three achieves seemingly consistent estimates even for the smallest city size in the
sample. This is bought at the price of a larger variation of the estimates.

Interestingly, if the regression techniques are tested on simulated data from the stochastic model with
deterministic influx rateθt = θ , then an approximation of an order as low as one achieves unbiased
estimation with very small variation for any city size. We therefore presume that the need for a higher-
order approximation is due to the influx being a stochastic variable.



502 B. F. FINKENSTÄDT ET AL.

Fig. 3. Monte Carlo results for WLS estimators (100 repetitions) against community size. The parameters and the
range of the vertical bars are as described in the previous figure. The order of the approximation is 1 in column 1, 2
in column 2, and 3 in column 3.

6. APPLICATION TO MEASLESDATA

Figure 4 summarizes the results of WLS estimation applied to the time series data from 60 cities. The
estimates for the parameters logr∗

t , ζ, α1 are plotted against the corresponding population sizes where
the seasonal coefficients are summarized by their yearly mean. The graphs also show the regression lines
summarizing the parameter estimates for the 60 cities as functions of the populations sizes.

The effective sample size decreases fromT = 572, i.e. the largest communities such as London,
Birmingham and Liverpool never faded out, toT = 162 for the smallest community Teignmouth where
the disease faded out for 70% of the time. The variation of the parameter estimates generally decreases
with growing population size.

The estimates for logr∗
t (Figure 4(a)) do not vary systematically with population size. This can be

expected as the population scaling of the original transmission ratert is balanced by the standardization
with S̄ that appears to be proportional to the population size. The average value for all 60 cities is 0.162
on the log scale which corresponds to an average transmission rate of 1.18 infecteds per time step if one
infected is introduced into a host population withS̄ susceptibles.

Figure 4(b) shows that the estimates forζ scale negatively with population size. This can be expected
asζ = α2/S̄ is inversely proportional to the mean susceptible density. We can approximate the overall
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Fig. 4. Parameter estimates for 60 cities in England and Wales plotted against population size (log scale). The vertical
bars show the parameter estimate plus/minus 2 times the estimated standard deviation obtained from the weighted
least squares regression. (a) logr∗

t mods (average over 26 seasonals) (b)ζ (log scale) with regression line as given in
17, (c)α1 with regression line given in (18), (d) seasonal forcing: Seasonal coefficients logr∗

t mods (average over 60
cities) againstt mods. The dotted lines show the 2 x (average) standard deviation band of the seasonal coefficients.

relationship betweenζ and the population size by the regression

log(ζ ) = 4.497− 1.074 log(population size) (17)

where the standard errors are 0.204 and 0.017 for the intercept and the slope of the weighted regression,
respectively.

The estimates ofα1 in Figure 4(c) appear to be slightly smaller than one (the weighted average is
0.958). This difference is significant for the four largest cities and for the majority of the remaining cities
but, as variation of the estimates grows larger, it is not significant for some of the smaller and intermediate
sized communities. Overall, this suggests the presence of an—albeit small—saturation effect. That is, for
a fixed levelof St , the number of infecteds int + 1 is less than proportional to the number of infecteds
in t . These results are in line with the estimate ofα1 = 0.968 for the aggregate England and Wales
data analysed in Finkenstädt & Grenfell (2000). Simulation studies of the stochastic model where we
imposedα1 = 1 indicate that the dynamics are characterized by unrealistically large outbreaks followed
by extinction even for community sizes well above the CCS. We presume that, forα1 � 1, the host
population is depleted faster than it is replenished by births so that after a major outbreak the disease is
forced to go extinct due to a lack of hosts. The saturation effect that is occurring forα1 < 1 decelerates
the epidemics as a small proportion of susceptibles is rescued from infection. Together with the new
recruitments from births, these provide an ongoing source of hosts so that the chain of transmission may
be continued for a longer time after major epidemics. To summarize the estimates for the 60 cities we
approximate the relationship betweenα1 and the population size by

α1 = 0.749+ 0.0155 log(population size) (18)
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where the coefficients are obtained from a weighted linear regression. The standard errors are 0.041 and
0.003 for the intercept and the regression slope, respectively.

Finally, Figure 4(d) shows the average (over 60 cities) seasonal pattern of logr∗
t . The prominent

dips in the annual variation of the transmission parameter coincide closely with the summer, Easter and
Christmas school holidays. The average pattern of the seasonality in Figure 4(d) is almost identical to the
pattern estimated for the aggregate England and Wales data in Finkenstädt & Grenfell (2000). A detailed
discussion of the seasonal pattern is provided in Fine & Clarkson (1982) and Finkenstädt & Grenfell
(2000).

The individual model fits for the 60 cities are remarkably good. TheR2 of the weighted regressions is
only poor for the two smallest communities (Teignmouth 0.29, Kings Lynn 0.77), but otherwise achieves
a level higher than 0.97 for more than half of the communities (0.996 for London).

7. INFERENCE ON THEINFLUX RATE

In principle,θ could be extracted from the coefficient of the linear expansion term. However, results
from the Monte Carlo study suggest that its variation is of considerable magnitude if the Taylor expansion
is of high order. We explore the use of a different approach based on the dynamics of the epidemics in
simulations from the stochastic model.

The influx processθt plays a fundamental role in determining the epidemic dynamics for cities below
the CCS. If there was no influx at all, the disease would remain extinct after an epidemic outbreak. If
the influx is very small, the dynamics are characterized by long extinction times sporadically interrupted
by massive outbreaks. On the other extreme, a very large influx rate leads to frequent outbreaks of low
magnitude and very few or no extinctions. This suggests that there exists a ’realistic’ range ofθ such that
the model behaviour is compatible with the epidemic dynamics observed in the time series data.

Wequantify this by estimating the distances between the marginal density of the observed time series
of infecteds and the marginal density of time series generated from the stochastic model for different
influx rates. The model is conditioned on the observed local birth rates and based on the parameters from
the population size as specified in the unified model in (18) and (17) with average seasonal forcing.

Let {Xt }n
t=1 denote the observed time series of infecteds (including zero counts). LetYt (θ) =

{Yt |θ}n
t=1 denote a realization from the stochastic model at mean influx rateθ and letθ vary over a

grid (0, θmax). Then

f̂ (x) = 1

n

n∑
t=1

1

hn
k

(
x − Xt

hn

)
and ĝθ (x) = 1

n

n∑
t=1

1

hn
k

(
x − Yt (θ)

hn

)

are estimated marginal densities of the observed time series and the stochastic simulation, respectively.
Here,k is a Gaussian kernel function andhn is the cross-validatory bandwidth (Silverman, 1986) obtained
for the marginal density of the observed series. To estimate the distance between the densities we use the
Kullback–Leibler-related measure (Skaug & Tjøstheim, 1996)

K L(θ) = 1

n

n∑
t=1

log

(
f̂ (xt )

ĝθ (xt )

)
. (19)

Figure 5 shows plots of logK L(θ) against logθ , referred to as a KL plot for short, for some selected
cities. We summarize the variation in the distance estimates by a local linear regression using a Gaussian
kernel with a cross-validatory bandwidth. The KL plots possess a unique minimum around logθ = −3
for most UK cities, which corresponds to an average influx of one infected per 10 months. However, the
pattern of the KL plot changes with population size. Small populations display a sharp minimum in their
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Fig. 5. Plot of the estimated distance logK L(θ) against logθ (KL plots) for a selection of cities: (a) Birmingham
(1.1 million inhabitants), (b) Bristol (430 000 inhabitants), (c) Cambridge (93 000 inhabitants), (d) Exeter (77 000
inhabitants). Each point in the plot is the estimated KL distance for one realization of the epidemic model with a
migration of logθ where logθ is varied over a grid of 1000 values in the range[−8, 2].

KL plot. These become wider and less pronounced for increasing population size. For the largest cities,
the KL plots are constant over a large range suggesting that the dynamics of the epidemics are not affected
by variations inθ . Figure 6 shows the ranges of influx ratesθ that minimize the estimated KL distances
for each population size. The upper and lower boundaries correspond to an estimated 2× local standard
deviation band of the KL plots around their minimum. The lower bound is decreasing with population
size suggesting that, in order for the epidemics to recur at the observed frequencies, larger cities need
less influx than small cities. This is because, for increasing population size, there is a higher number of
local infecteds and susceptibles that maintain the transmission chain for a longer time so that less influx
from other areas is needed to spark off an epidemic. The upper bound ofθ in Figure 6 is increasing
with population size. The reason for this is that the effect of an increasing influx eventually becomes
negligible in comparison with the size of a local epidemic if the host population is large anyway. The
results in Figure 6 highlight the fact that our proposed estimator measures the influx rate on the basis of
its importance relative to the local size of the host population. Whilst the dynamic pattern of the smallest
city is compatible with a very small range of influx rates between 0.07 and 0.18 infecteds per biweek,
endemic places such as London naturally do not respond to changes in influx over a much larger range.
Moreover, this is what characterizes endemic communities.

8. DISCUSSION

The main objective of our study is to provide a time series model for case notifications of childhood
diseases in both large and small human host populations. Our work here extends upon a previous
modelling approach by Finkenstädt & Grenfell (2000) which shows that the dynamical behaviour of
measles in large human host populations can be captured remarkably well by a discrete-time continuous-
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Fig. 6. Estimated influxθ (minimum of the smooth through the KL plots) plotted against the population sizes of the
60 cities. The two dot-dashed curves illustrate how the minima in the various KL plots become wider for growing
population size. They are computed as follows. For each point in the KL plot we obtained an estimate of the local
standard deviation from the kernel regression and computed another smooth through the set of points that denote
the KL smooth minus 2 times the local standard error. This serves as our lower bound to the KL smooth. Then we
computed the range of values ofθ for which this lower bound is lower than or equal to the KL smooth evaluated at the
minimum. This gives a range of values forθ for which the estimated KL distance is not ’significantly’ different to the
minimal KL distance. The two dot-dashed curves above are a smooth through these points. The dashed line denotes
an influx of one infected per biweek.

valued model derived from epidemic theory. However, for small populations, the fluctuations arising from
the stochastic structure of the epidemic process (process noise) are particularly important, as the number
of infectives may become so small that the continuous-valued approximation is no longer valid. This
necessitates the use of a discrete-valued stochastic model as developed here. Furthermore, the intrinsic
noise due to the dispersal of infecteds has a crucial impact on the dynamics of the epidemics in small
populations. This type of stochastic fluctuation is involved in the long-term dynamics of the epidemic
process. We make use of this property in order to infer upon the mean rate of spatial influx.

Furthermore, we estimate model parameters from observed time series counts on measles for various
different sizes of the host population. Here, we develop a regression approach and assess performance of
estimation in a Monte Carlo study. The spatio-temporal data set for 60 cities can be seen as a replication
of the epidemic process at different levels of community size and birth rate. It is therefore possible to
study the scaling of the epidemic parameters as a function of the population size. The scaling uncovered
here suggests that the parameter estimates can be unified by a single model. Moreover, since the seasonal
schooling pattern is a common factor within the UK, it is possible to simulate the long-term dynamics
for any given population size and birth rate on the basis of the common model. Figure 7 illustrates that
realizations from this model capture the transition between type I, II and III dynamics for different sizes
of the human host population.

The results obtained here serve as a starting point for more complicated estimation approaches based
on Markov chain Monte Carlo algorithms which we are currently developing. Whilst in this study we
have separated the susceptible dynamics from the transmission equation, an MCMC approach allows
us to derive posterior distributions for all model parameters and states simultaneously. Developing such
an algorithm is computationally sophisticated and expensive due to the fact that the epidemic model is



A stochastic model for extinction and recurrence of epidemics 507

Fig. 7. Simulation examples from stochastic model with predicted parameters from population sizes (a) 3 million, (b)
150 000, (c) 50 000 inhabitants. The birth rate was set as 17 per thousand inhabitants per year and the mean influx
rate asθ = exp(−3).

nonlinear and incorporates different stochastic processes such as the measurement process, the migration
process and the epidemic process itself.

We uncover an interesting dynamical tension between the local and the regional determinants of
the dynamics. Spatial diffusion of infecteds between places is very important following local extinction
(see also Finkenstädt & Grenfell (1998)) provided that the local pool of susceptibles has had time to be
replenished. Intruigingly, the importance of migration becomes negligible as the disease spreads through
the local chain of transmission. It is therefore only possible to reconstruct the rates of influx to the extent
that influx was effectively necessary to produce the observed epidemic dynamics in the data. Even with the
simple stochastic model used here one can perform a useful analysis of colonization and immigration of a
disease in a community. An immigration of an infected from a different community will not always spark
off an epidemic in a population where measles has faded out. The chance of sparking off an epidemic
depends on the transmission rates of the disease and size of the susceptible population replenished by
births. Bjørnstadet al. (2002) study the odds of sparking off an epidemic given one immigrant and show
how the influence of any additional immigrant is decreasing. This explains further why there is so little
information pertaining to the migration process in large cities.

The results of this study give rise to a host of other epidemiological questions to be addressed in future
research. We briefly point out some of them here.

Ecologists have for a long time viewed power laws or non-mass-action terms such as these to be the
signature of spatial processes (Hassel & Varley, 1969; Luiet al., 1987). Our results do not confirm the mass
action assumption. Simulation studies, not reported here, indicate that the saturation effect that occurs for
α1 < 1 seems to have a profound impact on the epidemic dynamics and the time to extinction. It is
therefore interesting to study whether the saturation effect gives more realistic predictions of Bartlett’s
critical community size than a mass action model. Also, further studies are necessary that compare
the interpretation of epidemic parameters in continuous-time dynamical models with the discrete-time
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approximations used to fit the time series of measurements (Glass and Grenfell, in preparation).
The stochastic model suggested here adds another ingredient to the longstanding discussion about

the predictability of measles time series (Schaffer & Kot, 1985; Olsen & Schaffer, 1990; Sugiharaet al.,
1990; Ellner, 1991; Nychkaet al., 1992; Grenfell, 1992; Tiddet al., 1993). Since, for cities below the CCS,
the onset and therefore the timing of epidemic outbreaks after extinction is determined by the stochastic
influx, the predictability of epidemics hinges on the influx process. Thus, the predictability of recurrent
epidemics must decrease with community size to the same extent that extinction becomes more frequent
and spatial influx rather than local infection becomes the major catalyst of epidemics. The question of
measles’ predictability with respect to periodicity and city size is studied in further detail in Grenfellet
al. (2002) where the empirical power spectra of the observed time series are compared with the power
spectra of TSIR model simulations and local Lyapunov exponents are derived for endemic populations.
Our next aim is to extend these results to understand the more important applied problem of predictability
of measles and other childhood infections in the vaccine era.

Finally, the decrease in predictability for small population size would be less drastic if our assumption
about the influx process were modified to allow for a more realistic but also more complex spatial
coupling. Time series simulations from the stochastic model exhibit a certain level of synchrony for
different cities which is due to the common seasonality. However, this is generally not as high as the
observed spatial synchrony between neighbouring cities in England and Wales. This indicates that there
is extra correlation due to spatial epidemic coupling of close communities. It is possible to implement a
more explicit spatial coupling mechanism into the stochastic model by assuming thatθ is a function of
the epidemic states in neighbouring communities. We address such model extensions in future research.
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FINKENSTÄDT, B. F. AND GRENFELL, B. T. (2000). Time Series Modelling of Childhood Diseases: a Dynami-
cal Systems Approach.Applied Statistics 49, 187–205.
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